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Abstract. The rapid evolution of Next Generation Sequencing technol-
ogy will soon make it possible to test patients for genetic disorders at
population scale. However, clinical interpretation of human variants ex-
tracted from raw NGS data in the clinical setting is likely to become a
bottleneck, as long as it requires expert human judgement. While sev-
eral attempts are under way to try and automate the diagnostic process,
most still assume a specialist’s understanding of the variants’ signifi-
cance. In this paper we present our early experiments with a simple
process and prototype clinical tool for single-nucleotide variant filter-
ing, called SVI, which automates much of the interpretation process by
integrating disease-gene and disease-variant mapping resources. As the
content and quality of these resources improve over time, it is important
to identify past patients’ cases which may benefit from re-analysis. By
persistently recording the entire diagnostic process, SVI can selectively
trigger case re-analysis on the basis of updates in the external knowledge
sources.

1 Introduction

1.1 Background and Motivation

Whole-exome and whole-genome sequencing (WES, WGS) are increasingly utilised
in clinical diagnostics. As the cost of sequencing a human genome continues to
decrease [1], and with the number of DNA base pairs sequenced per $ unit re-
portedly doubling every five months [2], WGS-based genetic testing is poised to
become a routine diagnostic technique that can be deployed on a large scale [3].
At the same time, allocating the computation resources needed to process the
data is also becoming increasingly affordable. Large initiatives like the 100,000
Genome Project in the UK3, with specific focus on cancer and rare diseases,
promise to deliver genetic testing at population scale within the next few years.

3 http://www.genomicsengland.co.uk/
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As genetic diseases affect about 8% of the UK population (5 million people), the
potential societal benefits in this country alone are substantial.

The diagnosis of genetic disorders based on WGS data consists of two main
stages: variant calling and variant interpretation. Variant calling includes pro-
cessing the patients genome, or the exome [4,5], using a well-established sequence
of computational steps, arranged into a pipeline. This results in a large set of
variants, or single-nucleotide mutations and indels. The pipeline incorporates
bioinformatics tools chosen from a growing pool of publicly available distribu-
tions [6]. The second stage involves analysing the variants based on a clinical
hypothesis established from the patients phenotype, with the goal to identify
variants that support the hypothesis.

The increasing volume of genomes to be processed, along with the widespread
adoption of genetic testing in the clinic, call for scalable solutions for both phases.
The Cloud-e-Genome project, a collaboration between the Institute of Genetic
Medicine and the School of Computing Science at Newcastle University, was
funded in 20134 to investigate such solutions.

In this paper we focus specifically on the variant interpretation phase, while
a separate strand of work is concerned with the exploitation of cloud infras-
tructure to address scalability of the NGS data processing pipeline [7]. A first
scalability issue concerning interpretation is that, although the gap between re-
search and clinical exploitation of genetic diagnostic tools is narrowing, variant
interpretation remains a knowledge-intensive decision process, especially for the
diagnosis of rare disorders [8]. Diagnosis often requires the expertise of a geneti-
cist, a scarce and expensive resource, for all but the most common cases. This
makes the process difficult to scale, as larger number of patients are enrolled for
testing.

A second scalability issue is more subtle. Diagnosis relies upon a combination
of knowledge, i.e. variant-disease associations, and bioinformatics tools, which
compose the exome / genome processing pipeline. Incomplete knowledge and
limitations in the tools still result in both false positives and false negatives,
or in inconclusive diagnosis, with success rate reported as low as 25% [9]. As
both these elements evolve over time, however, there is an expectation that
accuracy will improve, suggesting that it may beneficial to periodically revisit
certain old cases that may have not been fully solved at the time they were first
addressed. The choice of which cases to revisit depends on the combination of
knowledge sources and tool selection used to process the original data, and the
type of updates that become available, i.e., either in a variant database or in the
pipeline. As these cases add to the volume, it is important to ensure that they
are chosen accurately.

1.2 Goals

With these premises, in this project we explore two hypotheses. Firstly, that it
is possible to automate much of the diagnostic process, by capturing its most

4 Funding for Cloud-e-Genome comes from the NIHR (National Institute for Health
and Research) and Biomedical Research Centre in the UK.



common elements into a simple-to-use tool which integrates with a number of
external knowledge sources. And secondly, that by recording all details of each
patient investigation, from variants to diagnosis, it becomes possible to selec-
tively identify old cases that might benefit from re-analysis, in light of knowledge
and/or technology advances.

