
Simulating Taverna workflows using stochastic
process algebras

Vasa Curcin Paolo Missier David De Roure

November 21, 2010

Abstract

Scientific workflows provide powerful middleware for scientific com-

puting in that they represent a central abstraction in the research task,

by simultaneously acting as an editable action plan, collaboration tool,

and executable entity. Taverna workflows in particular have been widely

accepted in the bioinformatics community, due to their flexible integration

with web service analytical tools that are the essential tools of any bioin-

formatician. However, the semantics of Taverna has so far only been qual-

ified in terms of the functional composition and data processing. While

correct, and useful for reasoning about functional and trace equivalences,

this aspect does not help with modelling the throughput and utilisation of

individual services in the workflow. In this paper we present a stochastic

process model for Taverna, and use it to perform execution simulations

in Microsoft’s SPIM tool. The model also opens up the possibilities for

further static analyses that are explored.

1 Introduction

Workflows are in wide use in an increasing number of application domains of
experimental science where computational methods are of key interest. Work-
flow modelling is a form of high-level scripting, designed to let domain experts
specify, using limited programming skills, complex orchestrations of compute-
and data-intensive tasks. Modelling workflow semantics has been an ongoing
effort in recent years, motivated both by the increase in the number of publicly
available workflows, and of the applications depending on them. Research is
focused mainly on the analysis of workflow correctness, performance, and reli-
ability. Furthermore, workflow repositories such as myExperiment brought the
need to reliably qualify the workflows they offer. Some of the past work included
qualifying the functional behaviour of Taverna workflows[Turi et al, 2007], for-
mal reasoning about Discovery Net workflows [Curcin et al, 2009], composition
of process semantics of Kepler[Goderis et al, 2007], and reachability analysis of
YAWL Petri Nets [Gottschalk et al, 2007] .

This paper is specifically focused on Taverna, a workflow management sys-
tem that is in wide use in the Life Sciences as well as other scientific application

1

domains Hull et al [2006]. Two of Taverna’s features, that make it potentially
suitable for data-intensive processing, are its reliance on remote web services
as workflow tasks, and its capability to process data streams. These features
make it particularly interesting to focus on resource invocation as the central
modelling element. This is done by considering the rate of execution in the
model - ie. how frequently a service returns a result and passes it on to the next
service - thereby enabling the performance of workflows to be analysed either
statically, by checking the model properties, or pseudo-statically using a series
of randomised simulations to derive a prediction.

1.1 Problem statement and contributions

Composition of distributed web services used to perform a scientific study, is
the standard paradigm for the Taverna user community, as demonstrated by the
collection of workflows in the myExperiment repository. The two key properties
of interest in such scenarios are:

• Thread utilisation. Individual nodes, or processors, in a workflow rep-
resent services, each with a specified capacity in terms of the number of
threads available. Knowing how the average demand on the processor
changes with variations in the performance and capacity of other proces-
sors is key to understanding the necessary resources for the workflow to
run.

• Output rate and timing. During workflow construction, knowing the
output rate of a particular node helps in determining the number of
threads needed to cope with the output. Furthermore, in long running
processes, and in ones where multiple services may be running on the
same physical resource, it is useful to know when a particular process will
start and end executing.

As the first step towards addressing these challenges, in this paper we present
a mechanism to run experiments based on known node past behaviour, and
generate simulation graphs displaying the processor activity and outputs pro-
duced by each workflow node. Specifically, the paper uses the stochastic π-
calculus[Priami, 1995; Phillips et al, 2006] to model the behaviour of Taverna
workflow based on the distribution of individual services’ execution time. Pro-
cess algebras are abstract languages that offer a flexible and powerful mechanism
for specification and design of concurrent systems. Their loose coupling of indi-
vidual agents with well-defined communication mechanisms provides a natural
and immediate mapping to workflow nodes and links between them. However,
the analysis using process algebras is usually based on finite state machines and
requires advanced state reduction mechanisms.

1.2 Paper Organisation

Section 2 introduces the basics of Taverna. Section 3 gives an overview of
stochastic process algebras and stochastic π in particular. Section 4 explains the

2

mapping of Taverna workflows to stochastic processes. Section 5 demonstrates
the concept by describing the implementation of the model in S-Pi Model viewer
[Phillips and Cardelli, 2004; Microsoft, 2007] and showcases simulation of one
Taverna workflow from myExperiment repository. Section 6 summarises the
work done and gives pointers for further study.

