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Abstract—The ability to accurately estimate the execution time
of computationally expensive e-science algorithms enables better
scheduling of workflows that incorporate those algorithms as
their building blocks, and may give users an insight into the
expected cost of workflow execution on cloud resources. When
a large history of past runs can be observed, crude estimates
such as the average execution time can easily be provided. We
make the hypothesis that, for some algorithms, better estimates
can be obtained by using the histories to learn regression
models that predict execution time based on selected features
of their inputs. We refer to this property as input predictability
of algorithms. We are motivated by e-science workflows that
involve repetitive training of multiple learning models. Thus, we
verify our hypothesis on the specific case of the C4.5 decision tree
builder, a well-known learning method whose training execution
time is indeed sensitive to the specific input dataset, but in non-
obvious ways. We use the case study to demonstrate a method for
assessing input predictability. While this yields promising results,
we also find that its more general applicability involves a trade off
between the black-box nature of the algorithms under analysis,
and the need for expert insight into relevant features of their
inputs.

I. INTRODUCTION

Computational science is frequently characterised by data-
intensive, long-running applications that are executed a large
number of times on Grid-based cyberinfrastructures, and in-
creasingly on public cloud platforms. This paper describes our
investigation into the prediction of execution times for such
class of applications. Accurate runtime prediction is not only
a pre-requisite for efficient scheduling [1], [2], but it may also
result in monetary savings, as host time is one of the dominant
factors in cost models for public cloud resources.

The problem of predicting execution time of tasks for the
purpose of job scheduling has been addressed in various forms
in the past [3], [4] and more recently in a cloud setting,
to establish trade-offs between execution times and monetary
cost [5]. While a more in-depth analysis of existing approaches
can be found in Sec. IV, here we begin by clarifying the
specific scope and goals of our work in the broader context
of execution time prediction for e-science workflow-based
applications.

A. Motivating example: a chemical engineering workflow

Our prime motivation for this work comes from workflow-
based e-science [6], specifically from the case where the
workflow includes computationally complex tasks which are
executed a large number of times and whose execution time

may vary significantly from one run to the next. We use one
exemplar of such class of problems as a practical motivation
for our work. The Discovery Bus (DB) [7] is a Chemical
Engineering workflow used in the context of Quantitative
Structure-Activity Relationships research (QSAR)1. DB uses a
variety of machine learning algorithms, also known as model
builders, to generate a large number of predictive models,
which can be later used to predict the activity of chemical
compounds based on their structure. An implementation of
the DB workflow and its deployment on the Azure cloud
platform, done by members of our group, is described in
[8]. In this implementation, DB takes datasets consisting of
molecular structures labelled with known activity as input, and
runs a number of model builders on each such input dataset
concurrently and in a competitive fashion, i.e., by choosing
the one that performs best, using a pattern known as Panel
of Experts. Operating on a large set of input datasets, the
DB workflow generated over 750,000 predictive models using
the eScience Central cloud-based workflow system2, requiring
a total of over 8 CPU-months [8]. For such workflows, the
ability to predict the execution time of each of its experts,
i.e., the model builders, readily translates in efficient workflow
block scheduling and it is useful for cost estimation.

B. Input predictability

This work is focused on services S, and more generally
software components, which could be encapsulated as work-
flow blocks for which a history HS of executions is available,
which minimally contains pairs 〈dk, tk〉 of input datasets dk
and corresponding execution times tk. For such services, we
would like to use HS to learn a model that computes an
estimate t̂S(d) of the execution time for any new input d3.
We use the term input-predictability to denote the accuracy of
estimates t̂S(d) that are obtained using only features extracted
from d.

A notable example of an easily data-predictable algorithm
is matrix multiplication. Here the dimensions of the input
matrix determines the exact number of multiplications and
summations performed. Multiplying an m × n matrix with

1www.openqsar.com.
2www.esciencentral.co.uk
3Note that, unlike similar approaches to performance estimation, this

definition does not consider system-specific features. To achieve this isolation,
we run our experiments on a single idle machine, as described later in Sec. III.



an n× p matrix requires mnp multiplications and m(n− 1)p
additions. In this case, one can use regression to correlate these
simple features with execution time.

