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ABSTRACT
Internet of Things (IoT) data are increasingly viewed as a new
form of massively distributed and large scale digital assets,
which are continuously generated by millions of connected
devices. The real value of such assets can only be realized by
allowing IoT data trading to occur on a marketplace that re-
wards every single producer and consumer, at a very granular
level. Crucially, we believe that such a marketplace should
not be owned by anybody, and should instead fairly and trans-
parently self-enforce a well defined set of governance rules.
In this paper we address some of the technical challenges in-
volved in realizing such a marketplace. We leverage emerging
blockchain technologies to build a decentralized, trusted, trans-
parent and open architecture for IoT traffic metering and con-
tract compliance, on top of the largely adopted IoT brokered
data infrastructure. We discuss an Ethereum-based prototype
implementation and experimentally evaluate the overhead cost
associated with Smart Contract transactions, concluding that
a viable business model can indeed be associated with our
technical approach.

INTRODUCTION
Much of the expected value associated with the growing in-
dustry of Internet of Things (IoT) devices [1] is to be found in
the streams of data generated by those devices. Application
areas where interest in IoT data streams is growing range from
health care [2] to personal fitness, smart cities [3], optimiza-
tion of energy consumption at home, and many more. In each
of these areas, the value of IoT is only delivered when the con-
tinuous data streams produced at the edge of the network are
aggregated and analyzed by data consumer processes hereafter
referred as Value Added Services (VAS).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IoT 2017, October 22–25, 2017, Linz, Austria

© 2017 ACM. ISBN 978-1-4503-5318-2/17/10. . . $15.00

DOI: https://doi.org/10.1145/3131542.3131564

Some of these applications are just emerging. For example, in
a public transport network like the London underground, the
density of personal travel card swipes over time at individual
metro stations may be useful not only to the transportation
authority, but also to taxi companies, which can benefit from
the knowledge of any anomalous passenger traffic pattern, i.e.,
by placing their fleet at the right stations at the right time. A
VAS that specializes in data analytics may therefore buy metro
passenger data together with footfall data collected, for exam-
ple, through an IoT infrastructure, and sell recommendation
services to taxi companies. In response to this “technology
push”, new business models are indeed emerging [4, 5] where
data are viewed as tradeable digital assets. However, the lack
of trust and incentive in trading such assets is hindering their
larger availability from producers to consumers.

In this paper we propose an initial technical infrastructure for
a new kind of data marketplace that, in the long run, is de-
signed to meet four main requirements. First, the marketplace
should be dynamic and flexible in order to enable the new and
unanticipated kind of business relationships just illustrated. It
should be possible to quickly establish and then fulfil contracts
between one and possibly many producers and the VAS, with
guarantees of compliance and fairness. Second, the market-
place should allow not only organizations, but also individuals
to gain value from their data. For example, today it is possible
to quantify an athlete’s effort during a competition using a
number of wearable devices, from bio-harness to accelerom-
eters, to video feeds. One can imagine that individuals may
decide to let VAS access their data feeds, in return for some
benefit (monetary or otherwise). In the near future, athletes
may be able to sell these feeds to followers who are interested
in tracking their competition online. There are examples in
the UK today, where individuals get heavy discounts on smart
watches from health insurance companies, provided they let
the company access their fitness data. Third, the main asset
traded in the marketplace are streams of IoT data. This is not
usual: a 2012 survey of data vendors [6], for example, includes
46 data suppliers, however the definition of data marketplace
used in the paper is generic (“a platform on which anybody can
upload and maintain data sets, with license-regulated access
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to and use of the data”) and geared towards static data, like
Microsoft’s Azure Data Market. In contrast, our requirement
entails the typical “Big Data” challenges of high Volume, high
Velocity, and high Variety of the streams. Finally, it should be
possible to run a completely decentralized marketplace which
operates according to governance rules defining what kinds
of contract and transactions are acceptable, and stipulating
sanctions when the rules are violated. Contrary to existing
proposals, e.g., [7], we are going to assume there is no central
trusted authority appointed to enforce those rules. The assump-
tion is that due to the unpredictable variety of actors trading in
such a marketplace, a multi-stakeholders decentralized trust
will better adapt than a centralized one. In this paper we fo-
cus specifically on this novel aspect. We investigate the use
of blockchain (distributed ledger), and specifically of Smart
Contracts [8], as a technology enabler for an authority-free,
trusted data trading infrastructure.

The contributions in the paper can be summarized as follow-
ing.

