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Abstract—Scientific collaboration increasingly involves data

sharing between separate groups. We consider a scenario where

data products of scientific workflows are published and then

used by other researchers as inputs to their workflows. For

proper interpretation, shared data must be complemented by

descriptive metadata. We focus on provenance traces, a prime

example of such metadata which describes the genesis and

processing history of data products in terms of the computational

workflow steps. Through the reuse of published data, virtual,

implicitly collaborative experiments emerge, making it desirable to

compose the independently generated traces into global ones that

describe the combined executions as single, seamless experiments.

We present a model for provenance sharing that realizes this

holistic view by overcoming the various interoperability problems

that emerge from the heterogeneity of workflow systems, data

formats, and provenance models. At the heart lie (i) an abstract

workflow and provenance model in which (ii) data sharing

becomes itself part of the combined workflow. We then describe

an implementation of our model that we developed in the context

of the Data Observation Network for Earth (DataONE) project

and that can “stitch together” traces from different Kepler and

Taverna workflow runs. It provides a prototypical framework for

seamless cross-system, collaborative provenance management and

can be easily extended to include other systems. Our approach

also opens the door to new ways of workflow interoperability

not only through often elusive workflow standards but through

shared provenance information from public repositories.

I. INTRODUCTION

One of the tenets of the emerging paradigm of “open”
experimental, data-intensive science [14] in which information
is the main product, is that scientists should have both the
incentive and the ability to share some of their findings with
other members of their community, as well as to reuse their
peers’ data products. Indeed, the scientists’ natural resistance
to sharing their data and methods is increasingly being re-
placed by the realization that the benefits of data sharing
may outgrow the risks of losing exclusive ownership of data.
This phenomenon is amplified by new requirements to make
data available prior to publication, along with the definition
of standard formats for data exchange in many domains of
science [1].

We will concentrate on the particularly common setting
where the structure and the steps of the transformation process
is formally encoded as a scientific workflow [26], [18], and
where provenance traces results from the observation of the
workflow execution. In this setting, implicit collaboration be-
tween two or more parties involves the execution of workflows
which uses some of the results of another workflow’s execution
as part of its inputs. The following scenario, used as a running
example through the paper, clarifies this setting (see Fig. 1).

A. Workflow Collaboration Scenario: Alice, Bob, and Charlie

Alice and Bob are two experts in image analysis for medical
applications who occasionally collaborate on joint projects. Al-
ice has developed a workflow WA using her favorite workflow
system. WA consists of a data pipeline that performs various
transformations of input image(s) X to produce a set Z of new
images.1 Alice decides to publish the results of some of her
workflow runs via a shared data space so that her collaborators
(or any other users) can use them. Bob retrieves a copy of one
of those images, z ∈ Z, as he would like to use it as input
to his own workflow WB , which he developed (incidentally
using a different workflow system than Alice). He first applies
some format transformation u = f(z), then runs WB with u
(and possibly some additional local input data), obtaining a
new result set v of data products. He then in turn publishes v,
together with a trace TB of how v was derived in a shared data
space. Along comes Charlie, our third expert, who is interested
in the results v and wants to understand how they have
been derived. The commonly accepted approach to answering
Charlie’s question is to collect a provenance trace TB during
the execution of Bob’s workflow, which describes in detail
the data transformation and generation process, as well as the
dependencies amongst data products involved in the process.
The trace TB is a directed graph whose nodes represent either
data or computations, and where arcs represent dataflow or

1E.g., we use a workflow for image analysis of brain scans from the First
Provenance Challenge [24], [23] to demonstrate our system [12].
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Fig. 1. Alice runs workflow WA; the run RA generates data z she shares.
Bob imports and transforms this data (via f ), so he can use it as input u to
his workflow WB . Charlie understands how Bob’s result v depends on u via
the trace TB , but can also trace back u’s provenance via Alice’s trace TA
to the original input x. This is possible since TA, TB , and the data sharing
provenance z ��� u have been published. Charlie understands that there is an
implicit, combined workflow WC = WB ◦WS ◦WA that he might automate
provided Bob also publishes his data import/transformation script WS .

other dependencies between nodes. In our example scenario,
the provenance graph includes nodes for the input and output
images, as well as for all of the intermediate data produced
at each stage of the processing pipeline. User questions on
the origins of a workflow-generated data product can then
be answered by traversing the provenance graph, possibly as
part of a more complex query. The standard scenario for a
single-run provenance model (e.g. Alice’s) is shown in Fig. 2.
The annotation at the bottom, ddep∗(X, z1), denotes a query
that recursively traverses the trace graph TA, following data
dependencies (ddep) from one of the outputs z1 back to all
data X (inputs and intermediates) on which z1 depends.