Looking at this example, it is tempting to be drawn to
traditional algorithmic complexity analysis as the main way
of predicting performance. In contrast, our approach is purely
based on learning from historical data. This has the main ad-
vantage that we can deal with grey box software components,
such as web services or other types of scripted workflow tasks,
whose implementation details may be unavailable.

On the other hand, clearly not all algorithms are input-
predictable. Obvious counter-examples are algorithms whose
behaviour is affected by random variables that are part of the
input or initial states, such as iterative algorithms where the
number of iterations depends on a randomly chosen initial
solution. A well-known example is another model builder,
namely the training phase of a feed-forward neural network
using backpropagation [9]. Training is an iterative process
that normally stops when a certain criterion measure, such
as an error function on the training or validation set, reaches a
sufficiently low value. In this case, making a cost-effective and
accurate prediction of the number of iterations is not feasible.

C. Goals and contributions

In this paper we provide an operational definition of input
predictability, we describe an experimental method for its
quantitative assessment, and illustrate its use on a signifi-
cant case study. The method involves exploring a space of
estimation functions (regression models), each operating on
a possibly different combination of features extracted from
the input, to find the ones that maximize prediction accuracy.
The ability to reliably predict execution time from the input
has obvious benefits for scheduling, provided that computing
the estimate is substantially less expensive than running an
instance of the algorithm itself.

The determination of input predictability is a knowledge-
intensive process and not all workflow services enjoy this
property. To further define the scope of our work, we have
chosen to focus on “commodity” services that appear fre-
quently in e-science applications, such as the machine learning
(model builder) algorithms mentioned earlier as part of the
DB workflow. To illustrate the method, we have used the
C4.5 decision tree builder (a well-known machine learning
algorithm [10], [11]) as a case study.

Our main experimental findings are as follows.

• For C4.5, a variety of regression models can be trained
to reach acceptable asymptotic prediction errors of about
20%, substantially better than the baseline predictor,
consisting of the average of past observed execution
times. This error measure is relative to the accuracy of
the baseline predictor and is defined in Sec. III;

• The model only requires a small set F of features, which
can be computed in time that is linear in the number of
C4.5 input instances, thus with little overhead and much
less expensively than running C4.5 itself;

• While input predictability with good asymptotic error
can be obtained for C4.5, the optimal combination of
regression methods and choice of input features depends
on the specific type of data that makes up the history
HS , and on how homogeneous the data is over the
history of observations. To make this observation precise,
in our experiments we simulate histories of different
length and with different data types for the same C4.5
implementation, and compare the asymptotic error rates
obtained in each case.

D. Paper organization

The rest of this paper is organized as follows. In the next
section we provide a more formal problem formulation, and
describe our techical approach. Sec. III presents experimental
results, followed by a discussion of related work (Sec. IV) and
conclusions.

II. TECHNICAL APPROACH

A. Problem formulation

One enactment s of a service S takes an input dataset d,
and performs some operation in time t = time(s(d)). We
assume that multiple enactments can be observed, resulting in
a history HS = {〈dk, tk〉} where tk = time(sk(dk))}. We
also assume that the inputs dk are all of the same type D,
which is defined by S’s input interface specification. For the
sake of the example, and to set the context for our experiments,
let us say that S is a model builder. In this case, all dk
consist of a set of training and test instances, and each sk(dk)
computes a predictive model (in the case of C4.5, a decision
tree) in time tk. Here the input type D defines a table with
a set number of attributes (which are either numerical or
categorical) and a variable number of records, each providing
one training or testing example. An input d is such a table.
A number of different features can be used to characterise D.
For instance, in our example these may include the number
of training instances, the number of numerical attributes, the
average and standard deviation of the values of a numerical
attribute over all instances, and so forth.