• We present a conceptual model for tracking brokered IoT
data flows from gateways to VAS in the cloud, which em-
bodies a methodology to achieve granular metering of IoT
data trading.

• We explore the use of blockchain technology and Smart
Contracts to remove the need for a centralized trust when
settling contracts.

• We present a proof-of-concept implementation of this trad-
ing infrastructure. We adapt the popular open source
Mosquitto MQTT broker to add traffic metering capabili-
ties, and use the Ethereum smart contracts technology for
enforcing contract definition and trigger dispute resolution.

• We carry out an experimental evaluation identifying the
viable boundaries for the prices of digital assets, which
make the trading infrastructure economically sustainable.
We also assess the capability of Ethereum Smart Contracts
to handle a stream of contract settlements at varying arrival
rate, and conclude that they are indeed a viable option for
the validation of contract compliance.

• As the use of Smart Contracts is a novel feature for any IoT
architecture, we conclude the paper with a discussion on the
challenges and lessons learnt from the use of this emerging
and enabling technology.

BROKERED IOT DATA AS TRADEABLE ASSETS
We now present our conceptual model for the specification and
enforcement of streamed data exchange agreements. Follow-
ing common IoT infrastructures, we are going to assume that
data exchanges are mediated by one or more brokers. Initially,
we assume the brokers are trusted. In Sec. 3 we are going to
explore the consequences of relaxing this assumption.

Contracts and pricing
Let P = {p1 . . . pn} and C = {c1 . . .cm} denote the set of pro-
ducers (IoT devices) and consumers (VAS) that participate
in the trading, respectively. In the standard publish/subscribe
model for data brokering, the pi act as publishers and the c j are

subscribers. These participants agree on a set T = {t1 . . . tr} of
topics. In IoT data brokering, messages are generated by gate-
ways, which are responsible for segmenting raw data streams
from edge devices into discrete messages. The topic associ-
ated with each message describes the type of data stream, for
example “heart rate”, “GPS track”, “glucose reading”, “energy
reading”, etc. Suppose pi publishes data on a set of topics
Ti ⊂ T . A consumer c j enters into a contractual agreements
with a producer pi by subscribing to a subset Ti j ⊂ Ti of the
topics available from pi, possibly only for the duration of a
time window W = [ws,we]. Such an agreement is interpreted
as “pi agrees to let c j receive a copy of all its messages tagged
with any t ∈ Ti j during W , and c j agrees to pay a correspond-
ing data exchange fee. The broker manages all subscriptions
and is responsible for reliably delivering to c j a copy of each
message that has a topic that c j subscribes to. Note that in
the standard pub/sub model, publishers and subscribers are
unaware of one another, and their interaction is entirely medi-
ated by the broker. However, it is easy to extend the model by
assuming that the broker will only deliver messages from pi to
c j if c j has an active agreement (i.e., relative to W ) with pi.1

A variety of pricing models have recently been proposed for
digital assets in emerging data marketplace scenario [12, 11,
16, 13]. In this work we are going to assume a simple model
where each individual message has a constant unit value
val(tk), which is determined solely by the message’s topic
tk. While our infrastructure is largely agnostic to the specific
data pricing model, in our evaluation we analyze the economic
sustainability of a decentralized marketplace. Specifically, in
Sec.5 we analyze the cost overhead of enforcing agreements
given the current cost model associated with Smart Contract
transactions.

Data traffic cubes and centralized settlement
Contract enforcement and settlement involves calculating the
total price associated with the messages that have been routed
from each pi to each c j within each W . Since we have assumed
that the price is determined only by the number of messages
and the unit cost for each topic, this simply requires keeping a
count of the number of messages about topic tk that originated
from pi and reached c j during W , grouped by pi, c j, and
tk. We denote each of these counts as Ni jk(W ). Generating
these counts requires the broker to be capable of metering all
traffic, that is, of logging all messages. The log consists of
a set of tuples: {〈pi,c j, tk〉} At the end of each W , the log is
aggregated over each pi ∈ P,c j ∈C, tk ∈ T , resulting in a set
of tuples that we call a traffic cube:

cube(W ) = {〈pi,c j, tk,Ni jk(W )〉}pi∈P,c j∈C,tk∈T (1)

Here we borrow our terminology from standard database prac-
tice (OLAP, or Online Analytical data Processing), where a
“cube” is a table with N attributes, in which the first N− 1
attributes are dimensions in a database schema (in our case,
these are the Producers, Consumers (the VAS), and Topics)
and the last is an aggregation over values in the database for
each combination of the dimensions–in our case, a count. We
1This can be easily realized in a MQTT-based broker, which we use
in our implementation, e.g., by encrypting payload data.



use a matrix indexing notation to refer to specific cells in the
cube, i.e.:

cube(W )[pi,c j, tk] = Ni jk(W )

These cubes contain summaries of all data flows observed by a
broker. Notice that they only contain metadata, i.e., the counts,
but not the content of the messages. Note that the values in
the cube may be sparse, i.e., Ni jk(W ) = 0 whenever c j does
not subscribe to tk.