1.3 Contributions

As our first contribution we have studied a cohort of five patients, seen by the
Institute of Genetic Medicine (IGM) in Newcastle since 2012, to determine how
the temporal evolution of variant-disease associations in the ClinVar5 variation
database affected the ability to diagnose their phenotypes (Sec.2). This small
study supports our hypothesis that complete traceability and reproducibility of
the diagnostics process is an important requirement, as it enables past patient
cases to be selectively revisited based on their original outcome and following
updates in the knowledge base.

Our second contribution is the design of a process for single-nucleotide variant
interpretation, which reflects emerging practice in the research lab while aiming
to bridge the knowledge gap between genetic research and clinical diagnosis. The
process is described in Sec.3.

Thirdly, based on such process we have been implementing a variant inter-
pretation user tool that simplifies the decision process by integrating multiple
external knowledge sources to assist in the diagnosis. The tool, code-named
SVI and still currently under development, is described in Sec. 4. SVI currently
integrates OMIM6 and ClinVar as its main external knowledge sources. How-
ever, the architecture is designed to accept additional sources of disease-variant
associations as those may become available.

The SVI tool is still under active development, in collaboration with re-
searchers at the IGM.

1.4 Related work

To the best our knowledge, most of the tools available for variant interpretation
cater more to geneticist researchers than to clinicians. One example is the Ex-
omiser [10, 11], which computes variant prioritisation according to a number of
user-defined criteria, which partially overlap with those used in SVI. Pathogenic-
ity prediction comes from the dbNSFP database [12]. Although the online tool
offers a simple input interface, its output would be difficult for non-specialist
clinicians to interpret.

Qiagen’s Ingeniuty Variant Analysis is a mature tool that benefits from the
HGMD variant-disease association knowledge base7. While it purportedly does
target variant interpretation in the clinic, it is a commercial product that plays
a role in the genetic diagnostics market.

In contrast, Extasy [13] is a research product, derived from the Annotate-it
tool [14], which relies on a combination of multiple predictions from different

5 http://www.ncbi.nlm.nih.gov/clinvar/
6 http://www.ncbi.nlm.nih.gov/omim
7 http://www.hgmd.cf.ac.uk/
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sources. We see this tool as a possible additional source of predictive knowledge
of pathogenicity, which we may try to integrate into SVI in the future. Once
again, however, its output is designed to be consumed by specialists.

1.5 Recording the diagnostic process
One novel feature of SVI is the tracking of the entire diagnostic process, for each
patient case, including human decisions as well as the dependencies amongst the
data consumed and produced at each step, from user input to diagnosis (which
may be inconclusive). This form of systematic provenance tracking aims to bring
a number of additional benefits to users. Firstly, provenance tracking provides a
way to fulfill one of our main goals, namely to determine which past cases should
be revisited, in view of updates to any of the knowledge bases involved in the
process (or when a new one is added).

Secondly, it provides both accountability and the ability to explain the de-
cision process in detail. This is important not only because of the sensitivity of
the process domain (clinical diagnostics), but also because of the sensitivity of
the process itself. These include, amongst others, the version of external data
sources, as well as the parameters used for variant filtering, as briefly described
in Sec. 4.

Finally, as the collection of provenance traces grows and it is stored persis-
tently, SVI provides support for a variety of analytical functions that cut across
patient cases, different clinicians, and also range over time. For example, one
common use case for this capability is to establish associations amongst inde-
pendent cases, based on commonalities amongst the data involved in each of their
processes. In turn, this has the potential to make investigators more efficient by
allowing them to selectively share their cases with other group members.

1.6 Choosing a primary variant database.

It is broadly accepted within the genetic research community that no single
variant database is sufficient to cover a broad range of pathologies. We have
chosen to use ClinVar, NCBI‘s human genomic variations database, as our pri-
mary source for integration into SVI, on account of its fast growth and good
overall coverage, as well as based on availability considerations. While several
other variant repositories are available, not all of them are freely accessible (eg
HGMD, mentioned earlier, which requires a license), and those that are tend
to focus on specific phenotypes, or sub-specialties of clinical practice, or are ex-
posed to false negatives due to incompleteness. Two prominent examples are
the family of Locus Specific Mutation Databases (LSDB)8, hosted on the LOVD
(Leiden Open Variation Database) platform9, and the Decipher project [15].