Our problem is to identify a combination F of features of
D, along with a regression model M , such that M(f) = t̂
is an estimate of t = time(s(d)), where f = F (d) is the
feature vector consisting of the values of F in d. Model M
is trained on history HS and is characterized by a prediction
error ε, which in general is a function of the size |HS | of HS .
Regardless of the specific choice of metric used for ε, there is
an expectation that, under our assumption of homogeneity of
the inputs di, the error will converge asymptotically as |HS |
increases, i.e., as more observations are accumulated during
service operation.

Just as one can select a number of feature combinations
Fi to characterise D, multiple model builders MB j are
available to induce an appropriate regression model M (in
our experiments we have used the M5P model tree builder,
the k-Nearest Neighbors algorithm for regression, and the
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Fig. 1: Problem space: Model builders, features, and prediction
error

Multi-Layer Perceptron, all described in [11]). The combina-
tion of these choices forms a two-dimensional space, where
〈Fi,MB j〉 → εij denotes that builder MB j is trained using
features Fi of D, resulting in asymptotic prediction error εij
(Fig. 1).

Thus, the problem of characterizing input predictability of
S translates into seeking the combination with minimal error
within this space. In the rest of the paper we report on our
experience in addressing this problem for the specific case
where S is C4.5. We find that this investigation is both
knowledge-intensive, in the sense that human expertise is
required to narrow down the space of possible combinations
that are worth exploring, and data-intensive, as computing εij
requires a large number of executions si4.

In summary, for a sequence of datasets dk of type D, our
approach involves (i) generating an execution history based
on the dk, (ii) selecting a small set of regression models, Mj

j : 1 . . .m, (iii) selecting a set of feature sets Fi, i : 1 . . . n
for type D, and implementing corresponding feature extraction
functions defined on D, and (iv) training each of the models
Mj using each of the feature sets Fi.

B. Experimental datasets for C4.5

Our case study is aimed at showing that C4.5 has good input
predictability. This involves populating the table in Fig. 1.
Since predictability may depend on the specific data type
D from which features are extracted, we performed three
independent sets of experiments, using three separate sources
of input datasets, corresponding to three different types Di.
These are drawn from the UCI Machine Learning Repository
[12], namely Poker Hand5, Adult6, KDD Cup 1999 10%
sample7. We chose these datasets because they have a large
but manageable number of instances and attributes and they
can be successfully used to train C4.5 models.

C. Feature Selection

We experiment with two different types of features F
that, for each dk, can be computed in a time that is linear
to the number of attributes in dk. The first consists of a
vector of indicator variables, one for each attribute defined
by D, as well as the number of instances in d. Consistent

4Incidentally, note that this is a case of applying machine learning algo-
rithms to predicting the execution time of a machine learning algorithm, using
features of target model builder’s training inputs.

5http://archive.ics.uci.edu/ml/datasets/Poker+Hand
6http://archive.ics.uci.edu/ml/datasets/Adult
7http://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data

with vertical sampling (i.e., selection of attributes from D),
the indicator Ikl is a binary attribute that is set to 1 if dk
contains the l-th column of D, and 0 otherwise. This type
of feature vector has the advantage that it mostly describes
the schema of dk. However its main drawback is the high
dimensionality imposed on the feature space, which may result
in low prediction accuracy on a small training set.

The second type of features includes the vector of counts
of the numeric and categorical attributes in the input dataset,
in addition to the number of instances. This results in a low
dimensional feature space for predictors which may reduce
time for training the predictor and/or for delivering predictions.
The downside is that this feature space may not be expressive
enough and this may lead to a pronounced bias component in
the prediction error. For example, this method does not account
for the presence of individual attributes or combinations of
attributes which have greater impact on the training time of
C4.5 (i.e. if they cause substantially more splits).

In practical terms, all scenario datasets have been converted
into Weka’s native ARFF format [11]. This is a tabular format
encoded as a text file similar to CSV, which includes schema
metadata such as attribute names and types.

D. Experimental setup

We restricted our analysis to three types of regression
models: the M5P model tree builder, k-Nearest Neighbors
(kNN) and Multi- Layer Perceptron (MLP). In addition, while
we are interested in a general method that is agnostic of
the nature of an algorithm, and thus ignores its theoretical
complexity, in our experiments we have also compared our
predictions with a linear regression model that is based on the
complexity of C4.5 (see Sec. II-F).