Settlement is the process of calculating the total fee owed by
each c j to each pi at the end of each W . This is computed by
suitably aggregating the counts in the cube, namely:

fee(c j, pi,W ) = ∑
tk∈T

Ni jk(W ) · val(tk) (2)

and the total profit for pi during W is

profit(pi,W ) = ∑
c j

fee(c j, pi,W ) (3)

In the centralized scenario we have considered so far, settle-
ment is straightforward, as the broker is entrusted with gener-
ating accurate logging and thus complete and correct cubes.
Note that, under the same trust assumptions, settlement ex-
tends easily to a more realistic scenario where multiple brokers
are deployed, each enhanced with the same logging capabil-
ities and local traffic reporting service. However, settlement
becomes challenging in an extended model where there is no
assumption of trust in the broker. In this case, fee settlement
must rely on data traffic counts that are calculated indepen-
dently by each participant, based on the portions of data flows
that are visible to each of them, with the further complication
that participants cannot be trusted to generate complete and
correct cubes. This decentralized scenario is illustrated in Fig.
1 and discussed in the next Section.

REMOVING THE NEED FOR TRUST IN THE NETWORK
A trading where the reward model is based on message counts
is vulnerable to malicious behavior. Specifically, producers
have an incentive to claim to have produced more messages
than they have in reality, while conversely, consumers (the
VAS) have an incentive to under-report the number of mes-
sages they receive. When we remove the assumption that the
brokers are trusted, we must also accept that the brokers may
collude with any of the participants, and thus deliver traffic
cubes that may not be correct or complete. Discovering such
collusions may not be possible when the broker is the only
source of traffic counts available to the settlement service. At
the same time, resolving any disputes amongst pairs of partici-
pants requires a public and irrefutable record of the reported
traffic. To address these problems, we rely on two overarch-
ing principles: (1) personal responsibility of each participant
in the trading, which shall report their own counts of mes-
sages sent (publishers) or received (subscribers) using trusted
zones (see Fig.1 and description below), and (2) transparency,
whereby these reports are posted as part of immutable and
verifiable blockchain transactions. These principles translate
into a two-steps approach.

Firstly, we remove the assumption that traffic cubes are gener-
ated by the broker alone, and instead enable networks elements

close to the publishers and to the subscribers, i.e., gateways
and VAS respectively, to generate the cubes. This is shown
in Fig. 1. Secondly, we adopt emerging consensus-based dis-
tributed transaction ledgers, specifically blockchain and Smart
Contract technologies, to realize the settlement service. As
we explain in more detail later (Sec. 4.1), Smart Contracts
extend the standard blockchain transaction model by adding
the capability to execute arbitrary code, which operates on
data structures contained in the transaction itself. In this case,
a blockchain transaction that is initiated at the end of each
window W may operate on the collection of traffic cubes that
participants make available at the end of W . This approach
provides at the same time transparency and accountability,
because the content of the blockchain is public and can be
inspected, and a way to address disputes, because for each W,
multiple (partial) views of each cube are made available to the
settlement service.

Unilateral traffic cubes
Traffic cubes that are generated by the broker summarize the
entire traffic during W . In contrast, traffic summaries gen-
erated by trading participants reflect the local views of each
participant in the data exchanges. These are therefore neces-
sarily partial and incomplete, as each participant, unlike the
broker, has no visibility of the end-to-end data flows. We de-
note these as unilateral traffic cubes, defined as follows. Let us
assume that a producer does not know which VAS subscribe to
its stream, while subscribers know the source of the messages
they receive.

Let sub(tk) ⊆ C denote the set of subscribers to tk. A pub-
lisher’s cube cubep is a slice of a complete traffic cube, for a
specific producer pi and without the consumer dimension:

cubep(W, pi) = {〈tk,Ns
ik(W )〉}tk∈T

where Ns
ik(W ) is the count of messages with topic tk sent by

pi during W . Note that pi can compute Ns
ik(W ) from its own

data flow log, but not Ni jk(W ).

