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ABSTRACT
Improving machine learning models’ fairness is an active research
topic. Most approaches to it focus on a particular fairness definition.
We propose a parametrised training-set-resampling method, which
allows optimising in both a fairness-definition and classification-
model agnostic manner. Given a binary protected attribute and
a binary label, we correct the positive rate for both the favoured
and unfavoured groups through four different resampling methods.
Three fairness definitions are adjusted to ratio forms allowing us to
measure a classifier’s level of fairness. Results of experiments over
three public benchmark datasets (Census Income, COMPAS and
German Credit) are presented, with the ultimate goal of optimising
the correction level for a particular dataset and fairness definition.
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1 INTRODUCTION
The increasing presence of automated decisions in our lives has led
to a rising concern about the way in which these decisions are taken.
The main area on which research has focused is fairness. Although
we may have an intuitive idea of what this concept means, trying to
formally define it has proven to be troublesome, and many different
definitions of fairness have arisen [13]. A problem with this is the
well-known fact that many of these definitions are incompatible
with each other: a decision rule satisfying one of the definitions may
well prove to be very unfair for a different one [4]. For example,
determining university admissions through gender quotas may
achieve demographic parity, but make the acceptance rates for
good students of different genders disparate. We propose a fairness-
definition-agnostic method to optimise a classifier’s behaviour with
respect to a particular fairness definition, without incurring a big
loss in predictive power. One of our proposed method’s variations
results in a generalisation of Kamiran and Calders’ Preferential
Sampling [9].

Fairness-aware machine learning is defined by Friedler et al. [7]
as preprocessing techniques modifying input data so that any clas-
sifier trained on said data will be fair. According to [10], there
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are four main ways in which to make appropriate adjustments
to data in order to enforce fairness: suppressing certain features,
also known as fairness through unawareness [8], massaging vari-
able values [3], reweighing features [12] and resampling data in-
stances [15], [9], [16]; our proposed method belongs to this last
category.

Part of the inspiration for parametrising the level of correction
to apply came from the idea of worldviews by Friedler et al. [6],
referring to the set of assumptions made about the construct, the
metric space including all the relevant features to a decision task. In
their paper, Friedler et al. [6] introduce three distinct worldviews:
what you see is what you get (WYSIWYG), we are all equal (WAAE)
and structural bias. WYSIWYG refers to the assumption of the
construct space being essentially the same as the observed space,
i.e. all the available data. WAAE, on the other hand, assumes that all
groups of individuals with respect to a potentially discriminatory
(or protected) attribute should perform equally well regarding the
classification task. Finally, structural bias assumes that there is a
larger distortion between groups than there is between individuals
when mapping between the observed space and the construct space,
i.e. protected attribute groups may play a more relevant role in the
decision rule than they actually should. This calls for a modified
decision rule that corrects this distortion, or taking affirmative
action (AA).

The main idea is to correct a classifier’s unfair behaviour through
training-set resampling. We propose a method to modulate these
corrections via a continuous parameter d , which will produce cor-
rected positive and negative ratios for different protected attribute
groups, and these new ratios will in turn be enforced by a correcting
function, based on a resampling method.

According to Berk [1], one of the main problems with data re-
sampling is the loss of prediction accuracy provoked by such inter-
ventions. Our method has two responses to that: on one side, even
at the most severe correction levels, the loss in accuracy for most of
our sampling methods is relatively low. On the other hand, this loss
in accuracy may also be controlled through parameter d , allowing
for a decision in the amount of accuracy for fairness trade-off the
user is willing to accept.