In the multi-user, multi-run scenario we should not assume
that the provenance of v (Fig. 1) extends only as far as Bob’s
inputs: the actual dependencies—due to data sharing between
Alice and Bob—can be carried all the way up to the primary
data from which some of Bob’s inputs were first derived, i.e.,
Alice’s outputs and (transitively) her inputs to WA. This is
desirable for two reasons: firstly, it provides Charlie with a
more complete explanation of v’s origins (the provenance will
still include all intermediate data, including Bob’s inputs, as a
special case); and secondly, automatic attribution is facilitated,
e.g., here by giving Alice due credit for having contributed to
the derivation of v via her shared data z.

B. Goals and Challenges

We explore the hypothesis that provenance traces produced
by two different workflow systems can indeed be seamlessly
connected whenever the outputs of the first overlap with the
inputs of the second. The overall scenario appears in Fig. 3
and will be discussed in detail in the next sections. We have
pointed out the potential appeal of this idea in recent work [3]:
We can view a compound provenance trace as a manifestation
of the execution of a virtual workflow WC that includes both
WA and WB and some data sharing inbetween. This is a
workflow that Alice and Bob never agreed to define jointly,
and yet the resulting joint provenance trace as observed by
Charlie represents a formal model of their collaboration, which
in reality has only occurred through shared data products.

However, a number of practical challenges must be over-
come when realising such end-to-end provenance queries,
e.g., due to the heterogeneity of local data spaces in which
different workflow system operate, of the workflow models
themselves, and also of the internal provenance models. Firstly,
if the workflows are run on different systems (say Kepler and
Taverna), then their provenance traces follow different native
data models, and thus a common model that encompasses both
must be defined, along with mappings from each local model
to the common model. Secondly, each system may adopt a
different naming scheme to provide references for the data
involved in the process (and thus for the data that appears in
the traces), once again requiring a mapping across such naming
schemes. Finally, implicit collaboration through data sharing
may involve further data transformations and preparation steps,
e.g., to make Alice’s data suitable for Bob’s workflow. The
provenance of these intermediate steps may initially not be
part of a provenance-generating workflow, so the dependencies
can be lost, breaking the combined trace graph.

Regarding the first problem, we propose a traditional data
integration approach, which involves the definition of a global
provenance model and of local-to-global mappings that allow
local provenance traces to be materialised in a common prove-
nance store (CPS in Figures 3 and 5). To address the second
and third problem, we observe that, as long as any data sharing
or transformation occurs outside of the control of a workflow
system, there can be no guarantee that the provenance traces
generated by the systems “join up” seamlessly despite the fact
that they share some of the data, because the additional oper-
ations typically break the continuity of the relations required
by the transitive provenance queries. This complication has
indeed been the main stumbling block for the participants
of the Third Provenance Challenge [25], which focused on
provenance interoperability and successfully showed the po-
tential of the Open Provenance Model (OPM) [22] for the
purpose, only to fail to consider the heterogeneity of the local
data naming spaces. This work is motivated in part by this
experience and led to a collaborative DataONE project [11],
[12] in which these technical challenges were re-examined
and solved. Specifically, our strategy is to ensure that every
time a transformation occurs “out-of-band” (e.g., the copy of
a data value z from a local store, e.g., Alice’s SA, to a public
store SP ), new, explicit transitive relations are produced, e.g.,
“z0 in SA is the same as z�0 in SP ” (cf. Fig. 3). Here, we
follow the principle that data and provenance sharing itself
is a process, and that the provenance traces provided by the
workflow systems must be complemented with the provenance

of the data sharing process.