The overall experimental setup is depicted in Fig.2, where
the FEx_* blocks represent extractors for each of the selected
feature sets, which are then selectively fed to the various
regression models. As the figure shows, the LR (linear re-
gression) model, discussed in Sec. II-F, is only trained on its
own specific features.

All experiments were performed using J48, Weka’s imple-
mentation of the C4.5 classifier [11], [13]. We trained J48 with
every generated input and its execution time was measured in
milliseconds on a single, idle desktop machine with an Intel
Q9400 Core 2 Quad processor and 4GB of memory. We also
used Weka’s machine learning algorithms to train and evaluate
all execution time predictors, except for the linear regression
model which was implemented and evaluated in R [14].

E. Building histories

In the following, we consider each of the three D separately
from the others. To generate a history of size n, we sample
from d to obtain n different subsets d1 . . . dn. Each data point
〈dk, tk〉 in the history, called a scenario, is obtained by training
C4.5 on dk, and recording the corresponding execution time
tk. To give an idea of the distribution of the execution times,
Fig. 3 reports these times for the Adult scenario. The shape
of the distribution is very similar to the other scenarios. For



practical reasons, the inputs were generated by limiting the
maximum number of instances in an input such that the
operational range of the execution time predictors be bounded.

Each dk is obtained by sampling both horizontally (in-
stances/rows) and then vertically (attributes/columns) from d.
Horizontal sampling was performed using Weka’s Resample
filter. The filter requires as input the percentage of instances
in the intended sample relative to the initial dataset. This
percentage was generated randomly from a uniform distri-
bution bounded by specified lower and upper bounds. The
bounding was necessary to limit the execution time of the
target algorithm. Vertical sampling was done by removing each
non-class column from the initial dataset with a probability of
50%.

This sampling method generates inputs which, although
synthetic, come close to real-world usage of machine learning
algorithms. For example, vertical sampling emulates repeated
enactments of the same algorithm for identifying an optimal
subset of predictive attributes. This is known as scheme-
specific attribute selection [11] where each subset of attributes
is evaluated with the target machine learning algorithm. The
subset of attributes with optimal performance, low dimen-
sionality and perhaps domain knowledge bias is chosen for
prediction purposes. Iterating through attribute subsets may
reveal associations between attribute combinations and C4.5
training times.

Horizontal sampling is widely used for assessing the pre-
dictive power of machine learning schemes, i.e., when using
k-fold cross-validation for improving performance estimation.
It is also a component of ensemble methods, such as bagging
[15], which require building several models from subsets of a
relation. These methods seek to derive a set of models whose
predictions are combined by taking votes or averages. For
example, bagging is a method of deriving a predefined number
of models trained on datasets of equal number of instances

Fig. 2: Architecture for Evaluating C4.5 Execution Time
Predictors.

Fig. 3: Distribution of the execution times in the Adult scenario

that have been randomly sampled horizontally from a given
training set. During prediction, each model gives an estimate
and an unweighted vote or average is output as the final
prediction. It is argued in [16] that bagging works especially
well with trees, such as C4.5. Our prediction method would
apply naturally to bagging because the execution time estimate
is the same for all bagged trees, given that they are trained on
datasets with equal number of instances and identical schemas.

F. Parametric linear regression from analytical complexity

The expected execution time of C4.5 for an input with N
instances and p attributes is usually O(pNlogN), but could
be as high as O(pN2) [16]. The causes for such variations
are encoded in the input data and this is what makes C4.5’s
training performance hard to predict8. In particular, training
C4.5 involves the successive partitioning of the training set
into subsets that contain a population of class labels which
maximizes a certain performance criterion, typically cross-
entropy [11]. For a fixed parametrization of C4.5, the set of
splits, and thus the overall performance, is a function of the
input, but it is hard to provide an analytical model of such
function.