LSDB. As each LSDB is locus-specific, investigations that focus on specific phe-
notypes require that the appropriate databases be selected within the family. Al-
though their common LOVD interface facilitates integration through program-
matic access, their coverage is unpredictable and on a number of cases they

8 http://grenada.lumc.nl/LSDB_list/lsdbs
9 http://www.lovd.nl/
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have proven unreliably incomplete for the purpose of clinical diagnosis. Con-
sider for instance the NM 020745.3 single nucleotide variant on Gene AARS2
(c.1774C>T). This variant has been described as being highly likely to be
pathogenic, as described in the next section. ClinVar records the variant as Likely
Pathogenic with a known associated condition, which was last evaluated in Aug.
2014, and cites the relevant support literature [16]. Searching for AARS2 variants
across the LOVD network returns hits in three additional databases: the LOVD
shared installation (LUMC - NL), LOVD at University of Melbourne, and the
Mitochondrial Disease MSeqDR-LSDB (Massachusetts). However, of these only
MSeqDR-LSDB reports the variant, and it actually cites ClinVar as the source.
Other pathogenic variants on AARS2, listed on ClinVar, are missing from the
entire network at the time of writing.

Decipher is a recent project aimed at sharing knowledge of genotype-phenotype
associations, following the rationale that “accurate diagnosis of human genetic
disorders in a clinical setting requires the identification of other patients that
share the same/similar genomic variants and comparison of their phenotypes.”
[15]. The are two main reasons why Decipher is not a suitable choice for our
investigations. Firstly, it is once again focused on specific phenotypes, namely
developmental delay disorders in children. Such phenotypes are not common in
the clinical setting from which our test cases were obtained, which specialises
on rare mitochondrial diseases and degenerative disorders. Secondly, it relies on
submission of anonymised patient data. In contrast, privacy and patient consent
must be considered before uploading large scale individual genetic data in the
clinical or research setting. Decipher remains, however, one of the best examples
of international collaborative phenotype-genotype consortia. In the future we
may be able to engage with similar initiatives in the area of adult rare disease,
such as GEM.app10.

2 A small-scale time-travel experiment

We now present a study on 5 WES patient cases, all of them with the same
phenotype (multiple mitochondrial respiratory complex deficiency), which were
solved by our geneticist researchers in October 2012. The aim of this study is
manifold. We want to determine whether or not a diagnosis can be reached using
a limited number of external knowledge sources, such as OMIM and Clinvar. We
are also interested in tracking, albeit at an anedoctal level, how the diagnostic
power of those sources changes over time, and how it compares with a diagnostic
process based solely on published literature research. Finally, we have used the
study experience to help design the process that forms the basis for our tool.

The study involved “going back in time”, in this case to 2012, to see whether
the knowledge that was available then was sufficient to produce a diagnosis, ei-
ther by an expert, who would be using direct research from phenotypic or inves-
tigational search terms relevant for each case within literature search databases

10 https://genomics.med.miami.edu/
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such as PubMed, or by an automated process using ClinVar. Our findings are
summarised in Table 1, while the charts in Fig. 1 give a sense of progress in
ClinVar content over time, by reporting on the number of variants of interest
available in 2012 and in 2014.

Patient Gene Name Variant Clinvar 2014 Date submitted

1 C12orf65 Hom c.210delA:p.P70fs Pathogenic 22-Nov-13

2 RMND1 Hom. c.1349G>C:p.*450Serext*32 Pathogenic 04-Aug-14

3 AARS2 Het c.1774C>T:p.Arg592Trp Pathogenic 04-Aug-14

4 MTO1 Hom. c.1232C>T:p.Thr411Ile Not found

5 VARS2 Het c.1045G>A:p.Ala349Thr Not found

Table 1: Variants identified in Clinvar based on records in November 2014.

As the cases were indeed solved with a positive diagnosis, we benefit from the
ground truth consisting of the actual variants found by the researchers. Our first
finding is that none of these variants were recorded in the 2012 version of ClinVar,
while only three out of five appear in the 2014 version. When they do appear,
their clinical significance is reported as Pathogenic/Likely pathogenic, confirming
the early researchers’ diagnosis. This seems to support, at least anecdotically, the
hypothesis that the relevance of a variant databases like ClinVar does increase
over time, complementing and possibly eventually replacing experts’ knowledge.

Next, we focused on articles that could have been used at different points in
time as reference to solve the cases. We recorded the number of papers available
at the time of diagnosis, which are related to the patient phenotype, as well as
the number papers published before the date of diagnosis. Our findings, reported
in Table 2, indicate that of the five cases, only two could have been solved
using literature support. One additional case (patient 5) was solved using direct
researchers’ knowledge of association between the VARS2 gene and the multiple
mitochondrial complex deficiency phenotype.