C. Contributions and Outline

In the remainder of the paper, we first define an abstract
model of workflows and an associated model of provenance
that can be used as a least common denominator of, and
target model for, different models of computation used by
scientific workflow systems (Section II). Our model can be
seen as a version of OPM with an associated workflow-level



structure that is used to link instance-level trace information
with workflow-level schema information. We also discuss how
to extend and query the model.

In Section III, we elaborate on the notion of the “provenance
of the publication process”. We introduce a copy operator
that is used for data sharing and which keeps track of data
equivalences across different data spaces. Another operator is
used to map traces from their native models to our common
model of provenance. Taken together, we obtain global prove-
nance graphs that are “stichted together at the seams”, and
which allow us to trace back data dependencies across multiple
workflow runs, systems, and user groups.

The study and the prototype have been realised in the
context of the Data Observation Network for Earth (DataONE)
project [11]. DataONE is dedicated to large-scale preservation
and access to multi-scale, multi-discipline, and multi-national
Earth observational data. We describe our prototype imple-
mentation in Section IV and conclude with a discussion of
related work in Section V.

II. MODELING WORKFLOWS AND PROVENANCE

A. Abstract Workflow and Provenance Model

In the following, we define a simple, abstract model for
workflows and the provenance information that is generated by
running them. Provenance information is captured in the form
of trace graphs, which record key observables of workflow
runs, e.g., the ids of data tokens consumed and produced by
workflow processes. While our model is similar to OPM (see
below), its main advantage is its simplicity and generality: We
have used it as a common model that can accommodate both
Kepler and Taverna provenance information and that can be
easily extended to capture additional observables as needed.

More formally, a workflow specification (short: work-

flow) W is a directed graph W = (VW , EW ) consisting
of vertices VW = A ∪ C which either represent actors A
(a.k.a. processors in Taverna) or data channels C, and edges
EW = Ein ∪ Eout that are either input edges Ein ⊆ C×A
or output edges Eout ⊆ A×C.

A trace graph (short: trace) T is a directed, acyclic2 graph
T = (VT , ET ) consisting of vertices VT = I∪D which either
represent invocations I of actors or data objects D, and edges
ET = Eread∪Ewrite that are either read edges Eread ⊆ D×I
or write edges Ewrite ⊆ I×D.

Intuitively, when running a workflow specification W , a
trace graph T can be recorded, such that actors in W can
have multiple invocations in T , with data flowing in and out
of actors via channels, which in turn is captured through read
and write edges in T .

We capture this intuition formally, using the following
minimal requirement that we expect any trace to satisfy: A
trace T is a (possibly partial) instance of a workflow W if
the edges of the trace graph can be understood as instances of

2Note that we allow cycles in workflow specfications but not in trace graphs.
This corresponds to the fact that when running a workflow, loops are unrolled,
giving rise to an acyclic trace graph.
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Fig. 2. Alice’s workflow WA (top), with input and output data bindings
X/[xi] and Z/[zj ] (middle), and trace graph TA (bottom). TA is an instance
of WA since there is a homorphism h : TA → WA that maps read (write)
edges in TA to corresponding in (out) edges in WA. In addition, data
(ddep) and invocation (idep) dependencies may be part of the trace.

the workflow graph, i.e., there exists a graph homomorphism
h : T → W , such that for any data object d ∈ D and any
invocation i ∈ I:

• if (d, i) ∈ Eread then (h(d), h(i)) ∈ Ein, and
• if (i, d) ∈ Ewrite then (h(i), h(d)) ∈ Eout.

Thus, h associates reads and writes in T with input and output
edges in W , respectively. Note that this also implies that h
yields for every data item d a unique channel h(d) ∈ C and
for every invocation i a unique actor h(i) ∈ A.

Consider, e.g., Alice’s workflow WA and trace TA on the
top and bottom in Figure 2, respectively. A suitable h maps,
e.g., the edges x1

read−→a1 and x2
read−→a2 in TA to X

in→ A in WA;
and the edges a1

write−→y1 and a2
write−→y2 to the edge A

out→ Y . It
is easy to see that h(T ) ⊆ W if T is an instance of W .