2 Background

2.1 The Taverna dataflow model

A dataflow specification in Taverna is a directed graph D = (P, E) where nodes
P ∈ P are workflow processors, which represent either a web service operation,
or a script in a common language, e.g. Beanshell or R. Processors have a set of
input and output ports, IP and OP , respectively. When the processor stands
for a service operation, its ports describe the operation’s signature. Note that
a processor can also be a workflow itself, allowing for structural nesting.

An arc e ∈ E, denoted e = P : Y → P � : X, connects port Y of processor P

to port X of P �, and denotes a data dependency from Y to X. In this model,
data items have a type T , which is either a simple type τ (string, number, etc.),
or a list of values having the same type, and nested to arbitrary levels, according
to the syntax T ::= τ |[T]. For example [[“foo”, “bar”], [“red”, “fox”]] has type
[[τ]] where τ denotes the string type.

Conceptually, workflow execution follows a pure dataflow model [Johnston
et al, 2004]: a processor P is ready to be activated as soon as all of its input
ports that are destinations of an arc are assigned to values (ports with no
incoming arcs may be assigned a default value). In the actual implementation,
the workflow engine manages a pool of threads of pre-defined size, and one
thread from the pool is allocated to a ready processor as soon as it is available,
in a greedy fashion. A processor behaves simply as a function that is applied
to the value on the input ports, and produces new values on its output ports.
Its activation involves the invocation of activity associated to the processor,
i.e., invoking a Web Service operation. Values assigned to output ports are
immediately transferred through the data links to input ports of downstream
processors. Thus, the overall dataflow computation proceeds by pushing data
through the data links from one processor to all of its successors, starting with
the items that are assigned to the initial workflow inputs, and ending when no
more inputs are left to be processed, communicated through the end-of-stream,
or stop, token. Note that the values assigned to the ports are always discrete
values, as described, but the input to the workflow may consist of a stream of
such values, on unbounded length.

2.2 Multiple node activation and parallelism in Taverna

Under certain circumstances, list-valued inputs may produce multiple activa-
tions of the same processor, each operating independently, and potentially in

3

parallel, on a combination of the input list elements. More precisely, this hap-
pens when a processor receives a list-valued input that cannot be consumed by
one single invocation to the underlying activity. As a typical example, consider
a search processor P , which returns a list of hits (data items that satisfy the
search) based on some input keyword, followed by a processor P � that can con-
sume one of those hits at a time. This situation will cause P � to iterate on each
element of its input list. As each iteration is assumed to be data-independent
from each other, the corresponding processor activations can all potentially pro-
ceed in parallel, i.e., they can all be allocated to parallel threads.

In general, this implicit iteration behaviour is determined by the discrepancy
between the declared depth dd of the list expected on an input port (the depth
is 0 for an atomic value), and the actual depth da of an input value assigned to
it. As we have seen in our simple example, the two may differ. In particular,
dd is determined by the signature of the actual activity, i.e., a Web Service
operation, that the processor represents, while da depends on the entire history
of the input value, from the initial input down to that node in the graph.

When da > dd, the processor “unfolds” the list so that when the activity
is executed, its inputs are of the expected list depth.1 In the simple case of
a single input, this behaviour can be described in terms of the higher-order
map operator, namely the evaluation of P on input list v = [v1 . . . vn], denoted
(P v), unfolds into (map P v) = [(P v1) . . . (P vn)]. In the more general case
of multiple inputs with mismatching list depth, the workflow designer has the
option to select a specific iteration strategy for the processor. These strategies
involve (a) the combination of the list input values into a new, single list-valued
structure, and (b) the iterative activation of the processor on that structure.
Two operators, namely a cross product and a “dot” product, are available in
Taverna to combine the input values. Their semantics, and the general semantics
of a processor execution with implicit iteration, is beyond the scope of this paper,
and can be found in [Sroka et al, 2009]. What matters in this context is that the
exact iteration structure for each processor can be determined statically, i.e., by
propagating the declared depths of the workflow inputs2 through the workflow
graph, thereby enabling the stochastic model to know which node will have
iterative behaviour and which one will not. A description of the propagation
algorithm, used in the context of query processing of provenance traces from a
workflow run, can be found in [Missier et al, 2010].

