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Abstract. This paper introduces provGen, a generator aimed at pro-
ducing large synthetic provenance graphs with predictable properties and
of arbitrary size. Synthetic provenance graphs serve two main purposes.
Firstly, they provide a variety of controlled workloads that can be used to
test storage and query capabilities of provenance management systems
at scale. Secondly, they provide challenging testbeds for experimenting
with graph algorithms for provenance analytics, an area of increasing
research interest. provGen produces PROV graphs and stores them in
a graph DBMS (Neo4J). A key feature is to let users control the rela-
tionship makeup and topological features of the graph, by providing a
seed provenance pattern along with a set of constraints, expressed using
a custom Domain Specific Language. We also propose a simple method
for evaluating the quality of the generated graphs, by measuring how
realistically they simulate the structure of real-world patterns.

1 Introduction

Every piece of data ever produced, either manually or automatically, has a prove-
nance. This is metadata that provides an account of how the data was created.
Examples include a blog’s author, the history of a piece of software along with its
contributors, the instruments used to take a measurement, and their settings; or
a description of an experimental process used to produce a scientific result. The
PROV data model for provenance [MMB+12], endorsed in 2013 by the W3C,
provides a formal and domain-agnostic grounding for provenance, in the form
of UML and OWL models, and RDF, XML, and relational (PROV-N [MM-
CSR12]) serializations. We refer to PROV instances as digraphs, where nodes
are of three possible types: Entities (for data, documents, anything that has
provenance), Activities, which model the execution of a data consumption and
production process; and Agents, to whom Entities can be attributed, and who
hold responsibility for carrying out Activities. The edges represent instances
of relationships amongst the nodes, which are documented in the PROV-DM
specification [MMB+12].

The provenance traces associated with a homogeneous data collection (a
scientific data repository, all the blogs hosted on a particular site, all the artifacts
associated with a complex software project) also naturally form a collection.
Such collections grow in size both with the number of underlying data products,



and with the complexity of their production process. Fig.1 suggests how different
collections can be placed into a space defined by volume, i.e., the number of traces
in a collection, and by the typical size of a trace within a collection. For instance,
many small traces (upper left) may be associated with a large repository of
scientific data, while complex software with a long history may be represented
by many large traces (upper right), as exemplified by the Git2Prov [DMV+13]
tool.
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Fig. 1: A simple space for homogeneous provenance collections

Arguably, the value of provenance comes not only from querying the content
of individual traces, but also from analytics, which can only be computed on
whole collections. It is therefore important for practical applications to demon-
strate the effectiveness of a data and service architecture to manage large bodies
of provenance, with special focus on the upper quadrant of our size/volume space.
Thus, we expect that the design of scalable repositories for provenance traces
should be a natural concern in provenance management. A number of recent
efforts have been documented on nascent provenance management infrastruc-
ture [CAB+13,CLFF10,LLCF11,MMW+12], and there is evidence of the emer-
gence of applications that require provenance querying in a variety of settings
(eg [MOnH+13,ddOOn+12]). However, unlike other “big data” domains such as
Linked Data and more generally RDF triple stores, where performance bench-
marking is established practice, to the best of our knowledge no community-made
benchmarking and commonly accepted datasets that are specific to provenance
are available.1 This makes it difficult to benchmark and compare different im-
plementations with regards to storage techniques, query models, and analysis
algorithms.

1 The use of community datasets for comparing the performance of predictive models
has also long been commonplace within the data mining and KDD community, where
challenge datasets are regularly used.



This is somewhat counter-intuitive, given the amount of provenance that is
generated, in domains such as those alluded to above. In fact, only a handful
of real datasets are currently available through a community process, i.e., the
first ProvBench initiative in 2013 (http://bit.ly/1fBOswR)2, and even fewer
conform to the recent PROV standard and are therefore interoperable. Existing
benchmarking datasets which apply to RDF triple stores3 are not adequate,
because they fail to account for the specific data model and semantics of PROV,
as well as for the specific requirements of provenance query and analysis.

1.1 Contributions

Our assumption is that synthetic PROV graphs can be a valuable complement
to emerging natural provenance collections, provided that their structural prop-
erties reflect specific provenance patterns, with control over their repetition and
variability, and at varying scales. Such graphs can be used both for benchmarking
emerging provenance management systems, as well as to test analytics algorithms
that operate naturally on large provenance collections.