Our model is similar to the one in [7] in that they also use
a graph homomorphism to define when a trace (called run

there) T is valid w.r.t. a given workflow graph W . There are
a few differences, however, some of them subtle. First, we
avoid the term “valid” since our model is a least common
denominator for different models of computation (MoCs) M :
e.g., SDF or COMAD in Kepler, or the Taverna MoC will
have additional observables and corresponding requirements
that need to be satisfied before a trace can be called “valid”
w.r.t. W and M .3 Another difference is that the model in [7]
only has actor/invocation nodes but no channel/data nodes.
The latter are crucical for us, since it is precisely at the data

3In an SDF trace, e.g., all invocations i∈I of A, i.e., with h(i)=A, should
have the same number of token reads and of writes (indicated by the number
of read/write edges incident with i), so that the fixed token consumption and
production rates of A can be used for compile-time workflow scheduling [16].



nodes where we stitch together multiple traces.
As our core model, we deliberately chose a very simple

model that can be seen as a variant of OPM [22]: in par-
ticular, our read and write edges correspond to used and
was generated by relations in OPM, respectively. Extensions
are modeled simply by additional requirements on traces (pos-
sibly using further relations to capture additional observables)
or on workflow graphs. For example, we can avoid write-
conflicts at the trace level by disallowing multiple actors to
output to the same channel at the workflow level, which in
turn is the case iff the first column of Eout(A,C) is a key
(no channel C can be a receiver for different actors A1, A2).

Despite its simplicity, our model can represent, e.g., loop
unrolling and parallel execution of multiple instances: a feed-
back loop in W , e.g., with edges A

out−→D and D
in−→A may

yield the trace edges ai
write−→di

read−→ ai+1
write−→di+1

read−→ · · · It
can also accommodate apparently unusual traces: e.g., for a
workflow with X

in−→A
out−→Y we might have two disconnected

trace edges x1
read−→a1 and a2

write−→y2.4 It is easy to see that such
traces, if desired, can be eliminated via additional constraints
on T , e.g., that every node of T must be on a path from a
distinguished input node to a distinguished output node.

The signature W : X1, . . . ,Xk → Y1, . . . , Y� of a workflow
W consists of input channels Xi and output channels Yj ,
i.e., those data channels which have no incoming and no
outgoing edges, respectively. For example, WA in Figure 2
has the signature WA: X→Z; here, channel Y represents
internal, intermediate data that is not part of WA’s signature.
After binding input data to input channels, W can be run

(or enacted, executed), generating a trace T : e.g., X/[x1, x2]
in Figure 2 binds two data items x1, x2 to the input channel
X , in this case resulting in two independent instances in the
trace graph. When the run is complete, the binding Z/[z1, z2]
associates the results of the run with the output channel Z.

Finally, in addition to the external read and write observ-
ables, further observables might be recorded or inferred in a
provenance trace T . For example, the rule

idep(a1, a2) :− write(a1, d), read(d, a2)

allows one to derive an invocation dependency a1
idep��� a2,

stating that invocation a1 has written data d that was read by
invocation a2, so the latter depends on the former (cf. Fig. 2).
Similarly, a data dependency d1

ddep��� d2 can be derived via

ddep(d1, d2) :− read(d1, a), write(a, d2)

stating that d2 depended on d1 in T , whenever d1 was read
(input) by an actor invocation a that has written (output) d2.
This rule for ddep is a default assumption in many models
of provenance: unless further information is available, one as-
sumes that all outputs of invocation a may depend on all inputs
of that invocation a. In some models of computation (MoCs),

4Such traces do, however, occur in practice, e.g., for the Delay actor,
which is used to “prime the pump” of feedback loops, first writing data
independently of (and thus disconnect from) any read operation.

however, this is an overestimate of the true dependencies: e.g.,
sometimes not all output ports depend on all input ports [27],
or not all input data items are used in the computation of the
output items (e.g., in a sliding-window aggregate [19], or in
MoCs such as COMAD that pass some (out-of-scope) items
through an actor, without “seeing” those items [6]). In the
following, we focus on data dependencies ddep as the main
provenance relation, whether it has been derived via the above
rule or recorded directly by the workflow system.