2.3 Pipelining in Taverna

The greedy thread allocation strategy described earlier translates into parallel
multiple activations of one processor during an implicit iteration loop, subject to
a constraint on the max number of threads available in the pool (a configurable

1The case da < dd, i.e., when the processor expects a list value of depth greater than the
one provided, is dealt with simply by wrapping the input into one or more additional list
structures, as needed.

2The workflow engine enforces the assumption that the user-supplied valued assigned to
the initial inputs are indeed of the expected depth.

4

Figure 1: Example workflow for simulation

parameter that can be set at workflow specification time). One consequence of
this strategy is that, in some cases, processors that are arranged along a path
in the workflow graph can be activated in a pipelined fashion. To appreciate
this effect, consider our running example of Fig. 1, characterised by a linear
chains of identical processors. While each of these has only one input port, with
declared depth 0, the workflow is designed to feed a list of depth 1 at the top of
each of the chains. This means that the first processor in the chain creates (at
most) one concurrent thread per list element. As soon as one of these threads
completes, its result is pushed through the edge and to the next processor’s
input port. Here there is no need to wait for the entire list to arrive, because
each input list element can again be dealt with independently from the others,
as part of a new iteration loop similar to the one of the previous processor. This
partial input can therefore be immediately allocated to a new thread, again in
a greedy fashion. Overall, multiple parallel pipelines are created as the result of
applying this strategy through an entire chain of iterating processors (clearly,
however, any non-iterating processor in the chain breaks each of the pipelines).

2.4 Stochastic modelling of programs

Stochastic process algebras are characterised by the quantitative measure r that
is attached to communication actions, indicating the rate of interaction that
corresponds to the temporal delay drawn at random from the exponential dis-
tribution defined by r.

The usage of stochastic process algebras for performance analysis of pro-
grams is an established research area, that found its application in network

5

performance modelling and analysis of biochemical systems. PEPA [Gilmore
and Hillston, 1994], PRISM [Kwiatkowska et al, 2009], TIPP[Hermanns et al,
1995] and MPA[Bernardo et al, 1994] all rely on Markov chain semantics to per-
form various types of analysis, mostly focusing on the notion of steady state - a
network of states that repeat indefinitely. The system that has reached a steady
state is then analysed by varying some set of parameters, e.g. investigating how
a load on the server changes over time with respect to its throughput capability.

While, conceptually, the process algebra formalisms the aforementioned tools
are based on are capable of handling unbounded states, all of their implementa-
tions introduce practical restrictions with the aim of constructing finite Markov
chains that can be solved using Ordinarily Differential Equations. These restric-
tions consist either of preventing the creation of new processes either completely
(PEPA) or only allowing replication on the top definition level (PRISM). This
type of non-replicating processes are called automata.

Transient analysis is a different approach, based on establishing system prop-
erties relative to particular events in the timeline. Continuous Time Logic CSL
[Aziz et al, 2000], which attaches probability measures to temporal operators
from non-stochastic Continuous Tree Logic CTL [Huth and Ryan, 2000], is com-
monly used to investigate the probability of an event occurring in a particular
time window and is supported in PRISM. Additionally, transient analysis does
not necessarily require the system to ever reach a steady state, allowing two
possibilities for performing the model checking of terminating systems: through
finding the full model, and by performing a sufficient number of simulation runs.

In terms of workflows, steady state analysis can be used with infinite data
streams to observe the natural bounds in the system and how the usage and
activities fluctuate in the equilibrium. However, transient analysis has more
immediate applications, since workflows operating on finite datasets are not
guaranteed to have a steady state apart from the terminating one, and, par-
ticularly in the case of streaming semantics, the number of states is generally
too large to efficiently model and makes some existing state reduction tech-
niques unfeasible - such as the state vector form used for workflows in Curcin
et al [2009] and general PEPA models in Hillston [2005]. In this paper, we will
employ the most basic form of transient analysis, consisting of simulating the
actual runs of the workflow to deduce performance behaviour, with the view of
using the theoretical model for further types of transient analysis in the future.