As subscribers know the source of the messages they receive,
we may assume that a subscriber will produce summary reports
that include the publisher dimension, but which only contain
the tuples that pertain to a single c j. Thus, a subscriber’s cube,
cubes is defined as:

cubes(W,c j) = {〈pi, tk,Ni jk(W )〉|c j ∈ sub(tk)}pi∈P,tk∈T

Figure 1 concretely illustrates this setting. To remove the
need for a centralized trust, we push it towards the borders
of the data flow network by defining two trusted zones. The
first trusted zone includes all the elements at the edge of the
network infrastructure, such as the IoT devices P and the
gateways Gi, whereas the second one includes C. IoT data
are still routed towards the VASs through brokers–using a
publish-subscribe pattern–or network servers. However, we
now assume that a new, independent IoT data tracking com-
ponent receives the unilateral cubes by gateways and VASs.
Finally, a Smart Contract, decentralized trusted service de-
ployed on a blockchain, periodically accesses the traffic cubes
to realize settlement services and resolve possible conflicts.
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Figure 1: Blockchain and Smart Contracts based architecture for decentralized metering of IoT data
trading between Producers (P) and Consumers (C).

Consistency and settlement with unilateral cubes
Suppose that, at the end of W , every pi and c j produce unilat-
eral cubes relative to W . These form the set

{cubep(W, pi)}pi∈P∪{cubes(W,c j)}c j∈C (4)

As each of these cubes provides a partial view of the same com-
plete cube cube(W ) that would have been generated centrally
by a broker, we expect that the values found in these cubes
be somehow consistent with cube(W ). The pub/sub model
implies that the number of messages sent by pi with topic tk
during W must be equal (assuming no messages are lost and
ignoring duplicate transmissions, as in MQTT QoS level 3) to
the number of messages each ci that subscribes to tk receives
from pi. We can capture this constraint formally using our
cubes notation, as follows. For each pi ∈ P, tk ∈ T,c j ∈ sub(tk):

cubep(W, pi)[tk] = Ns
ik(W ) =

cube(W )[pi, tk,c j] = Ni jk(W ) =

cubes(W,c j)[pi, tk]
(5)

We say that the set (4) of all unilateral cubes is consistent at
W , if and only their contents satisfy constraint (5). We use
this definition as a basis for settlement of message exchanges
within each W , in the general case that the broker cannot be
trusted to provide a single global cube that is complete and
correct. Specifically, in our architecture we now assume that a
new, independent component receives all cubes in (4) at the
end of each W , and checks their consistency using (5). In
the next section we discuss a practical implementation of this
idea, where this new component is realized as an Ethereum
Smart Contract and unilateral cubes are posted publicly as
part of blockchain transactions. In this decentralized scenario,
such a settlement service must be able to deal with two inter-
dependent issues, namely (a) completeness and (b) consistency
of the set (4) of all cubes. The case when set (4) is both com-
plete and consistent is straightforward and results in successful
settlement, as all information for settlement is available, and
there are no disagreements.

When the set of cubes is incomplete, we may try to use (5) to
propagate missing values from the more complete to the less

complete cubes. More precisely, suppose cubep(W, pi) is miss-
ing for a pi. If Ni jk(W ) = cubes(W,c j)[pi, tk] is available for
some tk and some c j ∈ sub(tk), then we set cubep(W, pi)[tk] =
Ni jk(W ). In practice, this can be viewed as “taking c js word
for pis missing report”.

Symmetrically, the settlement service may use the available
cubep(W, pi), in combination with subscription information
{sub(tk)|tk ∈ T}, to fill in missing values in cubes(W,c j), i.e.,
by setting cubes(W,c j)[pi, tk] = cubep(W, pi)[tk] for each tk
and each c j ∈ sub(tk). Of course, there is no guarantee that all
missing values can be propagated. In this case, settlement for
the 〈pi,c j〉 pairs corresponding to the missing cube entries is
simply not possible.

The final, and perhaps most important case occurs when con-
straint (5) is violated for some combination of 〈pi,c j, tk〉. This
may be due to the malicious cases of over-reporting produc-
ers, or under-reporting subscribers. Either of these scenarios
manifests itself as inequalities in (5), of the form:

cubep(W, pi)[tk]> cubes(W,c j)[pi, tk] (6)

In this situation, we are able to detect the inconsistency, but
we may not have enough information to determine whether
pi, c j, or both are guilty of fraud. Such determination is
beyond the scope of this paper, but in the final discussion
section we present initial ideas on promoting a self-regulating
exchange infrastructure in the presence of such unresolvable
inconsistencies. In our initial implementation, described next,
the settlement service simply reports the detected inequalities.