B. Queries on the Provenance Model

The model just described supports several types of queries
over provenance traces. In our DataONE project [12] we
have defined a set of reference queries that are designed to
test the capabilities of our provenance interoperability system.
We have grouped them into three classes: (i) queries on the
common data store CDS, (ii) non-closure queries on the traces
in the common provenance store CPS, and (iii) transitive
closure queries on the traces. The first two classes include
queries that can be easily answered using the public data store
and the common provenance model, including for example:

• What data and what traces did Alice and Bob publish?
• What are the data inputs, outputs, and intermediate data

products of trace T ?
• What actors and channels were used in T ?
• What are the inputs and outputs of invocation ai in T ?
For example, the answer to the third query are simply the

nodes in h(T ).
More interesting from our perspective is the third class,

where we find queries that require the traversal of multiple,

independently generated provenance traces. Answering these
questions requires (inductive or recursive) querying along
dependency paths of unknown length, making them com-
putationally expensive [10], [7], [13] as they involve the
transitive closure of data dependencies ddep. A particular
challenge of our collaborative e-Science scenario is to ensure
that the traces (e.g., TA and TB in Figs. 1 and 3) can be
“stichted together” or “bridged” so that the closure operation
can traverse both of them seamlessly. The transitive closure
ddep∗ of ddep ⊆ D×D is defined as usual:

ddep∗(d1, d2) :− ddep(d1, d2)
ddep∗(d1, d2) :− ddep(d1, d), ddep∗(d, d2)

which allows us to use the query :−ddep∗(D,D�) to find (i) all
dependants D� of a given d, (ii) all D that a given d� depends
on, or (iii) whether d� is reachable from d.

Note that such closure queries can be combined with
additional conditions on elements of the data or of the traces,
e.g., “find all dependants of d that have been observed to flow
through channel c”, or “find all upstream d that contributed
to the computation of d� through a specific actor a”. Clearly,
these queries can be decomposed into a closure query, plus
queries from classes (i) and (ii), and thus in the rest of the
paper we are going to concentrate on closure queries only.
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Fig. 3. “Stichting” the traces of Alice and Bob to enable seamless provenance queries by Charlie, spanning heterogeneous systems: Alice publishes her
result z0, yielding a copy with public-id z�0. Bob downloads it, obtaining his local copy z��0 , followed by transformations f to prepare his input data u0. By
recording equivalances z0 � z�0 and z�0 � z��0 and the dependency ddep(z��0 , u0) via f , a “seamless” trace is obtained in the common provenance store CPS.

III. PROVENANCE OF THE PUBLICATION PROCESS

With reference to our scenario, the goal of our architecture
is to let Charlie trace the provenance of Bob’s data products
all the way to the primary data, in this case the inputs
used by Alice. This requires the two independently generated
graphs to be connected in such a way that Alice’s inputs are
reachable (by transitivity over a dependency relation, such
as ddep) fromBob’s outputs. As we noted earlier, however,
this connectivity becomes problematic when the two systems
use distinct naming schemes to address the data, and when
additional intermediate transformations are involved, e.g. to
ensure that Alice’s data products are compatible with the input
formats expected by Bob’s workflow. Our approach to ensure
that multiple traces “join at the seams” involves augmenting
the provenance graphs with additional statements that capture
the effect of publishing local data to a shared store, and
downloading shared data for use in a new local context, for
example a workflow.

Fig. 3 depicts the overall approach. The figure is organised
into two primary layers, corresponding to a process and trace
view of the scenario. The process view includes the two
formally specified workflows, WA and WB (the workflows
of Alice and Bob, respectively), as well as the “stitched”
together workflow (middle-top) based on collected provenance
information. Data objects (e.g., xo and zo) are bound to input
and output channels at the beginning and end of workflow
runs, and are subsequently stored in local repositories. The
middle-center box shows the result of Alice publishing data
onto a public data store, and Bob downloading (some or all
of) the data into his local store, possibly transforming it using
some function f , and using it as input to WB . At the same

time, provenance traces are captured, not only for the workflow
executions TA and TB , but also for the data replication steps
of the intermediate process. The latter information bridges the
workflow traces, so that once they have all been published to
the CPS, they can be seamlessly traversed, as shown at the
bottom of Fig. 3.