3 Stochastic π-calculus

Process algebras are a family of languages designed for the specification of con-
current behaviour. The system is defined as a set of named processes that
evolves through a series of actions that represent interactions between pro-
cesses through incoming and outgoing messages. The basic operators found
in most of these languages are sequential actions, deterministic and nondeter-
ministic choice and parallel composition, which are extended further depending
on the aim of the algebra. First algebras were introduced in works by Robin

6

Milner (CCS [Milner, 1989]) and C.A.R. Hoare (CSP [Hoare, 1983]). Impor-
tant later languages included ACP [Bergstra and Klop, 1989] and especially
π-calculus [Milner, 1990]. Furthermore, a number of automatic reasoners over
such algebras also exist, such as Edinburgh Concurrency Workbench [Moller
and Stevens, 2009], CubeVM [Peschanski and Hym, 2006], Another Bisimilar-
ity Checker [Briais, 2009] and Rocke’s tableaux method [Rockl et al, 2001] for
Isabelle/HOL.

π-calculus is a special instance of general messagepassing process algebra
that introduces mobility, whereby messages passed between processes can be
processes themselves, allowing the communication topology to change dynami-
cally, which is not supported in algebras such as CCS. The stochastic extension
of the π-calculus, introduced in Priami [1995] and further refined in Phillips
and Cardelli [2007]; Phillips et al [2006], associates the input, output, and silent
actions of the calculus with rate r. Any activity then takes time δt to complete,
where the delay is a random variable taken from an exponential distribution
defined by r.

3.1 Syntax

The syntax of the calculus is based on countable sets of names representing
communication channels and data, ranged over by lowercase letters x, y, z, m,
n.... Processes are denoted with uppercase letters A, B,C, ..., belonging to set
P. The operands are defined by the following grammar:

A ::=
�

i∈I

αi.Ai | A|A | (νx)A | !α.A

α ::= x(y) | τr | x(y)

The intuitive meaning of the constructs and prefixes is as follows:

• α1.A+α2.B Prefix. Process behaves like either A or B, depending on the
action matching the prefix.

• A|B. Parallel composition. Process behaves as both A and B.

• (νx)A. Variable scoping. Variable x is reserved for use only within process
A.

• !α.A. Replication. Following α, process launches a parallel copy of A, and
reverts to its starting state.

• xr(y). Message input. Process receives name y on channel x with rate r.

• xr(y). Message output. Process outputs name y on channel x with rate
r.

• τ r. Silent action with delay r.

7

Symbol 0 will be used when the size of I in summation is zero. Absence
of rate r implies that the channel transition is instantaneous. The rate associ-
ated with channel x will sometimes be written as rate(x) to simplify notation.
Symbols

�

i

Ai,
�

i

Ai and •
i
xi(yi) are used to denote, respectively, alternative

choice, parallel composition of a set of processes, and chain of input message
prefixes. The latter represents a series of summations where I is of size 1, and
prefix is an input message, informally defined as •

i
xi(yi) = x1(y1).x2(y2). ...

Input x(y).A, restriction νy.A and output x(y).A act as binders, in that
all three will bind the variable y in the process A. Therefore if a variable y is
considered bound in A, denoted y ∈ bn(A), if A is prefixed by one of these three
constructs. Otherwise, y is said to be free in A, denoted y ∈ fn(A). A{z/y} is
then the result of replacing free occurrences of y by z in A. A change of bound
names, such as replacing x(y).A with x(z).A{z/y}, where z does not already
occur in A, is called α-conversion. Two processes A and B are α-convertible,
denoted with =, if B can be derived from A through a finite number of α-
conversions.

Note that, in order to assist readability, we are using the prefix replication
!α.A to represent the replication, in the tradition of standard π-calculus, as
opposed to the restricted recursion, used in Phillips and Cardelli [2007]; Phillips
et al [2006]. Indeed, the !α.A operator could be expressed in the recursive form
as M = α.(A|M).

3.2 Semantics

The semantics of stochastic π-calculus consist of rules that allow a process to
evolve into another process with certain delay. Reduction relations define how
this is done within a process through static interactions, while transition re-
lations also include evolutions through actions that originate outside the pro-
cess. Structural congruence of π-calculus allows the transformation of the term-
structure that fully preserves its meaning.