Our fairness correcting method permits enforcing a particular
worldview by selecting the adequate value for its correction param-
eter. A second use for our correction parameter is to optimise a
classifier’s predictions with respect to a particular fairness defini-
tion, by only applying as much correction as needed. This is the
main contribution of this paper, as it provides a fairness-definition
and classifier-agnostic method to generate fair decisions through a
simple and efficient data resampling procedure. Finally, we show
how a classifier may be optimised for fairness without much accu-
racy loss in the process.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


KDD XAI, 5 August 2019, Anchorage, Alaska, USA Vladimiro G. Zelaya, Paolo Missier, and Dennis Prangle

2 METHODOLOGY
This initial version of our method is meant to be used for correct-
ing training datasets for classification tasks. We have focused on
datasets with both binary protected attributes and labels. For some
cases, this could be addressed by making the protected attribute bi-
nary by grouping together labels which are not relevant for separate
analysis.

2.1 Definitions
Across this paper, we will be constantly referring to concepts that
might have a fairness-specific connotation. Hence, we present our
meaning for them next.

We will say a binary classifier’s label can be positive or negative
referring to the desirable and non-desirable outcome of a prediction,
respectively. For example, in a classification task deciding whether
to grant a user a bank loan, the positive label would refer to getting
the loan, and the negative one to being rejected.

The protected attribute (PA) refers to a variable in data that may
be an object of discrimination, due to historical bias or otherwise.
In our particular case we will be dealing with binary PAs, mean-
ing there will only be two PA groups, every instance in the data
belonging to one of those.

We will call the ratio of the number of positive instances divided
by the total number of instances in a specific group the positive rate,
or PR of the group. Analogously, the ratio of the number of negative
instances in a group divided by the total number of elements in the
group will be referred to as the negative rate (NR) of the group.

Among the two PA groups, the one having the highest PR will
be referred to as the favoured (F ) group, while the other one will
be referred to as the unfavoured (U ) group.

2.2 Parametrising Correction
We introduce the disparity correction parameter d , which may be
used for two different objectives:

(1) To enforce a particular worldview [6], as defined above.
(2) To optimise a classifier with respect to a particular fairness

definition.
This parameter may take valuesd ∈ [−1, 1], affecting the amount

of correction going into the training set. A d-value of 1 is associated
with the WYSIWYG worldview, leaving the training set as-is. A
d-value of 0 is associated with WAAE, making the PRs for both the
favoured and the unfavoured groups equal with the population PR.
Finally, a d-value of -1 is associated with AA, as it makes the PR of
the favoured group equal with the unfavoured group’s original PR
and viceversa.

Ourmain objective, though, is not to enforce a specific worldview
by preprocessing, but to be able to optimise a classifier’s predictions
with respect to a fairness definition. In order to do so, we propose
to train classifiers associated with different d-values, evaluate the
fairness metric of interest over the obtained models’ predictions
and select the d-value optimising such a metric.

Given a dataset D, let A be a binary PA of D, with unfavoured
group U and favoured group F with respect to their PR in the
training set, let X be the set of unprotected attributes of D and let Y
be the binary label, taking values 0 and 1. The way our correcting
parameter works is as follows.
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d
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Figure 1: PR-correcting functions for favoured and un-
favoured groups. The d-axis is reversed for interpretability.

Given d ∈ [−1, 1], we wish to find a function f +(d) that will
yield a corrected PR for F , such that:

f +(1) = PR(F ), f +(0) = PR(D), f +(−1) = PR(U ).

The simplest smooth function satisfying these conditions is a
quadratic polynomial. The intention of our correcting method is
to increase the PR of U while decreasing the PR of F . At d = 0,
we wanted both groups to have the same PR (reflecting the WAAE
worldview), Likewise, at d = −1 we wish the PR for both groups
to be completely reversed. For this reason, we also define u+(d) =
f +(−d), the corrected PR of U . The algebraic forms of these two
polynomials are:

f +(d) = ad2 + bd + c

u+(d) = ad2 − bd + c,

and solving for a, b and c given the desired constraints results
in coefficients:

a =
PR(F ) + PR(U )

2
− PR(D), b =

PR(F ) − PR(U )
2

, c = PR(D).

Plots for both PR-correcting functions are shown in Figure 1.
In this and all subsequent figures, the d-axis is reversed for better
interpretability.