Our main contribution (Sec. 2) is the design and implementation of prov-
Gen, a PROV generator that is designed to help populate the space described
in Fig.1. provGen “grows” collections of synthetic PROV graphs in a way that
conforms to real-life provenance patterns. These are currently user-defined and
modelled after patterns found in specific domains, and which reflect the nature
of the data generation process described by the provenance. For instance, the
prevalent provenance pattern for a Media Wiki website, which we refer to as the
“document revision” model, involves multiple revisions of articles, by multiple
editors (Fig.2). Git repositories exhibit similar patterns, which reflect the revi-
sion history of the code. These patterns are different, for instance, from those for
the provenance of data generated using a workflow, which reflect the consumer-
producer graph structure of the dataflow specification.

Users control the “shape” of the graph being generated by provGen by pro-
viding two main elements. The first is a seed graph, which determines the specific
types of nodes and the relationships amongst them to be considered, in an oth-
erwise random generation process. The second element is a set of constraints,
expressed using a dedicated Domain Specific Language (DSL), which limit the
possible ways in which nodes and relationships are added. These two elements
ensure a predictable general shape for the generated graph, as well as its com-
pliance to PROV.

As discussed later, provGen relies on a graph DBMS backend (Neo4J). In
particular, the generation algorithm is based on graph rewrite rules that are
implemented using a combination of Cypher queries and Create statements.

2 Further contributions are expected from the second ProvBench in 2014 (http://
bit.ly/1c0q5rS).

3 The W3C maintains a list of those http://bit.ly/1lhjvvn
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Fig. 2: The document revision provenance pattern in Wikipedia includes multiple
derivation and editing activities by multiple user or bot agents.

1.2 Related work

A growing body of research is devoted to generating large bodies of synthetic
graph data, either using purely random models [KN09,ER60], or by generating
graphs that exhibit specific statistical properties [BA99, BB05, LCKF05]. One
example is the preferential attachment model. Popularised by Barabasi and Al-
bert [BA99], this model states that as new vertices are added to a graph, the
probability of creating a relationship with node n is inversely proportional to
the degree of n. This model generates a graph with a degree distribution which
follows a power law.

An issue common to these models, emphasised for instance in a compre-
hensive survey on graph generators [CF06], is their focus on enforcing global
properties of the generated graph, such as degree distribution, clustering coeffi-
cient, etc. A potential reason for this focus is that these generators are aimed at
simulating social networks [PBE13,BB05], the statistical properties of which are
based on large sets of examples, and thus are fairly well understood [MMG+07].
In contrast, our generation strategy relies on user-specified patterns, rather than
a large set of pre-existing examples (in the future, we hope to be able to use pat-
terns that have been automatically discovered from existing graphs, by means
of standard graph mining techniques [KK04]). This has the advantage that the
overall topology of the graph can be made to reflect desired semantic properties
of the data, such as the average number of usages for a certain type of entity, the
average number of association of an agent with activities, and so forth. Pham
et al. [PBE13] are amongst the few to have addressed this problem. However,
they focus on a loosely related issue, namely the correlation between node and
relationship properties, such as an increased likelihood to be called “Joachim”
if you live in Germany, and on generating realistic synthetic value dictionaries
accordingly.

2 Graph generation model

Graph generation in provGen is an iterative process which starts from a single
node. At each iteration, a collection of predefined atomic rewrite rules is used to



add a set of new nodes or relationships to the current graph. These rules account
for all possible relation types that are defined in the PROV-DM specification.
As an example, consider the definition of the used(a, e) relation between an
activity a and e an entity e. Three atomic graph rewrite rules are defined for
this relation, namely (i) given an entity node e, add a new activity node a and
an edge used(a, e); (ii) given an activity node a, add a new entity node e and
an edge used(a, e); and (iii) given a pair of unrelated nodes (a, e), add edge
used(a, e). Since each single PROV relation type induces three atomic rewrites,
and we consider 13 types of relations from PROV, at each iteration provGen can
potentially fire any of 39 different rules.

Users can control the execution of these rules and the overall effect of the
generation process in three complementary ways, namely (i) by specifying a
seed graph, (ii) by adding a set of constraints, and (iii) by specifying additional
execution parameters. We now describe these in some detail.