This section formalizes these ideas by introducing: (i) a
copy operator for publishing local data to a shared store, (ii)
an operator for mapping provenance graphs expressed using a
local model to the common model described in Section II, and
(iii) an operator for publishing the transformed trace. To each
of these operators we associate one or more new provenance
statements. We then show how these augmented traces can be
used to extend the queries introduced in the previous section.

A. Copy Operator

Let D be the universe of data items that may appear in a
workflow, and S a data store into which data can be uploaded.
S is a service that provides two operations:

• store: r = S.put(d),
• retrieve by key: d = S.get(r)

where d ∈ D, and r is a reference to d, local to S, such
that S.get(S.put(d)) = d. The naming schemes used for the
references can take various forms. A typical example consists
of a web-accessible store S with URI-formatted references. We
denote the set of all valid references for a store S with RS .
Because of the differences in naming schemes across stores, a
reference r ∈ RS generated by S is not, in general, valid for
a different store S�, so S�.get(r) = ⊥ for all S� �= S.



Operation Provenance Statements

Alice:

• (1) �z0, TA� = exec(WA(x0)) where TA is WA’s execution trace bt = ∅
• (2) for each reference r in TA: r� = copy(r, SA, SP ), ρ.put(r, r�) bt ← bt ∪ {SP .get(r�) �t SA.get(r)}
• (3) CPS.put(ΓA→C(TA, ρ))

Bob:

Let r ∈ RSP be the reference for z�0 in SP .
• (4) z��0 = SP .get(r) bt ← bt ∪ {z��0 �t z�0}
• (5) u0 = f(z��0 ) bt ← bt ∪ {ddep(u0, z

��
0 )}

• (6) �v0, TB� = exec(WB(u0)) where TB is WB’s execution trace
• (7) for each reference r in TB : r� = copy(r, SB , SP ), ρ.put(r, r�) bt ← bt ∪ {SP .get(r�) �t SB .get(r)}
• (8) CPS.put(ΓB→C(TB , ρ))

Fig. 4. Provenance publication process with corresponding provenance statements. The reference r for z�0 before line (4) can be obtained from SP in various
ways, e.g., through a search/browse interface into SP that is available to Bob.

Given two data stores S and S�, one can copy a value from
S to S� using its reference r ∈ RS :

copy(r, S, S�) = S�.put(S.get(r)) = r� ∈ RS�

where in general RS� is different from, and incompatible with,
RS , i.e., S.get(r�) = ⊥. We consider two data items d and
d� trace-equidalent, written d �t d�, if they are related to each
other through a copy operation. Trace equivalence is captured
by the following inference rule:

d=S.get(r) r�=copy(r, S, S�) d�=S�.get(r�)
d �t d�

(1)

Note that the consequent of this rule is a provenance statement,
which does not rely on any notion of value equality. Thus, we
are only observing the copy operator in action.

B. General Data Transformation

In our scenario (Fig. 3), Bob transforms the data item z��0
downloaded into his local store SB into uo = f(z��0 ), where f
is a generic transformation (e.g., a format conversion), so that
uo can be used in his local workflow, WB . The transformation
f makes u0 dependent on z��0 , but since f is in general a
black-box operation, we cannot assume that u0 �t z��0 . We
can, however, make a weaker statement that u0 is dependent
upon z��0 . That is, for a data item d, we have:

d� = f(d)
ddep(d, d�)

(2)

again where the dependency asserted in the consequent is
recorded as an additional provenance statement. For instance,
in Fig. 3 we have: z0�tz�0, z�0�tz��0 , and ddep(z��0 , u0), which
together imply that ddep∗(z0, u0), thereby “stitching” together
TA and TB .

C. Mapping Data References in Traces

Exporting a trace T involves three operations, each per-
formed by both Alice and Bob on their respective systems:
(i) publishing all data that occur in T to a shared store SP ,
(ii) mapping the trace itself to the common provenance model,
and (iii) uploading the mapped trace to the CPS.