Corrected NR for both groups will simply be

f −(d) = 1 − f +(d) and u−(d) = 1 − u+(d).
We use these corrected ratios f +(d), f −(d),u+(d) and u−(d) to

produce a d-resampled training set which, when used to fit a classi-
fier, will have an effect on the different fairnesses of its predictions.
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2.3 Sampling Strategies
We implemented four different correcting functions, each based on
one of the following sampling strategies, in order to achieve the
desired PRs for both the favoured and unfavoured populations:

Random Undersampling (Under). Favoured positive and un-
favoured negative subgroups are randomly undersampled, i.e. in-
dividuals are removed randomly until the favoured positive and
unfavoured negative groups get to the necessary size.

RandomOversampling (Over). Favoured negative and unfavoured
positive groups are randomly oversampled, i.e. existing individuals
in the relevant groups get replicated until the favoured negative
and unfavoured positive groups get to the necessary size.

SMOTE Oversampling (SMOTE). Favoured negative and un-
favoured positive groups are oversampled using the Synthetic Mi-
nority Oversampling TEchnique (SMOTE) [2]. Similar to random
oversampling, in this case synthetic datapoints are generated based
on a k-nearest-neighbours algorithm. Again, the number of gener-
ated datapoints will depend on the necessary size for the favoured
negative and unfavoured positive groups.

Preferential Sampling (PS). Introduced by Kamiran and Calders
in [9, 10]. Ranker is learnt from training data and used to sort ev-
ery subgroup by positive-class probability. Favoured positive and
unfavoured negative subgroups are undersampled, taking out dat-
apoints with highest/lowest probabilities, respectively. Favoured
negative and unfavoured positive groups are randomly oversam-
pled from as many copies as needed of the sorted data, adding
in datapoints with lowest/highest probabilities, respectively. For
comparison purposes, we will refer to the original, unparametrised
version of PS as PS0.

Once the training set has been rebalanced with our method, the
resulting classifier learnt from the corrected training set should
see a change in the fairness of its predictions, in the sense that the
ratios obtained from equations 1, 2 and 3 should change their value
with respect to the corresponding uncorrected ratio.

A final step in finding the optimal correction for a specific fair-
ness definition is to compare the resulting fairness ratios for differ-
ent values of d , in order to select the one that produces the ratio
closest to 1. As we will see on Section 3.1, it is usually easy to find
d-values close to the optimal, but for different fairness definitions
the optimal d-value will usually be different too.

2.4 Fairness Definitions
In this work we analyse how our proposed method can improve
classifier Ŷ predictions with respect to three fairness definitions,
defined in this section. These definitions are presented in [13].

Demographic Parity. The probability of being classified as posi-
tive class is the same across PA subgroups:

P
(
Ŷ = 1

�� A = U )
= P

(
Ŷ = 1

�� A = F
)
. (1)

Equality of Opportunity. The probability of being classified as
positive class for true positives is the same across PA subgroups.

P
(
Ŷ = 1

�� A = U ,Y = 1
)
= P

(
Ŷ = 1

�� A = F ,Y = 1
)
. (2)

Counterfactual Fairness. A classifier Ŷ is counterfactually fair
if under any context X = x and A = a,

P
(
ŶA←U = 1

�� X = x,A = a
)
= P

(
ŶA←F = 1

�� X = x,A = a
)
,

(3)

where ŶA←U and ŶA←F denote the value of Ŷ had A taken the
valuesU or F , respectively.

Even though these definitions are clear, in order to measure
how fair a classifier’s decisions are, it is more convenient to think
of quotients associated with these. We can define a classifier’s
demographic parity ratio (DPR) through the following equation,
closely connected to equation 1:

DPR =
P
(
Ŷ = 1

�� A = U )
P
(
Ŷ = 1

�� A = F
) . (4)

Evidently a classifier’s predictions will satisfy demographic par-
ity if and only ifDPR = 1 on equation 4. Also, even thoughDPR = 1
may not be achieved, the closer DPR is to 1, the fairer the classifier
will be, with respect to demographic parity.