Although we are interested in regression methods that do
not rely on knowledge about the computational complexity
of algorithms, it is interesting to use the latter to construct a
model for comparison with other regression models. From the
complexity mentioned above, we derive the following linear
regression parametric expression (referred to as LR in the
results), for a polynomial constructed from the terms that
appear in the theoretical complexity formulation:

t̂ = β1pnumNlogN+β2pcatNlogN+β3pnumN
2+β4pcatN

2

where pnum and pcat are the counts of the numerical and,
respectively, categorical attributes in the input dataset. The

8Note that we focus exclusively on the training phase of C4.5, rather than
in the operational/classification phase, which in comparison takes negligible
time.



actual expression we used also accounted for the lower-order
interactions terms between N , pnum, pcat and logN (not
shown for simplicity). t̂ is the expected response and βj are the
linear regression coefficients and are estimated by minimizing
the expression with the method of ordinary least squares.

III. EXPERIMENTAL RESULTS

In this section we present our experimental results. All
machine learning and data mining tools we used are included
in Weka [13] and R [14].

The error type we report is Relative Absolute Error (RAE)
[11]. It is defined as

RAE =

∑N
i=1 |ai − pi|∑N
i=1 |ai − ā|

where pi and ai are the predicted and, respectively, actual
values of the class attribute in the test set. ā is the mean of
the class attribute in the training set. By definition, the RAE
for a simple baseline predictor, one that consistently outputs
the mean of the class attribute, is 100%. A value of less than
100% signifies improvement over the simple predictor.

A. Relative Performance of Runtime Predictors

We trained a single C4.5 model for every input dataset
generated by vertical and horizontal sampling, recording the
corresponding histories. We then sampled 3400 such runs from
the histories, for each 3 scenarios, and used them to train and
evaluate execution time predictors. Table I shows the 10-fold
cross-validation RAE for each of the three selected regression
models. Note that each set of results can be represented as one
instance of the table in Fig. 1 above. For instance, the KDD
Cup results can be represented as in Fig. 4.

Scenario No. Attributes Model Builder/features RAE

Poker Hand 11

M5P indicators 13.09%
kNN indicators 76.23%
MLP indicators 15.80%

LR static 29.35%
M5P counts 10.29%
kNN counts 6.21%
MLP counts 16.50%

Adult 15

M5P indicators 16.73%
kNN indicators 52.10%
MLP indicators 13.92%

LR static 25.97%
M5P counts 24.55%
kNN counts 24.40%
MLP counts 27.98%

KDD Cup 40

M5P indicators 27.60%
kNN indicators 34.65%
MLP indicators 14.96%

LR static 15.43%
M5P counts 15.55%
kNN counts 16.54%
MLP counts 16.71%

TABLE I: Performance of execution time predictors across
experimental datasets
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Fig. 4: Populating the problem space with results from KDD
Cup.

Fig. 5: Relative Absolute Error Measures for all predictors

For every predictor and feature extraction method we at-
tempted several parametrizations, but we reported only the
lowest RAE. Also included are the errors of linear regression
models that use the terms discovered by static analysis. Figure
5 contrasts the performance of these models graphically.

We can observe that, since all errors are below 100%, all
predictors exhibit improvement over a naive predictor. Overall,
we were able to obtain an RAE below 20% on all datasets.
Of all predictors, the Multi-Layer Perceptron, when trained
with indicator variables, performs well across all datasets.
However, this model builder is computationally expensive to
train. Other model builders that are faster to train are the
M5P and Linear Regression, but they do not always perform
well. Once trained, these models deliver predictions at a very
small computational cost. kNN, on the other hand, compared
to other model builders, has a relatively low training cost, but
it requires significantly more computational effort for every
prediction it makes, because it is a so-called instance-based
learning method.

No interesting results can be reported from mixing histories
across datasets, i.e., when execution times obtained from
subsets of KDD Cup are considered together with those from
Adult, for example. This confirms the need for our earlier
assumption of homogeneity of the inputs observed within a
history. One possible reason for this is that the execution
time is dominated by hidden variables in the input dataset
which we were unable to identify at a low computational
cost. However, when not crossing scenario boundaries, intra-
scenario variations can still be explained using the identified
sets of features.



Fig. 6: RAE estimate as a function of the number of training
instances for the KDD scenario.