1. Seed graphs. A seed graph specification restricts the set of rules to choose
from, to only those corresponding to the relations that appear in the graph. As
an example, the document revision pattern depicted in Fig. 2 may be expressed
as follows, using PROV-N syntax: 4

entity(e1, [ prov:type="Document" ])

entity(e2, [ prov:type="Document" ])

activity(a, 2013-11-16T16:00:00, 2013-11-16T16:05:00, [prov:type="edit"])

agent(ag, [ prov:type=’prov:Person’ ])

used(a, e1, 2013-11-16T16:00:00)

wasGeneratedBy(e2, a, -, [ ex:fct="save" ])

wasAssociatedWith(a, ag, -, [ prov:role="contributor" ])

wasDerivedFrom(e2, e1, a)

Using this graph, provGen determines that only wasGeneratedBy , used ,
wasDerivedFrom and wasAssociatedWith rules are to be used. Furthermore, it
will associate the properties and values found in the seed graph, for instance
prov:type="edit", to the new nodes and relations.

2. Constraints. Even with this restriction, unconstrained generation would lead
to a graph with arbitrarily high node degree and branching factor, which would
bear little resemblance to the seed trace provided, except in its relationship
makeup. To further control the generation process, the second user input con-
sists of an additional set of constraints, specified using a natural and intu-
itive syntax. Constraints are syntactically similar to workflow control-flow pat-
terns [VTKB03], expressing the required states of data being created.

Constraints consist of three structural components, as shown in the examples
of Table 1, namely a determiner, an imperative, and a condition. The determiner
is either variable (an Agent) or invariable (the Agent, a1) and determines the

4 Domain-specific properties have been added to nodes and relations to denote the
role of entities, activities, and agents in the pattern.



Determiner Imperative Condition

Requirement Req. qualifier

an Entity has in degree at most 1;

an Agent has relationship
"WasAssociatedWith"

between 1, 1000 times,
with distribution
gamma(..., ...),

unless it has
relationship
"ActedOnBehalfOf";

an Activity has relationship
"Used"

exactly 1 times, unless it has property
{"prov:type"="create"};

an Entity has relationship
"WasDerivedFrom",

at least 1 times, unless it has
relationship
"WasGeneratedBy" with
the Activity, a1,
AND a1 has property
{"prov:type"="create"};

Table 1: Examples of user-defined constraints for graph generation.

elements to which a constraint applies. Requirements on these elements are spec-
ified by means of the Imperative clause. For instance has in degree (the re-
quirement) at most 1 (a qualifier) allows a new incoming edge to be added
to any Entity that has none. The qualifier may optionally include a probabil-
ity distribution, as in the second example. This determines the likelihood that
an action be taken in order to satisfy the requirement, namely the generation
of a new WasAssociatedWith relation. Furthermore, a condition specifies the
applicability of an imperative to a determined element, i.e. when (selective con-
dition) or unless (greedy condition). Thus, the second constraint inhibits the
creation of a new WasAssociatedWith relation for any Agent that already has a
ActedOnBehalfOf relation associated to it. Conditions admit the use of logical
connectives, as in the third and last constraint examples, and may predicate on
properties that are mentioned in the seed graph, such as prov:type (pre-defined)
or ex:name (user-defined). Finally, the last constraint shows an example of vari-
able usage (a1).

Note that these constraints are in addition to those defined in the PROV-
CONSTR document [CMM12]. For instance, provGen will not create a graph
where entities are generated by multiple activities. The sketch in Fig.3 shows
the different patterns obtained when generating the graph with and without
enforcing the constraints.

A more complete account of the constraint DSL can be found as part of the
provGen documentation5.

3. Execution Parameters. Finally, users may specify additional execution param-
eters to control the number of distinct (unconnected) graphs to be generated,
as well as the average number of nodes and edges per graph. More advanced
parameters can be used to control the average height (maximum depth) and
width (maximum breadth) for each graph generated.

5 The provGen website: http://bit.ly/1sPn0zg

http://bit.ly/1sPn0zg


Fig. 3: Sketch of PROV graphs generated with and without enforcing user con-
straints

The combination of seed graph, constraints, and execution parameters leads
to collections of PROV graphs that approximate real traces from different do-
mains, and which can be used to populate selected areas of our provenance state
(Fig.1). In Sec. 4 we briefly sketch the evaluation method we are using to test
the quality of generated graphs, with respect to a large testbed of provenance
graphs with known topological properties.

Overall, provGen’s generation process consists of a nested iteration loop. In
the inner loop, provGen iterates over the set of active atomic rewrite rules. When
a rule fires, any constraint that applies to the elements that it is operating upon
is checked, and if any of those constraints is violated, the rule has no effect. This
process is repeated in the outer loop, until a halting condition is satisfied, i.e.,
the desired size is reached, and the DSL constraints are satisfied.