We define the equality of opportunity ratio (EOR) analogously to
DPR as:

EOR =
P
(
Ŷ = 1

�� A = U ,Y = 1
)

P
(
Ŷ = 1

�� A = F ,Y = 1
) . (5)

Again, the closer this ratio is to 1, the fairer a classifier will be,
this time with respect to Equality of Opportunity.

In the same fashion asDPR and EOR, we may define a classifier’s
counterfactual fairness ratio (CFR) as:

CFR =
P
(
ŶA←U = 1

�� X = x,A = a
)

P
(
ŶA←F = 1

�� X = x,A = a
) . (6)

In practice, evaluating these probabilities for any context X = x
and A = a can be troublesome, since that would imply evaluating
this ratio on every combination of X and A present in T .

As proxy to this, we follow the procedure shown in Figure 2: we
intervene test set T twice, assigning every individual in T the PA
valuesU and F and obtaining TA←U and TA←F as results, respec-
tively. This approach was defined by Kilbertus et al. [11] as proxy
fairness. We then define CFR∗ as the ratio of the PRs of predictions
for both intervened test sets:

CFR∗ =
PR(TA←U )

PR(TA←F )
. (7)

The same as with DPR and EOR, the closer CFR∗ is to 1, the
fairer our classifier will be.

3 EXPERIMENTS
We tested our methods over three datasets commonly used on
machine learning fairness research literature: Census Income (In-
come) [5], COMPAS [14] and German Credit (Credit) [5]. A sum-
mary of the main features of each dataset may be seen in Table 1.
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T

A← U intervention A← F intervention

TA←U TA←F

Predictions for TA←U Predictions for TA←F

CFR∗(T)

Figure 2: Calculating CFR∗ for test set T.

Table 1: Datasets used for our experiments.

Dataset Instances PA Favoured Positive Class

Income 48842 Sex Male Over $50k income
COMPAS 6907 Race White Will not recidivate
Credit 1000 Gender Male Will repay loan

For every dataset, we performed the following experiment 50
times, and then averaged the results for stronger statistical sound-
ness:

(1) Random train/test split the data with 90/10 proportion.
(2) For counterfactual-fairness checking, make two copies of

the test set T and intervene A as either U or F , obtaining
TA←U and TA←F , respectively, as shown in Figure 2.

(3) For each of the four sampling functions obtain 11 different
training sets, each corresponding to a different value of d ∈
{1, 0.8, 0.6, . . . ,−1}.

(4) For each of these training sets, fit a logistic regression (LR)
model.

(5) For every model, get predictions for T , TA←U and TA←F .
(6) Compute metrics for accuracy, demographic parity, counter-

factual fairness and equality of opportunity, as well as the
coefficients for every feature in the model.

We then proceeded to analyse the resulting fairness metrics, and
compared our results with PS0 (which is essentially the same as
applying PS with d = 0 using our method).

3.1 Results
As expected, disparity correction has an effect on a classifier’s
PR. Figure 3 shows a particular instance of this, using random
undersampling as our correcting method, for the COMPAS dataset.
As may be seen, at the optimal d-value—the point at which the
curves cross over—both the F andU groups achieve the same PR,
which is the population PR. This is unlike PS0, for which F and U

1.000.750.500.250.000.250.500.751.00
d

0.55

0.60

0.65

0.70

0.75
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Figure 3: COMPAS PR by undersampling correction.

PR never change and are quite far from each other and from the
population PR.

Figure 5 shows the resulting metrics for accuracy, DPR, EOR
and CFR∗ for all three analysed datasets. It is worth noting that
both the Credit—and to a lesser extent COMPAS—datasets have a
relatively smaller number of instances, hence the trends appearing
in the figures for said datasets are not as smooth as the ones for the
Income dataset.