B. Predictive Power of Input Features

The Adult and KDD Cup scenarios show that using indica-
tors to account for the presence of combinations of attributes
is competitive, if not best. However, for Poker Hand, using the
counts of numeric and categorical attributes as predictors is su-
perior, except when compared to MLP. Closer examination of
the dataset reveals that the numeric attributes correspond to the
numbers on the five poker cards and the categorical attributes
to the suit of each card. Clearly, there must be only two hidden
causes which govern the splits and these must be uniformly
distributed, the first one, across all numeric attributes and,
the second one, across all categorical attributes. In this case,
a feature space of attribute indicators does not account for
substantially more information than a feature space of attribute
counts. Results show that the latter compensates, by having a
lower dimension and being more densely populated, which
helps in training a more accurate predictive model.

The performance of linear regression is not always good. In
Adult and KDD Cup it is comparable to other generic methods,
but in Poker Hand it performed poorly. This shows that generic
predictors may perform substantially better than methods that
make use of intimate knowledge of the target algorithm, such
as static analysis.

C. Asymptotic Error

Figure 6 shows the how the RAE evolves as the number of
instances in the training set increases. We chose the KDD
scenario and the best model builder for each feature set:
MLP for indicators, M5P for counts. Also plotted is the RAE
evolution of linear regression.

The RAE values were obtained by sampling the history
incrementally from 1% to 100% of its size. For each sample
size, we randomly drew 10 samples and performed 10-fold
cross-validation on each sample for each of the three model
builders. We then averaged the RAEs for each sample size and
model builder and reported them in the plot.

Each RAE function graph exhibits an ”elbow” - an abscissa
value after which the model builder does not improve or

oscillate substantially. This means that, after training the model
with a sufficiently large number of instances, it makes little
sense to rebuild the model with additional newly observed
data because this will add very little in terms of accuracy.
However, monitoring its performance is possible as actual
execution times will always be available to be contrasted with
the predicted ones. Some predictors may converge more slowly
- their elbows occur later. An interesting example for this
occurrence is the one plotted in Figure 6. All three model
builders have very similar asymptotic RAEs, but the MLP
model builder’s elbow occurs later than the other two.

D. Effects of Horizontal and Vertical Sampling on Execution
Time

Horizontal and vertical sampling have different effects on
the execution of the target algorithm. A random horizontal
sample of a dataset, if large enough, is likely to maintain the
proportions of the populations of class labels of the original
set. An initial split in the sample is decided solely on these
proportions and, consequently, is likely to be the same as
the split in the original dataset. By transitivity, it is likely
that two different samples will initially split in the same way.
Recursively, the same is true for the splits in sub-populations
until the sizes of the populations become very small and
proportions deviate significantly. Because this happens toward
the leaves of the tree and the data is relatively less time-
consuming to process, then the execution time for splitting
this data is unpredictable, but small, and accumulates into a
moderate prediction error.

Vertical sampling, which implies selecting a subset of
columns, effectively removes potential splits that exist in the
original subset. This will likely cause the sample to be split in
a different way than the original dataset and may be associated
to a different execution time. However, the predictive models
will associate this combination of attributes with the recorded
deviation in the execution time. How this is done depends on
the internals of a predictor type. For instance, some predictors
will not account for rare associations or for associations that
correspond to very small deviations in the response variable.

It should be noted, however, that the results are affected
by our data generation method. Firstly, the reported value at
which the elbow occurs is arguably a pessimistic estimate
of what would happen in reality. Suppose we start making
predictions for bagging on a subset of attributes of a larger
relation. Because all training datasets share the same schema
and are of identical size, they are relatively homogeneous. In
this case we would be able to obtain a stabilization of the RAE
much sooner than with our data generation method because the
latter yields more heterogeneous datasets.

Secondly, the lack of oscillations is an optimistic estimate.
Continuing with our previous example, if we subsequently
do bagging on a (partially) different set of attributes, then
we can reasonably expect that the prediction errors on the
first few iterations to be higher than the last ones from
the previous round of bagging. This is because there is a
sudden manifestation of heterogeneity. However, we do expect



a stabilization of the error after more iterations in this case as
well.