Despite these successes, it is often the case that genetic diagnosis cannot be
reached. To illustrate, we have analysed a further patient, which to date is still
an unsolved case. Researchers manually identified eight candidate variants for
this patient in 2012, however none of those appeared in ClinVar at the time, or
could otherwise be confirmed as pathogenic. Using the 2014 version of ClinVar,
only one of the variants (c.242G>A:p.Arg81Gln on gene TYMP) was found to
be benign, while the others remain unknown. No additional literature has so far
emerged (to the best of our knowledge) to support the diagnosis.

3 Variant interpretation for genetic diagnosis

We now describe the process of single-nucleotide variant interpretation that un-
derpins our clinical tool, SVI. In a clinical setting, the interpretation process is
normally driven by a disease hypothesis, specified by the clinician on the basis



(a) Variants on patients’ genes filtered for their relevant phenotype

(b) Variants on patients’ genes, no phenotype filtering

Fig. 1: ClinVar evolution relative to the variants of interest for sample patients

Patient Gene
Name

Variant Pubmed
Publi-
cations
(2014)

Year
reference
paper
published

Pubmed
publica-
tions
(before
2012)

Solvable
before
2012?

1 C12orf65 Hom c.210delA:p.P70fs 9 2010 2 Yes

2 RMND1 Hom.
c.1349G>C:p.*450Serext*32

6 2012 3 No

3 AARS2 Het
c.1774C>T:p.Arg592Trp

4 2011 1 Yes

4 MTO1 Hom.
c.1232C>T:p.Thr411Ile

48 2012 29 No

5 VARS2 Het
c.1045G>A:p.Ala349Thr

14 NA 11 No

Table 2: Number of publications in Pubmed concerning the gene of interest for
a specific variant, prior to date of diagnosis in 2012 and in 2014.



of factual observations. The goal of the process is to find variants in the pa-
tient’s exome, amongst those called by the upstream pipeline, which have either
previously been reported to be associated conclusively with similar phenotypes,
or conform to the appropriate inheritance pattern, and disease population fre-
quency and occur in genes either known to cause a similar phenotype, or affect
similar biological functions. In addition, in silico software tools provide a mecha-
nism of inferring the biological effect of the mutation. The diagnosis is considered
inconclusive (on the basis of the variants alone) if no such variants can be found.

Genome variant interpretation has been described as a “needle in the bunch
on needles” problem [17], as the target variants are a tiny proportion, typically
no more than ten, of the more than 20,000 variants that are detected by a typical
pipeline. The vast majority of variants are benign, such as common polymor-
phisms, which do not affect a patients health. Ideally, the variants of interest lie
at the intersection between two subsets of the overall patient’s variants, namely
(i) deleterious variants, i.e., protein altering and splice site altering mutations,
and (ii) variants that are known from the literature to play a role in the target
phenotype. As we will see, however, it is not always possible to identify variants
that lie precisely in this intersection. Our selection process therefore aims at seg-
regating variants into classes, depending on the amount of available evidence to
support the hypothesis that they are indeed the basis for a disease diagnosis. The
process consists of three phases, which we describe next: (i) restricting the inves-
tigation to a specific set of genes (phenotype and variant scoping), (ii) variant
filtering aimed at identifying deleterious variants, and (iii) variant classification.
The overall process is depicted in Fig. 2.

3.1 Phenotype and variant scoping.

In this phase, user input terms are mapped to genes. Users may specify the dis-
ease hypothesis at varying levels of precision, ranging from free text keywords,
to terms from the OMIM vocabulary11 or from the Human Phenotype Ontol-
ogy [18] (HPO12). The latter provides a more precise characterisation of the
phenotype (so called deep phenotyping [19, 20]). OMIM and HPO both provide
standard reference taxonomies of phenotype terms. In addition, we normalise
all input formats to OMIM, which also offers phenotype-to-gene mapping. HPO
provides a direct mapping to OMIM, and free text keywords are simply mapped
to OMIM terms through string matching. The resulting OMIM terms are then
mapped to a set of genes, which define the initial scope of the investigation, in
the next phase.

As genetic testing in clinics tends to specialise on specific disorder areas, the
scope can be further restricted to a set of genes that are known to be implicated
in phenotypes in that area. Thus, when using the tool the clinician may also op-
tionally provide a more precise characterisation of the scope of the investigation,
by directly specifying a list of target genes of interest. This process, depicted on
the top left in Fig. 2, produces a final set of genes in scope. Only the subset of

11 http://www.omim.org/
12 http://www.human-phenotype-ontology.org/
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Fig. 2: Variant interpretation process as implemented in SVI.

candidate variants found in phase II (variant filtering), which lie on the scope
genes, will be considered for classification.