3 Mapping the model to graph DBMS queries

provGen is implemented using the Neo4J graph DBMS6 as a back end. In partic-
ular, both atomic rewrite rules and user constraints are transparently compiled
into CREATE and MATCH statements expressed in Cypher, Neo’s declarative graph
pattern language7. Queries (in addition to CREATE statements) are required at
each iteration to test the requirements and conditions associated with user con-
straints (Table 1). This compilation step provides isolation from the data layer,
delegating graph traversal to the underlying DBMS, and also provides flexibil-
ity for retargeting the graph generator to a different back end. A native graph
DBMS also offers a more natural data model for PROV than a more traditional
RDBMS solution.

The provGen architecture is shown in Fig. 4. Components are deployed on a
server, which is reachable from a web based client application through a REST
API. In the following sections, we focus on the steps involved in generating
Cypher queries from rewrite rules and user constraints.

6 The Neo4j project: http://bit.ly/Pwux7U
7 Cypher documentation: http://bit.ly/1klIlMK

http://bit.ly/Pwux7U
http://bit.ly/1klIlMK
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Fig. 4: provGen system architecture.

3.1 From seed traces to MATCH query clauses

The first step involves parsing the seed traces. Since these user-supplied samples
of PROV data may be serialized into multiple formats, parsing relies upon sev-
eral third party libraries, including the OWLAPI8 and ProvToolbox.9 This step
results in a subset of the 39 pre-defined atomic graph rewrite rules, mentioned
in Sec. 2, to be selected for the generation step.

Rewrite rules are statically mapped to Cypher queries. As an example, below
we show the queries responsible for creating the PROV used relationship. Note
that multiple queries are required in order to account for the directed nature of
PROV relationships and the ability to create a edge between two pre-existing
nodes.

(1) MATCH (a:Activity {}) CREATE (a)-[:USED {}]->(:Entity {})
(2) MATCH (a:Entity {}) CREATE (a)<-[:USED {}]-(:Activity {})
(3) MATCH (a:Activity {}), (b:Entity {}) CREATE (a)-[:USED {}]->(b)

Query fragment (1) matches any node a of type Activity, it creates a new Entity
node, and it connects it to a using a used relationship. Symmetrically, (2) adds
a new Activity node to any existing Entity node. Finally, (3) takes a pair of
existing nodes a (Activity), b (Entity) and again creates a used relationship
between them.

The examples above show empty brackets, to indicate that no properties are
associated to the nodes and relationships. However, all properties associated to
the elements of the seed trace are also associated to corresponding elements of
the new graph. Thus, for example activities would have a property prov:type,
inherited from the activity node in the seed graph above.

8 The OWLAPI project: http://bit.ly/N9hsPM
9 The ProvToolbox project: http://bit.ly/1fV95nN

http://bit.ly/N9hsPM
http://bit.ly/1fV95nN


3.2 Constraints as WHERE clauses

The DSL parser10 separates the component elements of each constraint, namely
determiner, imperative and condition. Requirements may be expressed on various
graph features, i.e., nodes in/out degree, relationship, property, etc. . . . Each type
of requirement is compiled into a Cypher query WHERE clause. These clauses are
then added to the MATCH statements that represent the atomic rewrite rules, to
form complete queries. Consider the following example:

an Activity has relationship ‘‘Used’’ exactly 1 times,

unless it has property {‘‘ex:name’’:‘‘create’’};
an Activity has degree at most 5;

These constraints are easily interpreted in the context of a document revision
pattern, where activities are edits of document versions, which produce a new
version. For these activities, we stipulate that they use only one entity (the
original document). Activities that create new documents are exceptions, noted
by the ex:name=create property, and these activities are allowed to use zero
or more input documents. Additionally, we add an upper bound to an Activity
node’s degree to illustrate a more complex constraint.

The constraint is compiled into query fragments (4) and (5) in the Cypher
query below, where they are merged with the MATCH and CREATE clauses of atomic
query (1) from the example above:

(1) MATCH (a:Activity {})
(4) MATCH (a)-[r]-()
(5) WHERE NOT a.ex name = “create” AND NOT count(r) >= 5
(1) CREATE (a)-[:USED {}]->(:Entity {})

The query specifies at the same time the node and relationship generation,
and the constraint. The MATCH clauses bind variables a and r to an Activity and
to the set of its edges, respectively (either incoming or outgoing, as no direction
is specified). The WHERE clause ensures that the CREATE statement (which creates
a new used relationship) is only executed on a if the ‘‘ex:name’’ property is
not “create”, and the number of edges in set r is at most 4.