Finally, because the RAE is an error measure for an entire
test set, not just a single test instance, the oscillations depend
largely how often the model is rebuilt and re-evaluated. There
are two ways in which to use the recent sequence of RAEs in
a cost-effective manner. First, one may decide to stop refining
the predictor if it does not show definite improvement after
a few times it was re-trained with a reasonable amount of
additional runs of the target algorithm. Second, by computing
the RAE of an unchanged predictor on the most recent history
of predictions, it is possible to detect oscillations which could
justify the retraining of the predictor.

E. Choosing the Best Predictions and Best Predictors

Not all model builders are suitable for every dataset, at least
not across the entire range of parametrizations, and there are
many different feature sets on which to train these model
builders. Clearly, there is a great deal of variation in the
quality of the predictions, so, in the absence of any other prior
knowledge, choosing the best model is a difficult problem.
Fortunately, we have shown empirically that the quality of the
predictor exhibits some characteristics which can be used to
simplify the problem of choosing the best predictor or subset
of predictors for a certain execution time prediction task.

If we are confident that we have explored sufficient het-
erogeneity in the input datasets, then, if the error sequence
is stabilized, it means that the elbow has occurred and that
we now have an accurate estimate of the lowest error of the
predictor. If, at this point, there are other predictors exhibiting
lower errors, either stabilized or not, then we can discard the
predictor that stabilized at a high error.

However, while we choose to ignore the predictions of some
models, we can still evaluate all predictors when new, unseen
data is being used as input for prediction. Because the real
execution time can be contrasted with its prediction, we can
still evaluate active predictors by computing their error on the
unseen data. If there is a subsequent oscillation this will be
noticed by evaluation and this is an indicator for the need to
re-train the predictors on the new, more recent case base.

IV. RELATED WORK

Execution time prediction is an important topic in schedul-
ing tasks on large computational infrastructures [17]–[20] and
a number of studies have focused on workflow deployments
on such infrastructures. For example, the authors of [18], [19]
discuss predictions for entire workflows while in [20], [21] the
modular character of workflows is exploited and the focus is
on predictions for individual workflow blocks. In those studies,
or similar ones, the input is not anatomized to the extent it is
in this paper. At most, generic attributes such as file names or
problem sizes [18]–[20] are considered.

Many previous efforts have the merit of delivering pre-
dictions for different computational platforms modelled with
system-specific parameters such as architectural parameters
of processing stations [22] or even for platforms affected by

variability [17], [21], [23], [24]. Unlike them, our approach
focuses strictly on examining the input of a problem in great
detail. Moreover, to the best of our knowledge, this paper
is also the first to successfully attempt the prediction of the
execution time of the complex C4.5 algorithm.

This research stems from our earlier, initial attempt at
learning from execution histories, specifically to predict the
accuracy of experts in our Panel of Experts pattern (mentioned
in the Introduction) on particular input problems [25].

Focusing more on execution time prediction, Iverson et
al. [26] provide execution time predictions for two algorithms,
a Cholesky matrix decomposition algorithm and an algorithm
determining whether a number is prime through trial divisions.
Their input features are the dimension of the square matrix for
the former algorithm and the actual input number of the latter.
In addition, they share cases between different architectures
because they consider code profiles as part of the input space.
For runtime prediction, the authors use a version of k-Nearest
Neighbours.

Matsunaga et al. [22] present a study of several machine
learning schemes for predicting the execution time of two
bioinformatics applications: BLAST and RAxML. Similar to
Iverson et al. [26], they consider not only input features, such
as the number of bases in a sequence for BLAST or taxa
size and number of bases in a sequence for RAxML, but also
system-specific attributes in order to characterize the effect
of different computing architectures on the execution time of
the application. We purposely factored out variability due to
the computational platform by executing all experiments on
a single idle machine in order to isolate the variability due
to the input. While our experiments can be replicated on any
platform, we do not consider how to transfer knowledge gained
from a platform to another, even if performing experiments
from a single scenario.