INITIAL PROOF-OF-CONCEPT REALIZATION

Background concepts: Blockchain and Smart Contracts
Blockchain is essentially a distributed ledger of information
(e.g., a transaction from A to B in the bitcoin world), a copy of
which cannot be arbitrarily altered without being spotted and
for which consistency of each information can be achieved
through a decentralized and distributed consensus, without
requiring trust in any third party but instead, through large
and flat pool of so-called miners using cryptographic prim-
itives [17]. Blockchain has been later leveraged to manage



Smart Contracts, small pieces of software that encode a set of
conditions and actions that a machine can interpret and that
can be executed as expected using the blockchain infrastruc-
ture without third party involvement or supervision [8]. Smart
Contracts represent therefore a well-suited decentralized tool
to implement cube consistency and settlement functionali-
ties. Being one of the most adopted and well-supported by
the developers community, we decide to use Ethereum Smart
Contract implementation2.

In the Ethereum network, any node uses a virtual machine
(EVM), which can run code of arbitrary algorithmic complex-
ity, to execute smart contracts, the integrity of whose is always
guaranteed. A smart contract can perform various state updates
and account balancing. Executing a smart contract results in
one or more transactions to be validated. Each transaction has
a cost (e.g., fee) associated, which translates into incentive
for any miner within the network to independently execute
it. More specifically, any operation being performed within a
transaction consumes a fixed amount of Gas. Miners fees are
therefore proportional to the amount of Gas used. Gas price
is measured in terms of Ether (the Ethereum cryptocurrency).
Every transaction specifies the Gas price a smart contract is
willing to pay for its execution, thus, the total fees paid for a
transaction is the result of Gas amount multiplied by the Gas
selected price.
Implementation
For the purpose of experimentation and evaluation, we have
adapted the open-source Mosquitto MQTT broker to sup-
port message logging and cubes generation into a Cassandra
NoSQL database. We refer to it as the TrackerDB. We con-
nected to the MQTT broker real producers using channels
provided by the ThingSpeak platform3. Using the TrackerDB,
we are able to simulate the generation of unilateral cubes
that can be either complete and correct, or reflect malicious
behaviour, for evaluation purposes. The TrackerDB can be
queried by any third party client through a REST service in-
terface. Smart Contracts interact with the service through an
Ethereum-specific mechanism, described below. In reality,
unilateral cubes would be generated by gateways on the pro-
ducers side as well as by VAS within their trusted zones. This
does not affect the properties of the cubes compliance and
settlement, because liability is pushed at the edge.

We now focus on the use of Smart Contracts in this setting. We
developed them using Solidity, the Ethereum’s scripting lan-
guage. To implement the contracts, we assigned an Ethereum
account to each producer and VAS. We connected these ac-
counts to our private Ethereum test network, deployed on a sin-
gle node with 6-core Intel Xeon E5-2640 and 16GB of RAM.
We wrote, deployed and evaluated Smart Contracts in the net-
work by using the Ethereum web browser based IDE Remix,
connected to our private chain through Remote Procedure Call
(RPC) protocol. In our implementation, accounts prepare and
send the transactions to the blockchain to instances of Geth4

through RPC. To measure Gas consumption, we used the de-
bug tool provided by Remix and we observed the difference
2https://www.ethereum.org
3https://thingspeak.com
4https://github.com/ethereum/go-ethereum/wiki

in the account balance before and after invoking a settlement
contract. A limitation of Ethereum smart contracts is that they
cannot directly access off-chain data about real-world state
and events. In our case this represents a challenge in acquiring
unilateral cubes value. More precisely, Smart Contracts are
independently executed by any node in the chain, thus, each
execution needs to retrieve such information from an off-chain
source independently, without any assurance on the informa-
tion integrity. To overcome this limit, the concept of oracle
has been introduced. Simply speaking, an oracle is a special
contract that serves data requests from traditional contracts,
by sourcing them from designated data feeds. Two options are
possible for implementing oracles. The first one is relying on
existing proxy services. Oraclize5 provides a programmable
oracle that can interact with any data source selected among
a predefined set of standard channels. In addition Oraclize
provides an authenticity proof by means of a TLSNotary proof
which guarantees the authenticity and integrity of the retrieved
data. These functionalities come at a cost. For each off-chain
query, Oraclize requires a fee which includes a commission,
ranging from 0.01$ to 0.04$, and a refund of the Gas used to
perform the transaction. The other option is when each party
of the contract, producer and VAS, independently update their
view of unilateral cubes by pulling their values from cubes
generator located within their trusted zones and then creating
a transaction which embeds the cubes in the blockchain. This
way any node executing the smart contract will have the same
copy of that cube. As a result, costs associated to the use of an
external oracle proxy, such as Oraclize, can be saved. Since in
our model the responsibility and liability of producing faulty
cubes is placed to producers and VAS, this option well suffices
our needs.