Structural congruence is defined in terms of contexts. In a π-term, an occur-
rence of 0 is considered degenerate if it is a left or right term in the term A+B

and non-degenerate otherwise. For example in the expression x(y).0 + 0, the
first occurrence is non-degenerate while the second is degenerate. A context is
created by replacing a non-degenerate occurrence of 0 with the hole [.]. Then,
if C is a context, and A a process, C [A] is a process obtained by replacing the
hole in C by A.

An equivalence relation R over P is said to be a congruence if (A, B) ∈ R

implies (C [A] , C [B]) ∈ R for every context C. Structural congruence, denoted

8

with ≡ is the smallest congruence relation that satisfies the following axioms:

SC-SUM-INACT A + 0 ≡ A

SC-SUM-COMM A + B ≡ B + A

SC-SUM-ASSOC A + (B + C) ≡ (A + B) + C

SC-PAR-INACT A | 0 ≡ A

SC-PAR-COMM A | B ≡ B | A

SC-PAR-ASSOC A | (B | C) ≡ (A | B) | C

SC-RES νx νy A ≡ νy νx A

SC-RES-INACT νx 0 ≡ 0

SC-RES-PAR νx(A | B) ≡ A |νx B x /∈ fn(A)
SC-REP !α.A ≡ α.(A | !α.A)

The reduction relation −→ over P is the smallest relation satisfying the
following rules:

R-COM
�

i∈I

x
ri
i (y).Pi | x

rj

j (z) r−→ Pj{z/y}

R-TAU
�

i∈I

αi.Pi
r−→ Pj j ∈ I αj = τ

r

R-PAR
A

r−→ A�

A|B r−→ A�|B

R-RES
A

r−→ A�

(νx)A r−→ (νx)A�

R-STRUCT
A ≡ B A

r−→ A� A� ≡ B�

B
r−→ B�

R-COM rule captures the interaction between processes, in which two pro-
cesses communicate via messages sent along a compatible channel. R-TAU
describes the internal transition within a process. R-PAR, R-RES, and R-
STRUCT show that the reduction is preserved under parallel composition, vari-
able scoping, and structural congruence, respectively.

As an example of process interaction, let us take two parallel processes, A

and B: x(y).A | x(z).B. After the second process sends out the message on
channel x, the first process will behave as A{z/y}|B. So the name x is shared
between the two parallel processes.

While reduction governs the activities within the system of interacting pro-
cesses, it does not describe how the system can interact with the surrounding
environment (e.g. processes not being observed). This is described by the ac-
tions of the system, which correspond to the prefixes of the calculus.

Actions in the calculus are represented as: α ::= xr(y) | τ | xr(y). α

denotes the complementary action, such that if α = xr(y), α = xr(y), if α =

9

xr(y), α = xr(y) and if α = τ r, α = τ r. The transition relation α,r−→ is defined
by the following rules:

ALPHA
A ≡ A� A� α,r−→ A��

A
α,r−→ A��

PRE α.A
α,r−→ A

PAR
A

α,r−→ A�

A|B α,r−→ A�|B

RES
A

α,r−→ A�

(νx)A α,r−→ (νx)A�

COM
A

α,r−→ A� B
α,r−→, r B�

A|B τ,r−→ νx(A�|B�)
α �= τ, x = bn(α)

SUM
Ai

α,r−→ A�
i, i ∈ I

�
i∈I Ai

α,r−→ A�
i

i ∈ I

The reduction relation is therefore a transition where α = τ and the system
evolves into another state with no external messages.

4 Process characterisation of Taverna workflows

The process model of a Taverna workflow needs to accurately reflect the thread
usage of each processor, relative ordering of executions in the workflow, and
times at which each thread start processing incoming streams of data tokens.
Only in this way can an accurate simulation be designed to chart the node
activity, display saturation points and predict periods of high and low utilisation.
To that goal, we adopt the model in which each node’s behaviour is characterised
by the type of the input channels (data, control, or both), iterative or non-
iterative processor behaviour and the number of inputs.

4.1 Design principles

When translating the Taverna graphs into a process model, the following prin-
ciples are defined:

1. Each workflow node is a process. To allow each node to specify its
behaviour, and to maintain loose coupling with other nodes, a separate
process will be assigned to it.

2. Node processes are ignorant of each other. All knowledge a node
possesses about its environment is based on its communication channels.

3. Node execution is a silent action τ . The node execution, typically
a web service or script invocation, is represented by silent action τ . The
node execution length is a delay associated with that internal action.