Kuperberg et al. [27] describe a method for deriving execu-
tion time predictions for Java components. They benchmark
the application by counting the individual bytecode instruc-
tions that are being executed. These instructions are, on the
one hand, translated alongside their counts to actual execution
times on a given platform and, on the other hand, associated
with the parameters input to the component. However, the
only parameters extracted correspond to primitive Java types
or basic collections and they do not provide an generic method
for extracting features from custom objects. Instead, they
suggest that a domain expert should specify the important
features in this case. The downside of their method is that,
by making use of bytecode benchmarking, it requires platform
instrumentation.

Perhaps the most similar work to ours is by Krishnaswamy
et al. [28], where they too consider estimating the execu-
tion time of Weka algorithms. However, they do not show
evidence of what variability they introduced in their input.
Although they consider additional input-agnostic parameters,
the input to the algorithm is characterized only by the disk
size of the relation. We believe that disk size is not a good
predictor because this it is only marginally consistent with the



information contained within a relation. Rather, the disk size
depends solely on the encoding of the relation which is only
weakly correlated with the contained information. Consider for
example two categorical attributes that are perfectly correlated.
Suppose that the domain of one is spanned by string values
which are much longer than the strings in the other domain.
All other things being equal, if we were to consider only one
of the two attributes at a time, the execution times would be
equal, but the sizes will differ. The argument is similar for
numeric attributes. A string of trailing decimal zeros does not
affect the numerical values, but it increases the size of the
relation. The all-encompassing reason is that the information
contained within each attribute can be encoded in infinitely
many ways with no upper bounds for disk size.

Unlike previously mentioned work, our research stands out
through the emphasis placed on characterizing the input to the
target algorithm over several dimensions. We believe that this
data-centric approach is suitable given that the target algorithm
under study is essentially data-driven. A paper similar in focus
to ours is by Kapadia et al. [29]. They made predictions for
the execution time of a data-driven application using input
features only, but in a different domain. Their reported shape
of the error of the predictor as a function of the number of
training runs is very similar to ours. However they, unlike us,
do not discuss the advantages presented by such a regular error
behaviour and they do not explore more than one feature space
using varying degrees of prior knowledge about the algorithm
under study. In addition, our work might be extended to other
machine learning algorithms.

Selecting a subset of predictive models for execution time
is not new, but previous efforts do not make use of input
features and prior knowledge of the evolution of prediction
errors. For example, Tao et al. [24] use time-series analysis
for three cluster traces in turn. Glasner et al. [23] build clusters
of applications according to historical attributes. Each cluster
has a dynamically changing set of active time-series predictors.
When a prediction for a task needs to be made, the clusters
to which the task belongs are selected. For each such cluster,
the predictions from each model are combined. Finally, the
output predictions from the previously selected clusters are
combined. However, neither approach is suitable for data-
driven applications because the effects of input features on
execution time may outweigh the effects of platform variability
implicitly captured by the submission time or ordering of
successive runs. In contrast to previous approaches, our pro-
posed architecture includes the critical input feature extraction
step where different sets of predictive attributes are defined,
each with varying impact on the accuracy of the predictions.
In addition, prior knowledge of the elbow or potential lack
of oscillations can simplify the process of discarding poor
predictors.

V. CONCLUSIONS

In the context of repetitive, computationally expensive e-
science workflows, the ability to accurately estimate the ex-
ecution time of the entire workflow or of their composing

blocks is a pre-requisite for enabling better scheduling of
the workflow on cloud resources, as well as to inform users
of the expected cost of execution. We have investigated the
hypothesis that, for certain algorithms, execution time can be
accurately predicted based on features of the input that can
be extracted inexpensively, given a sufficiently long history of
observed past executions.

We have shown experimentally how effective predictive
models for this property, which we call input predictability,
can be built and have demonstrated the method on a spe-
cific case study involving the Weka implementation of the
C4.5 machine learning algorithm. The method is designed to
be applicable to black-box algorithms, however it involves
exploring a space of candidate input features and predictive
model builders. Exploring such a space efficiently remains
a knowledge-intensive task. We plan to address this main
limitation in future work.
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