Pseudocode 1 shows the pseudocode of our settlement contract.
For the sake of simplicity, this code snippet only accounts for
the single producer and the single VAS scenario, although
generalization is straightforward. The contract first requests
the involved parties to provide their unilateral cubes; then
it uses this information to perform the actual settlement, by
combining the two unilateral cubes. If the processed combined
cube is consistent then a payment to the producer is performed,
otherwise, a dispute resolution mechanism should be invoked6.
When a dispute resolution is invoked, payments are retained
from being performed due to impossibility to clearly identify
the correct unilateral cube. A reputation mechanism can be
implemented in order to penalize both parties involved in
a given settlement transaction and to promote them when
a honest behavior is identified. As it is not expected that
reputation computation will require off-chain interactions [18,
19], we are confident that not considering its implementation
in this phase will not significantly affect the overall contract
execution cost.

Table 1 shows the execution cost of cube settlement operations
expressed in Gas without and with Oraclize respectively. The
most expensive operation to be performed is the contract de-
ployment, consuming from 175000 Gas without Oraclize to

5http://www.oraclize.it
6At this time, our implementation simply reports and log the detected
inequalities.



Pseudocode 1 Cube settlement contract
if sender , authorizedAddress then

throw
if queryId = producerQuery then

producer← unilateralCube
vasQuery← update()

else if queryId = vasQuery then
vas← unilateralCube
if producer = vas then

transfer(producerAccount, dataPrice, cube)
else

disputeResolution()
end if

end if
end if

Table 1: Execution cost of cube settlment contract operations.

Gas used
Operation w/o Oraclize w Oraclize
Contract deployment 175000 2061490
Update 41000 120000
Callback 23000 70000
Transfer 21000 21000

2061490 Gas with Oraclize. The difference between these val-
ues is due to the higher number of functionalities implemented
within Oraclize’s API that the contract has to deploy7. Both
the update and callback operations have a higher cost due to
the Oraclize’s fee, whereas the transfer operation has the same
cost.
EVALUATION AND LESSONS LEARNT
Aim of this section is to quantify the cost of the smart contract
described above and the associated cube settlement operations.
By considering the scenario in which one VAS consumes the
data of one producer, we evaluate how the cost of perform-
ing such contract affects the data price when the number of
data exchanged and settlements transactions required changes.
Considering different quantity of exchanged data reflect the
different purpose of the exchange (event-based data rather
than real-time series acquisition). Nevertheless, the reason for
considering a variation in the number of required settlements
needs some clarification. The most natural strategy will be to
perform the settlement at the end of each contractually agreed
data exchange, however in the early stage of an hypothetical
marketplace where new producers and VAS join without nec-
essarily trusting each other nor having an already established
reputation, two situations might occur:

• Producers and VAS have low reputation, hence, their trust
level is low and the risk of claiming wrong unilateral cubes
is high. By performing more than one cube settlement, in an
initial rump-up phase of a given data exchange, will allow
them to mutually increase their reputation and trust;
• Producers and VAS have high reputation, hence, they are

expected to act honestly. Cube settlements may occur at a
7It is worth noticing that most of such functionalities are not required
in a distributed liability model as the one promoted in our architecture

lower rate, only at the end of a data exchange phase, because
the risk of producing faulty cubes is mitigated.

By evaluating the cost of performing the settlement operations,
we are able to define the minimum price that VAS should
pay for each consumed data in order to sustain the settlement
infrastructure and eventually generate profit for the producers.
We define the minimum data price as the amount of Ether
needed to at least cover the cost of contract deployment and
transactions for performing cubes settlement operations. This
means that if a producer sells data at the minimum price, its
profit will be zero. At the time of writing, one Ether costs 220$,
however, its price is still very volatile.8As result, transaction
cost may frequently vary, thus leading to uncertainty about the
economic feasibility of a specific application. We analyzed the
capability of Ethereum to support a stable transaction cost by
tuning the Gas price. The main drawback when setting a low
Gas price is the increase of time required before a transaction
is validated. Assuming a range of Gas price between 0.9 Gwei
and 20 Gwei (9e-10 and 2e-8 Ether respectively), as minimum
and average reported by the Ethereum network in 2017, the
time required for a transaction to be validated in the chain
varies from 2 minutes to 14 seconds (etherscan.io/chart). As
explained before, even in the case of multiple settlements, we
do not expect that meaningful data exchange will last less
than 2 minutes, thus we consider a viable choice to select the
current minimum Gas price.