3.3 Generator Loop

The generator loop (Fig. 4) accepts a collection of atomic create operations,
selected and constrained as described above, and repeatedly iterates over it,
executing each associated Cypher query against the underlying graph database.

The generator loop has several halting conditions: both explicit, where exe-
cution parameters, detailed in Sec. 2, halt generation as the order |V | and size
|E| of the graph reach their specified maxima; and implicit, where constraint
rules may prevent the execution of individual operations in order to avoid vio-
lating specified range requirements. Note that limits in cardinality imposed by
execution parameters may be met before the minimum requirements of a con-
straint rule are satisfied. When this is the case, provGen gives priority to the
user constraints, to ensure that those are not violated.

10 The parser is implemented using Scala parser combinators: http://bit.ly/1cURrAo

http://bit.ly/1cURrAo


4 Evaluation methodology

The main purpose of provGen is to fulfill the need to generate a possibly large
number of provenance graphs for data domains where provenance is not yet
routinely collected, or is not abundant. Yet, our evaluation of the system’s effec-
tiveness relies on precisely those domains where large provenance collections are
available. Specifically, we evaluate provGen by comparing selected properties of
existing “real-world” provenance graphs, which we call control set, to those of
generated graphs (the test set) intended to emulate them. Using this approach,
we aim to empirically demonstrate that provGen may be configured to generate
datasets that are “similar” to those produced by multiple different sources of
provenance.

Our evaluation is ongoing. Here we illustrate the approach using one single
control set, namely a set of Wikipedia provenance traces, representative of the
document revision pattern, taken from the ProvBench repository and compliant
with PROV.11 The control graphs include about 4,000 nodes and 6,000 relation-
ships. Our test set consists of two synthetic datasets of roughly the same size
as the control, produced using provGen with a user-created seed trace for the
document revision pattern, along with constraints and parameters.

In this initial evaluation we have considered three simple criteria. Firstly, we
note that in the control set, which follows the linear Wikpedia pattern (Fig. 2),
each Entity is used exactly once. Thanks to our user constraints, this is easily
replicated exactly in the test set. Secondly, as example criteria we additionally
consider the number of associations per Agent, and the average number of entities
with distinct titles contributed to, per Agent. In the control, each Agent has 2.4
associations on average (std dev. 6.2), while in our test set it has 2.9. The average
number of contributions per Agent is 1.1 in the control (std dev 0.8), while in the
test is 1.8. Encouraged by these preliminary results, we are now in the process
of more extensively testing provGen using a variety of criteria that can be easily
measured both on control and on test graph.

5 Conclusion

In this paper we have presented provGen, a PROV-specific graph generator
driven by user-defined seed graphs, which represent provenance patterns, and
additional user-defined constraints designed to enforce semantics properties of
the generated graph. Constraints are expressed in a dedicated “plain english”
constraints language.

One feature that sets provGen apart from existing approaches to graph gen-
eration is that it provides users with local control over topological features and
statistical characteristics of the graph. Constraints are evaluated locally for each
node created, thus avoiding the complexity of verifying them globally. provGen
is implemented using a Neo4J graph database back end. Graph rewrite rules and

11 ProvBench’2013 CFP: http://bit.ly/1fBOswR

http://bit.ly/1fBOswR


user constraints are both mapped to Cypher queries. Rewrite rules are mapped
to CREATE clauses, while constraints are compiled into WHERE clauses. The two
are blended together into complete Cypher queries, so that graph generation
relies entirely on Neo4J’s native query engine.

We have also briefly discussed our approach to evaluating the effectiveness
of provGen in generating “real-world” provenance, i.e., by comparing some of
its key statistical properties with those of real graphs within the same class. We
are currently experimenting with a variety of seed graph patterns, and more ex-
tensively evaluating provGen’s capability to mimick real provenance. Currently
seed patterns must be manually designed or discerned. In future, an attempt to
collate a collection of patterns common to provenance data, as has been done
with workflow specifications [VTKB03], could prove useful.

Graph generation performance is another concern we are currently address-
ing. Generating large scale graphs requires efficient execution of the MATCH–
CREATE-WHERE queries shown above, on graphs of increasing size. We are finding
that Neo4J may not be an optimal choice, as it is geared for OLTP workloads
with consequent transaction management overhead. However, our architecture is
flexible and allows for experimentation, as changing the back end simply requires
retargeting the mapping of rules and constraints to a different query language.
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