3.1.1 Accuracy. In all three datasets, accuracy decreased monoton-
ically with correction increases, as may be seen in the top row of
Figure 5. It is worth noting that the decrease in accuracy result-
ing from increased correction was not particularly severe, with
less than a 4% accuracy drop on all the non-PS methods for every
dataset even at the highest correction level. Whether this trade-off
is beneficial or not will ultimately be application-specific.

3.1.2 Fairness Ratios. For all the analysed fairness ratios, correc-
tion had a much stronger effect when using PS as our resampling
method. This is explained partially by the fact that PS resamples all
four population subgroups at once, while the other three methods
only resample two of said groups. This stronger effect of PS has
both a positive and a negative consequence. The positive one is that,
in general, a smaller d-value will be required to achieve optimal
fairness ratios. The negative consequence, though, is the higher
variability in fairness ratios due to the change in the value of d .
This means that optimising for a specific fairness ratio may greatly
magnify another ratio’s unfairness.

For both the Income and Credit datasets, PS0 performed quite
well regarding DPR, getting ratios close to the optimal. For EOR
and CFR∗, however, PS0 overcorrects by a big margin on every
dataset.
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Figure 4: CFR∗ by PA coefficient for all three datasets, with
quadratic-regression curves for each one.

In every dataset, all sampling methods achieved optimal DPR,
EOR and CFR∗, but did so with different d-values. Steep rates of
change in PS, though, mean that a d-value only slightly away from
the optimal can cause DPR to vary greatly. Interestingly, DPR opti-
mality was the hardest to enforce. For all non-PS methods (Under,
Over and SMOTE), it took d-values close to -1 to achieve optimal
DPR.

Another interesting trend that may be observed in Figure 5 is
that, given dDPR , dEOR and dCFR∗—the optimal d-values for DPR,
EOR and CFR∗ under a particular correction method—it roughly
follows that

dDPR ≤ dEOR ≤ dCFR∗ ,

i.e. achieving demographic parity will require greater correction
than is needed for equality of opportunity, which in turn requires
greater correction than counterfactual fairness.

3.1.3 PA Coefficients. Scatter plotting CFR∗ vs. the PA coefficient
of the 132 produced model-fits—obtained from fitting eleven d-
values over four correction strategies for three datasets—revealed an
interesting relation between these two quantities: the fit regression
line for each dataset’s scatter passes through point (1, 0), as may
be seen in Figure 4. This makes perfect sense, as the coefficient for
a feature being 0 means that the feature is completely irrelevant
for the model (and its predictions). Hence interventions A ← U
and A← F over a datapoint will be totally indistinguishable to the
model. In other words, a LR model with PA coefficient 0 will always
be proxy fair. On the other hand, we did not find any such relation
for DPR and EOR with respect to the PA coefficient.

4 CONCLUSION
In this paper, we have defined a parametrised fairness optimisation
method that is both fairness-definition and classification-model
agnostic, which may be used to enforce a particular worldview. By
using correcting functions based on training set resampling, we
have shown that our method produces fairness-optimal predictions
with a small loss in predictive power. For future work directions, we
intend to analyse our method’s performance on different fairness
definitions from the ones presented in this work. Another inter-
esting and relevant research direction is to extend our method to
work on non-binary PA and Label cases. We also intend on further
improving our data resampling methods, in order to minimise the
accuracy loss. Finally, a method for optimising over several fairness
definitions at once may also be worth working on.

ACKNOWLEDGMENTS
This work was produced as part of the EPSRC Centre for Doctoral
Training in Cloud Computing for Big Data programme. Vladimiro
G. Zelaya would like to thank the financial support provided by
Universidad Panamericana, Mexico and the Digital Institute at New-
castle University, UK.

REFERENCES
[1] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth.

Fairness in criminal justice risk assessments: The state of the art. Sociological
Methods & Research, page 0049124118782533, 2018.

[2] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial
Intelligence Research, 16:321–357, 2002. ISSN 10769757.