Figure 2(a) shows a general overview of the minimum data
price by varying the frequency of cubes clearance operations
and the amount of transferred data. The price is directly pro-
portional to the number of cubes settlement performed while
inversely proportional to the data amount exchanged. Clearly,
the more the data a VAS purchases, the less impacts the cost
of performing cubes settlement. Depending on the type of
data exchanged and trustworthiness of involved parties, this
figure clearly shows how an optimal settlement strategy can al-
ways be found to dynamically adapt the number of settlement
operations.

Figures 2(b) and 2(c) show the total cost of performing 1 or 5
cubes settlement operations for a fixed amount of transferred
data, when considering a Gas price ranging from 0.9 Gwei to
20 Gwei. More specifically, figure 2(b) shows the case when
each party of the contract use its oracle implementation, while
figure 2(c) shows the case when Oraclize functionalities are
used. It is worth noticing the large costs increase (on average
4 times more), due to the commission and refund of the Gas
used to perform the transaction to be paid to Oraclize. Without
Oraclize, the cost of a single cube settlement transaction ranges
from 9.9e-5 ($ 2.18e-2) Ether to 2.2e-3 Ether ($ 4.84e-1) when
the Gas price selected is 0.9 Gwei and 20 Gwei, respectively.
The more amount of data is transferred, the less impact the
transaction cost has per single data. In fact, when performing
a cube settlement operation spread over 2000 data, its cost
ranges from 1.26e-7 Ether ($ 2.77e-5) to 2.8e-6 Ether ($ 6.16e-
4). Alternatively, when performing 5 cube settlement over
2000 data, their cost ranges from 3.15e-7 Ether ($ 6.93e-5)
to 7e-6 Ether ($ 1.54e-3). When using Oraclize, the cost

8http://etherscan.io/chart/etherprice
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Figure 2: Cost of performing cube settlement operations for different data transfer rate.

of a single cube settlement transaction ranges from 3.61e-4
Ether ($ 7.94e-2) to 8.02e-3 Ether ($ 1.76) when the Gas
price selected is 0.9 Gwei and 20 Gwei, respectively. When
performing a cube settlement operation spread over 2000 data,
its cost ranges from 1.11e-6 Ether ($ 2.44e-4) to 2.46e-5 Ether
($ 5.42e-3). Alternatively, when performing 5 cube settlement
over the same amount of data, their cost ranges from 1.83e-6
Ether ($ 4.03e-4) to 4.07e-5 Ether ($ 8.95e-3).

Table 2: Estimated data price for different use cases.

Data price
w/o Oraclize w Oraclize

Data rate ETH USD ETH USD
high 5.73e-8 1.26e-5 2.09e-7 4.59e-5

medium 3.44e-6 7.56e-4 1.25e-5 2.76e-3
low 2.06e-4 4.54e-2 7.52e-4 1.65e-1

In order to derive a profitable data price, we can assume that
the cost of performing settlement operations has to be equal
to 2% of the price for that data amount and that only 1 cube
settlement is performed per day. We consider two examples:
1) an air quality monitoring application, with low data rate,
running on a low-power wide-area network (LPWAN), such
as LoRaWAN, that samples and transmit data every hour, re-
sulting in 24 measurements per day; 2) a heart rate monitoring
application (e.g., Fitbit), with sampling frequency of 1 second
and 1 minute corresponding to a high and medium data rate,
respectively. Table 2 shows that data price ranges from 5.73e-8
Ether ($ 1.26e-5) to 7.52e-4 Ether ($ 0.165) depending on data
transfer rate and on the data feed type selected.

Discussion
The analysis above helped us to identify the feasibility of
building a decentralized open and transparent accounting in-
frastructure, useful to create a fair data marketplace, where
data price can evolve depending on data quality, demand and
offer. To minimize the shared costs of running such an in-
frastructure, we observed how the Gas price can be tweaked
at the cost of a lower transaction rate, leveraging the lack of
real-time requirements for the settlement operations. More-
over, we demonstrated how the cubes architecture allow for
scalability by reducing the settlement transaction frequency.