Step (i) is defined simply in terms of one copy operation
for each d that occurs in T . Assuming that T contains data
references r ∈ RS , i.e., which are valid for a local store S,
this translates into copy(r, S, SP ) = r� for each r found in
the trace. According to rule (1) above, each copy operation
generates a provenance statement d �t d� where d = S.get(r)
and d� = S�.get(r�). Additionally, we add the pair �r, r�� to
a renaming map ρ : RS → RP , which we use to replace
local references with shared, public ones in the next step. If T
contains data values d rather than references, then publishing d
reduces to r� = S�.put(d), and d �t d� where d� = S�.get(r�).

Step (ii) is defined by mappings from each of the local
provenance models to the common model, which we abstractly
define via a function ΓS→P (TS , ρ) = TP that maps a local
trace TS of workflow WS to a shared, public version TP . In
the result TP each reference r of TS is replaced with ρ(r).

Step (iii) is accomplished by uploading T (one trace each
from Alice and Bob) to CPS, which behaves as just another
store: CPS.put(T ).

D. Queries over Augmented Traces

Table 4 summarizes our initial scenario, reformulated in
terms of the operations introduced in this section. The right-
most column shows the corresponding new provenance state-
ments, which we accumulate in the new “stitching” trace Ts.

These additional statements can now be used to extend ddep
to include both the published versions of Alice and Bob’s
traces, and the statements in Ts:

ddep∗�(d1, d2) :− ddep∗(d1, d2).
ddep∗�(d1, d2) :− ddep∗(d1, d), d �t d�, ddep∗(d�, d2).

where d �t d� ∈ Ts. This allows us to seamlessly answer
provenance queries of the form :−ddep∗�(X,Y ), e.g., between
z0 ∈ TA and u0 ∈ TB .

Ultimately, the consequence of our approach is that our third
scientist, Charlie, has been able to compute the provenance
of data products (produced via different workflows as well
as workflow systems) as if they had been produced by the
“virtual experiment” at the top of Fig. 3. Note also that we
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Fig. 5. DToL system architecture [12], implementing trace-level interoper-
ability between Kepler and Taverna: data is published by copying from local
stores ST , SK to the public store SP , generating public-ids in the process.
Local traces are mapped to a common model and published, replacing local
data references with global ones in the common provenance store CPS.

can define a workflow specification for the virtual experiment:
In this case, the virtual workflow consists of WA and WB

combined via a “glue” workflow comprised of general publish
and download operations as well as any transformation steps
used by Bob. Further, if Bob had not applied a transformation
f , or if this transformation is repeatable (i.e., via automation),
then Charlie could execute the virtual experiment (e.g., over
new input data) even though WA and WB are implemented
within otherwise “non-interoperable” workflow systems. One
can repeteadly apply the idea to multiple trace-generating
workflows with shared data, obtaining larger tree-structured
virtual experiments.

IV. PROTOTYPE IMPLEMENTATION

The approach described in the previous section brings both
completeness to Charlie’s queries, and fairness to all the
contributors along the paths in this “Data Tree of Life” [12].

In the context of a DataONE project [11] we have imple-
mented a prototype provenance sharing architecture that re-
alises the abstract architecture of Fig. 5, using the Kepler [17]
and Taverna [15] scientific workflow systems as testbeds.

To test the hypothesis that traces from different workflows
and systems can be joined together using the approach de-
scribed in Section III-D, we have taken the First Provenance
Challenge [24], [23] workflow WPC, and split it into two parts
WPC1 and WPC2 . Both sub-workflows were encoded in Kepler
and Taverna, and combined in a “crossing-over” manner in
several ways. Overall, three different models of computation
(MoCs) and corresponding designs were used for each of
WPC1 and WPC2 : Taverna, “conventional” Kepler [4], and
Kepler/COMAD [20], a novel MoC with its own provenance
recorder to handle fine-grained dependencies within nested
data collections [9], [6]. In the implementation, we have used
a combination of native provenance models, available from
both workflow systems, as well as OPM provenance graphs

derived from those models (Fig. 5). The former include all the
read/write observable events, as well as the information about
the workflow structure, while the latter contains instances of
the data dependency relation ddep. A description of how these
relations are obtained for each of the two systems is beyond
the scope of the paper; in general, they are either asserted
explicitly or inferred, depending on the additional knowledge
that is available to the provenance component.