3.2 Variant filtering for identification of deleterious variants

This phase relies on variant annotations, provided by the well-known Annovar
annotation service [21]. SVI implements an extensible set of filters, reflecting
emerging pratice in the lab. Currently, variants are filtered according to the
following conditions.

– Identification of polymorphisms. Variants that are recorded as polymor-
phisms in the dbSNP database are excluded, as these are common muta-
tions which occur at higher frequencies than the disease phenotype in the
population, and are known to be non-deleterious.



– Coverage test. We check that variants are called at 30x fold or more, as this
is a de facto standard for confidence in a read. Also, we check the exome
coverage percentage (ie what fraction of the exome is covered to 30 fold), and
distribution of % coverage across the exome, if this information is available.

– Synonymous variants are removed, as those are non-protein altering or splice
site altering. Only non-synonymous, stop/gain, frameshift mutations are re-
tained.

– Variants with MAFs (Minor Allele Frequency) greater than 0.01 are also
discarded. Ideally, MAF should be checked separately against international
controls as well as local control patients. For instance, harmless mutations
that are rare within the general population (low MAF) may be incorrectly
included, although a localised patients control database would reveal a higher
frequency in the patients area of origin. No such localised databases are
currently available to us, however.

– When performing trio genetic testing (typically involving parents and af-
fected child), remove all variants which do not conform to pedigree, i.e., re-
move potentially pathogenic heterozygous variants due to their observation
in an unaffected parent, and the detection of de novo variants. Also, deter-
mine whether the presence of the same variants is consistent with Mendelian
inheritance, as indicated for instance in [22].

– User-defined thresholds on a variety of individual or aggregate pathogenicity
predictors [23], including PolyPhen13 and others that are available through
Annovar annotations.

The outcome of this phase is denoted as candidate variants in Fig. 2.

3.3 Variant classification.

At this stage we have isolated variants with the following properties: (i) they
are likely to be deleterious, and (ii) they lie in genes that are broadly related
to the target phenotype, via OMIM mapping. The uncertainty associated with
the filtering process, combined with the broad nature of OMIM disease-gene
mapping, suggest that these conditions are still too weak to provide conclusive
evidence in support of the hypothesis. Indeed, at this stage hundreds of variants
are still under consideration, mostly false positives.

Definite evidence can only be provided by research on specific disease-variant
associations. As mentioned, we have chosen ClinVar as our initial reference
source, with the intention to extend the knowledge base to other sources in
the future. To each known single nucleotide variant, ClinVar associates a clin-
ical significance that is simple to interpret (Likely benign / Likely pathogenic
/ Uncertain) along with the condition associated with a pathogenic significance
(using OMIM terms). Importantly for us, in view of the tracking capabilities of
our tool, ClinVar also provides metadata about the review status of the entry,
with timestamps of the latest update. As shown in the bottom part of Fig. 3, we

13 http://genetics.bwh.harvard.edu/pph2/
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exploit the ClinVar output to create a simple separation of the candidate vari-
ants, into three classes: Red, Amber, and Green, using a “traffic light” metaphor
that clinicians are likely to find simple and useful.

Red variants are those that are recorded as pathogenic in ClinVar. Con-
sidering the prior filtering and scoping, these provide conclusive evidence for a
positive diagnosis.

Amber variants are those that are in scope but either not known to Clin-
Var, denoted Amber/unknown, or recorded in ClinVar with Uncertain signif-
icance (Amber/uncertain). Variants c.4132A>G:p.Ser1378Gly on gene LRP-
PRC and c.842G>A:p.Gly281Aspon PARK2 are examples of Amber/unknown
and Amber/Uncertain variants, respectively. These variants provide weaker evi-
dence than the Red ones, yet they cannot be dismissed, as absence from ClinVar
may simply mean that research is still be ongoing or that curation efforts have
not yet brought recently published research into database.

Finally, Green variants are those that are found in ClinVar, reported as
likely benign.

This simple user output is designed to reduce the clinician’s decision pro-
cess, by separating the “easy” cases which reveal Red variants, from all others.
Cases where Amber but no Red variants are found can be referred to specialist
researchers for further investigation.

In SVI, these are the prime candidates for re-analysis when updates to Clin-
Var become available, or when new variant databases are integrated.