Nevertheless, we recognize that the estimated infrastructure
costs are related to the current inflation in the Ether value, due
to the large number of currently deployed general purpose
Smart Contracts (raising up the Ether price of over 20 times
in just one year). While we plan to perform similar analysis
using different blockchain implementations like hyperledger
(hyperledger.org), we anticipate that a decentralized trading
infrastructure will require to fork a new dedicated Ethereum
network, dedicated to contract settlement, with lower incentive
fees for the miners. While keeping it open, we are confident
that, due to the large amount of IoT data exchanges such a
market will provide a viable business opportunity for miners
even at lower transaction and incentive fees.

Related work
The idea of considering data from IoT sensors as tradeable
assets is closely related to that of Sensing as a Service (SaaS)
models, or even Sensing and Actuation as a service (SAaaS)
[9], themselves derivatives of the more general “Everything
as a Service” (XAAS) cloud-based model for data exchange
[10]. Perera et al. [3], for instance, outline a vision of a
near future for Smart Cities, where data streams emanating
from pervasive IoT sensors are accessible through services.
The SaaS model consists of four conceptual layers: sensors
and their owners, sensor publishers, service providers, and
sensor data consumers. In this classification, our work is
relevant to all of these agents, as it enables fair and metered
data exchanges amongst sensors owners and publishers on one
side, and sensor data consumers, on the other.

Our traffic monitoring infrastructure assumes that suitable pric-
ing models (covering at least the minimum transaction fees)
that associate values to messages are in place. However, it is
agnostic and “orthogonal” to the specific pricing model, as
long as the price of a complex bundle of data offering can
be expressed in terms of unit cost associated to individual
messages. Thus, in principle, any of the existing models for
data pricing may be used in combination with traffic metering.
Such models, recently proposed, range from theoretical frame-
works for assigning prices to query answers as a function of
their accuracy [11], to adaptations of Smart Data Pricing [12]
to the dynamic pricing of IoT data, such as personal data from
wearable sensors [13]. A trust management model should also

hyperledger.org


be established, i.e., to enable self-regulation of marketplace
rules, as we briefly discussed. While this is out of our scope,
existing frameworks can be used on top of our infrastructure.
Yan et al [14] provide a starting point, by exploring the no-
tion of trust across the IoT platform layers (physical sensing,
network, and application layers), with the focus on a wide
range of properties from security to goodness, strength, re-
liability, availability, ability of data. However, their survey
largely overlooks issues of trust amongst participants in a data
marketplace, i.e., in the context of data exchange transactions.
More directly useful in our setting, as we progress in our work,
is Roman and Gatti’s study of trust in data marketplaces [15],
based on credit scoring, where a direct connection is made to
the use of blockchain technology with data trading.

Two technical architectures for data marketplaces are directly
relevant to our work. Firstly, the MARSA platform [7], de-
signed specifically to deal with real-time data streams by in-
teracting with existing IoT platforms. The motivation for this
work is very similar to ours, namely to provide a marketplace
where owners have an incentive to trade their data, for either
personal or community benefit. The many technical require-
ments that emerge from the analysis of the data marketplace
potential translate into a complex architecture, which includes
data flow orchestration, participants registration, data con-
tract management, and payment. While these components
do address complex marketplace requirements, the challenge
to remove the need for a central trusted authority to manage
the marketplace and ensure its fairness remains unique to our
work. Secondly, Misura, K., & Zagar [5] focus on a query-
based mechanism, whereby devices register their data supply
capabilities to a broker along with a number of properties,
and consumers express interest in data streams by querying
those properties. The broker then connects the supplier stream
to the consumer, and monitors usage. This is relevant work,
as this type of matching of consumer data requirements to
suppliers capabilities is more sophisticated than simple topic
subscription. Our work is complementary to this and also
contributes to remove the trust from the broker for monitoring
usage. In our future work, we plan to move away from a fine-
grained data subscription and towards complex data contracts
(bundles).

CONCLUSION AND FUTURE WORK
Our initial work encourages us to further develop the idea of a
decentralized data marketplace, where benefits such as inter-
operability, transparency and fairness are achievable and cost
affordable. However, we recognize that the cube settlement
component is a very important but still only one building block
of such an infrastructure, in which existing less-critical central-
ized and new decentralized elements will have to be combined.
In the future, we plan to experiment and test the effectiveness
of the reputation based reconciliation strategy and to develop
the complete architecture for a trusted and transparent data
marketplace. This will include data producers and VASs dis-
covery service, contract creation and discovery platform, and
the definition of an open governance model associated to it,
promoting public and open creation, and review of settlement
contracts (extending the github model (github.com)).
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