[3] Silvia Chiappa and Thomas PS Gillam. Path-specific counterfactual fairness.
arXiv preprint arXiv:1802.08139, 2018.

[4] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias
in recidivism prediction instruments. Big data, 5(2):153–163, 2017.

[5] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL
http://archive.ics.uci.edu/ml.

[6] Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. On the
(im) possibility of fairness. arXiv preprint arXiv:1609.07236, 2016.

[7] Sorelle A Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam
Choudhary, Evan P Hamilton, and Derek Roth. A comparative study of fairness-
enhancing interventions in machine learning. In Proceedings of the Conference
on Fairness, Accountability, and Transparency, pages 329–338. ACM, 2019.

[8] Pratik Gajane and Mykola Pechenizkiy. On formalizing fairness in prediction
with machine learning. arXiv preprint arXiv:1710.03184, 2017.

[9] Faisal Kamiran and Toon Calders. Classification with no discrimination by
preferential sampling. In Proc. 19th Machine Learning Conf. Belgium and The
Netherlands, pages 1–6. Citeseer, 2010.

[10] Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification
without discrimination. Knowledge and Information Systems, 33(1):1–33, 2012.

[11] Niki Kilbertus, Mateo Rojas Carulla, Giambattista Parascandolo, Moritz Hardt,
Dominik Janzing, and Bernhard Schölkopf. Avoiding discrimination through
causal reasoning. In Advances in Neural Information Processing Systems, pages
656–666, 2017.

[12] Emmanouil Krasanakis, Eleftherios Spyromitros-Xioufis, Symeon Papadopou-
los, and Yiannis Kompatsiaris. Adaptive sensitive reweighting to mitigate bias
in fairness-aware classification. In Proceedings of the 2018 World Wide Web
Conference on World Wide Web, pages 853–862. International World Wide Web
Conferences Steering Committee, 2018.

[13] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual
fairness. In Advances in Neural Information Processing Systems, pages 4066–4076,
2017.

[14] Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. How we analyzed
the compas recidivism algorithm. ProPublica (5 2016), 9, 2016.

[15] Donald B Rubin. The use of matched sampling and regression adjustment to
remove bias in observational studies. Biometrics, pages 185–203, 1973.

[16] Babak Salimi, Luke Rodriguez, Bill Howe, and Dan Suciu. Capuchin: Causal
database repair for algorithmic fairness. arXiv preprint arXiv:1902.08283, 2019.

http://archive.ics.uci.edu/ml


KDD XAI, 5 August 2019, Anchorage, Alaska, USA Vladimiro G. Zelaya, Paolo Missier, and Dennis Prangle

0.79

0.80

0.81

0.82

0.83

0.84

0.85

Ac
cu

ra
cy

Income

0.63

0.64

0.65

0.66

0.67

0.68
COMPAS

0.725

0.730

0.735

0.740

0.745

0.750

0.755
Credit

0.5

1.0

1.5

2.0

2.5

3.0

DP
R

0.8

1.0

1.2

1.4

1.6

1.8

0.8

0.9

1.0

1.1

1.2

1.0

1.5

2.0

2.5

3.0

EO
R

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.000.750.500.250.000.250.500.751.00
d

1

2

3

4

5

CF
R*

1.000.750.500.250.000.250.500.751.00
d

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

1.000.750.500.250.000.250.500.751.00
d

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Under
Over
SMOTE
PS
PS0
Optimal

Figure 5: Accuracy and fairness ratios by correction level d for all three datasets.
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Figure 6: Accuracy by DPR, EOR and CFR∗ for the Income dataset.
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A REPRODUCIBILITY SUPPLEMENT
A.1 GitHub Repository
Our repository includes both of the scripts used for our analyses,
as well as all of the datasets in both their original and cleaned-up
versions. It may be found at:

https://github.com/vladoxNCL/fairCorrect

A.2 Software Requirements
Our algorithms were written and run in Jupyter Notebooks 4.4.0
over a Python 3.6.5 kernel.