4 A provenance-aware diagnostic tool

We have implemented the process into SVI, a Web-based user tool designed to
be used by clinicians. Evaluation of the tool is still ongoing, both in terms of
effectiveness of the variant filtering, and in terms of usability. We define effec-
tiveness as the ability to reproduce benchmark diagnostics decisions obtained
by experts. While our results are still preliminary, as an example we report the
effect of filtering on the five test patients used in the study described in Sec. 2.
In all cases, from generic user input expressing the patients’ common phenotype
(multiple mitochondrial respiratory complex deficiency) SVI identified between
7 and 11 Red variants, as indicated in Fig. 3 and in Table 3. In all cases, the
Red variants include those listed in Table 1 on page 6.14

In addition to supporting the filtering process, SVI provides complete tracing
of the process itself. The underlying data model (implemented using the Mon-
goDB DBMS) is centred around the main concept of an Investigation (Fig.4).
An investigation is part of a case about a patient. A case is owned by an inves-
tigator (the clinician/user), and it may consists of multiple investigations, each
containing full details of one individual search. These details include a reference
to the patient, user input (keywords, HPO, OMIM terms) along with their map-
ping to genes, the variants selected at each stage in the process, and the “traffic
light” classification of each variant. Annotations made by the user in support

14 Experts were not available to confirm whether any of the other Red variants had
also been detected.
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Fig. 3: Distribution of variants amongst the Red/Amber/Green classes for out
patients sample

Patient Candidate
variants

Present
in ClinVar

Red Amber
(uncertain)

Amber
(unknown)

Green

1 631 149 10 77 482 62

2 625 129 7 65 496 57

3 622 139 7 69 483 63

4 618 132 11 67 486 54

5 627 141 8 65 486 68

Table 3: Effect of variant filtering in SVI for a specific phenotype

of a decision, at the level of individual variants, are also captured. Finally, an
investigation records the versions of all external data sources used for filtering.

An investigation provides a persistent provenance trace of each user execu-
tion. We are currently in the process of implementing a number of added value
features on top of this provenance database. These include:

– The ability to selectively trigger new analysis of old cases, when changes oc-
cur anywhere in the knowledge sources (or indeed in the pipeline upstream).
Specifically, when an Amber variant in an investigation appears or changes
status in ClinVar, it moves from the Amber class to either the Green or the
Red class, possibly resulting in the case being revisited by the clinician. This
process can be automated through a simple diff process whenever a new
version of ClinVar becomes available.

– Analyse historical investigations to determine possible implicit associations
between independent cases. For instance, cases that exhibit a substantial
overlap in the gene scope or the variant scope may be linked, so that when-
ever a problem/solution is found in one, the other can be flagged up for
further consideration.

– Query the investigation database across multiple dimensions (patients, phe-
notype, investigator, time). Examples of queries include: “find all patients
annotated with shared HPO terms, who also share variants or have vari-



Fig. 4: Data model centred on investigations, designed for provenance support.
The arrows indicate one-to-many or many-to-many relationships

ants on the same genes”, and “determine how many patients with the same
variant have the same HPO matching terms”.

Most importantly, the provenance database provides accountability over the
entire decision process. This is important not only for audit purposes, but also
to allow third party clinicians, who have not been involved in the case, to fully
understand how the investigator reached important decisions, which potentially
affects a patient’s quality of life.

5 Conclusions and current work

NGS-based genetic diagnosis is rapidly coming of age. As NGS technology ma-
tures, the new bottleneck is likely to be the clinical interpretation of the lists of
human variants extracted from the raw WGS data, which remains a knowledge-
intensive activity requiring expert human judgement. Making sure that the di-
agnostic process scales with the increasing volume of patient cases requires au-
tomation of this activity. In this paper we have presented an initial attempt at
addressing this issue. We have been experimenting with a simple variant filter-
ing process and tool, code-named SVI, which automates most of the process by
relying on integration of variant databases. In this initial effort, we have chosen
ClinVar as the exemplar variant database, as its content and curation appear to
progress rapidly, increasing the chances to identify relevant pathogenic variants.
The tool includes full traceability of the diagnostic process.

Our work is progressing in several directions. Firstly, we are now evaluating
the effectiveness of SVI in terms of false positives/negatives relative to the expert
judgment on a testbed of real patient cases. Secondly, we are working to integrate
additional sources of variant-disease associations, such as those on the LOVD



platform. Finally, as the number of investigations increases, we expect to be able
to perform interesting analysis on the provenance database.
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