The Kepler and Taverna native traces differ in their data
model, but can be mapped to the common provenance model
with relatively little effort. The mapping tools obtain their
source trace information using an API that operators over
a relational representation of the native provenance model,
as well as over the OPM provenance graphs. In the case
of Kepler and Taverna, the common model turns out to
be less expressive than the native model, specifically with
regards to the representation of nested lists, the only data
structure used in Taverna (and one of many data structures
supported by Kepler). This is not a problem, however, because
the representation of the data structure (essentially a tree) is
still maintained in the common data store, when the data is
published through a “deep” version of the copy operator,
while only the dependencies among list elements (e.g., the
i-th element of an output list may depend on the j-th element
of an input list) needs to be represented in the common model.

The Kepler and Taverna storage model follow our con-
ceptual model closely, in that all process data is stored in
an internal, system-dependent data store. Traces typically
contain data references, but can also have embedded data
values (for small data sizes). This early architectural choice
makes it possible to avoid storing value equivalence statements
altogether, because for each statement d �t d� inferred when
d is published, the trace contains local reference r, while r�

is obtained from SP upon upload. Thus, all that is needed
is to record the pair �r, r�� into the renaming map ρ, so that
the published trace will contain the new reference. When d�

is reused, by symmetry r� will appear in the corresponding
trace, which will then join naturally with the first.

Once the two traces have been published as described in the
previous section, we were able to verify that the answers to the
closure queries on CPS were consistent with those obtained
by manually “joining” the partial answers obtained from each
of the two systems on the shared data values. For this test,
we used the available provenance query models available for
each of the two systems [21], [6], [5], while on the CPS,
lacking a dedicated provenance query facility, ad-hoc queries
were constructed for the sake of this exercise.

V. DISCUSSION OF RELATED WORK AND CONCLUSIONS

We have presented an abstract model for scientific work-
flows and their associated provenance traces. Trace graphs can
be seen as (homomorphic) instances of the given workflow
graphs for which provenance is to be recorded. The model is
deliberately simple and provides a least common denominator
that can be easily extended and accommodate various models
of computation. While building upon OPM concepts, our



model also links an abstract workflow specification W with
concrete provenance traces T resulting from the execution
of W . We have developed our model to provide end-to-
end user support for “implicit collaborations”, i.e., where
scientist build upon each others work by data sharing and
then using published data products. We have described and
implemented a scenario that “stitches together” provenance
traces from different users, employing different workflow
systems (Kepler, Taverna) with different underlying workflow
languages and data models. Our implementation demonstrates
that e-Science collaborations are possible “through the data”,
and that these collaborations can be correctly tracked, e.g.,
to provide automatic attribution support, i.e., where scientists
whose data (and indirectly: workflows) have been used can
be given credit through acknowledgements that are derived
from public data dependency (provenance trace) graphs. [9]
describe a framework and similar ideas as those presented
here, including the notion of a graph over multiple workflow
runs, highlighting different types of relationships among runs
based on the level of data sharing between them. However,
unlike the present work, [9] does not deal with the problem of
“broken” traces when integrating provenance across different
provenance models and workflow systems. In [3], [2] the idea
of implicit collaboration through shared provenance has been
discussed and a data model and query language have been
introduced. In contrast, the present paper for the first time
considers in detail and then solves the problem of instance-
level bridging of provenance information. The problem has
emerged previously [24], [25] but only now has a prototype
been developed [12] that addresses the general problem, using
concrete scientific workflow systems as a testbed.

In addition to having global provenance traces, our approach
also facilitates a new way of achieving workflow system
interoperability, i.e., by going “through the data” instead of
waiting for a “one-size-fits-all” language standard for scientific
workflow systems.5 We will explore the practicality of this
approach in future work.

A number of proposals are emerging for modelling and
managing Research Objects (RO) [8], which augment primary
and derived data with ancillary elements, such as a description
of the experimental process of data generation and transforma-
tion, publications based on the data products, and more, which
can enable improved capabilities for data interpretation. In our
work we focus on a particular type of descriptive metadata that
may find its place in an RO, namely provenance traces, which
describe the dependencies of data products obtained through
a process consisting of a sequence of transformations, from
other data elements that participated in the process, namely
its inputs along with any intermediate results.
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