The following Python 3 packages need to be installed for our
notebooks to work properly:
• pandas 0.23.0
• NumPy 1.14.3
• scikit-learn 0.19.1
• imbalanced-learn 0.3.3
• Matplotlib 2.2.2
• Seaborn 0.9.0

A.3 Scripts
There are two notebooks in our repository:
• data_cleanup.ipynb: Helper notebook, used to convert the orig-
inal data files into a clean and one-hot encoded version, suitable
for data analysis.
• fairCorrect.ipynb: Our main notebook.
– In the first half, the correction algorithms are coded. The user
needs to specify the name of the desired dataset the scripts
will be run over in the second code block, by setting the dset
variable to the appropriate string value (Income by default).

– The second half generates most of the figures in the paper.
Some of the generated plots are dataset-specific, hence the
dset variable should be set according to the dataset to be
analysed. For both scripts, all the savefile commands have been
commented out, as the savepath needs to be specified by the
user.

A.4 Data
We have performed our analyses on three fairness, accountancy
and transparency benchmark datasets: Census Income, COMPAS
and German Credit. The original CSV files may be obtained from
the following URLs, as well as from our repository:
• Census Income
https://archive.ics.uci.edu/ml/datasets/census+income
• COMPAS
https://github.com/propublica/compas-analysis
• German Credit
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

A.5 Algorithm
Pseudocode for our fairCorrect Under, Over and SMOTE correction
methods is shown in algorithm 1. All three methods work in a very
similar way, with the only differences being the groups to resample
(fPos and uNeg for Under, fNeg and uPos for Over and SMOTE)
and the sampling function itself.

Algorithm 1: fairCorrect data correction method.
Data:
T: a training set with binary PA A and binary label Y ,
d ∈ [−1, 1]: the correction parameter,
s ∈ {Under, Over, SMOTE}: the sampling method.
Result:
Tcorr: a d-corrected training set.
/* Get favoured F and unfavoured U datasets */

1 for i in {0, 1} do
2 T_i = T[A == i];
3 Tpos_i = T[(Y == 1) and (A == i)];
4 PR_i = size(Tpos_i) / size(T_i);
5 end
6 j = arдmaxi ∈{0,1}(PR_i);
7 F = T_j;
8 U = T - F;
/* Get positive rates for U, F and T */

9 for d in {U, F, T} do
10 PR_d = size(d[Y == 1]) / size(d);
11 end

/* Correcting polynomials */

12 a = ((PR_F + PR_U) / 2) - PR_T;
13 b = (PR_F - PR_U) / 2;
14 c = PR_T;
15 fpr = a * d**2 + b * d + c;
16 upr = a * d**2 - b * d + c;

/* Split F and U into Positive and Negative */

17 [fPos, fNeg] = [F[Y == 1], F[Y == 0]];
18 [uPos, uNeg] = [U[Y == 1], U[Y == 0]];

/* Random undersampling case */

19 if s == Under then
/* Correct fPos and uNeg groups */

20 f_k = fpr / (1 - fpr);
21 u_k = (1 - upr) / upr;
22 fPosSize = f_k * size(fNeg);
23 uNegSize = u_k * size(uPos);
24 fPos = undersample(fPos, size=fPosSize);
25 uNeg = undersample(uNeg, size=uNegSize);

/* Random oversampling and SMOTE cases */

26 else
/* Correct fNeg and uPos groups */

27 f_k = (1 - fpr) / fpr;
28 u_k = upr / (1 - upr);
29 fNegSize = f_k * size(fPos);
30 uPosSize = u_k * size(uNeg);
31 fNeg = oversample(fNeg, size=fNegSize);
32 uPos = oversample(uPos, size=uPosSize);
33 end

/* Get all four groups back together */

34 Tcorr = concat(fPos, fNeg, uPos, uNeg);

https://github.com/vladoxNCL/fairCorrect
https://archive.ics.uci.edu/ml/datasets/census+income
https://github.com/propublica/compas-analysis
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
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