10

4. Arcs between the nodes are channels. The existence of an arc be-
tween two nodes implies that there is a reserved communication channel
that can be used to pass tokens between those two nodes only.

5. Compositionality. The workflow process is the parallel composition of
processes representing all the nodes in the workflow, with bound names
used for channels. Sequential and other orderings are achieved through
nodes waiting on tokens arriving from channels.

These principles are similar to the ones used in Curcin et al [2009], adapted
to the Taverna structure and stochastic nature of the calculus.

4.2 Taverna nodes

Figure 2: Single input single output node execution behaviour

The behaviour of a single input, single output Taverna node is defined by the
data and control links, and the iterative specification. As described in section
2.2, the nodes with implicit iteration will start processing the data tokens as
soon as they start arriving, while the non-iterative nodes will wait for the End-
Of-Stream, or stop, token to arrive before commencing with execution. Two
behaviours are sufficient to describe these, Streaming and Blocking reflecting
the way in which the data tokens are consumed, the overview of which is shown
in Figure 2. Note that the type of output has no impact on the node behaviour,
since the results are being sent on the output channel as they become available,
followed by the stop token to denote end of execution, leaving all process logic
to be handled on the input.

To distinguish between the regular data tokens, and stop tokens, a very
simple sort is defined that, when queried whether the token is a stop or a data
token, responds with the correct answer.

11

Stop(token) = token(s, d).s.Stop(token)

Data(token) = token(s, d).d.Data(token)

4.2.1 Streaming single input node

The streaming single input node consists of a processor that receives the new
tokens, a queue of data tokens awaiting execution, and a pool of threads that
are assigned to data tokens as they become available, executing them and dis-
patching the output. The presence of the queue ensures that the data items
are sent to the threads in order, even though there is no guarantee that the
outputs will be produced in the same order, due to the variability of execution
times. Stop token is added to the execution queue like any other, however the
SQNode process recognizes it when it gets asked to send the execution request
and, instead, notifies the processor with the terminate message, which sends
the halt signal to all threads (ensuring they complete), before sending the stop
token on the output. The guaranteed order of items in the queue ensures that
once the stop token has been recognized, no other data token is waiting for
execution and processors can be safely halted.

StreamingNode(a, b) = (proc, k)
�

i=1..k

Threadi(proc) | StreamingProcessor(a, b, proc)

| SQueue(append, proc)
StreamingProcessor(a, b, proc) =

!a(x).append(x) | terminate(z).halt
k
.b(z)

SQueue(append, proc) = (νnext) append(x).SQueueNode(append, next, proc, x)
| next

SQueueNode(append, activate, proc, x) =
(νnext) append(y).SQueueNode(append, next, proc, y)

| activate.x(s, d)(d.(proc(x).next)) + s.terminate(x)
Thread(proc) = proc(x, out).τr.(νy) out(y).Thread(proc) + halt.0

The node definition is in terms of input channel a, output channel b, and inter-
nally parameterized on processing request channel proc and number of threads k.
Note that the queue is ephemeral, in the sense that the item execution destroys
that element, allowing the next element to use channel proc to communicate
with the next available Thread.

4.2.2 Blocking single input node

The blocking node behaviour occurs when the node needs to wait for the stop
token before starting execution, either due to the presence of an input control

12

link, or due to non-iterative execution behaviour of the node. Therefore, the
arriving input data tokens are stored in a request queue, with the contents being
sent to threads only after the stop token has been received. Once this happens,
an activate message is sent to start execution, and, as with the streaming node,
terminate denotes that all data tokens have been sent to threads and halt

requests can be sent.

BlockingNode(a, b) = (proc, k, terminate)
�

i=1..k

Threadi | BlockingProcessor(a, b, proc)

| BQueue(append, activate, proc)
BlockingProcessor(a, b, proc) =

!a(x).append(x).x(s, d).(d.0 + s.activate) | terminate.halt
k
.b(x)

BQueue(append, activate, proc) = (νnext) append(x).BQueueNode(append, next, proc, x)
| activate.next

BQueueNode(append, activate, proc, x) =
(νnext) append(y).BQueueNode(append, next, proc, y)

| activate.x(d.(proc(x).next)) + s.terminate

Thread(proc) = proc(x, out).τr.(νy) out(y).Thread(proc) + halt.0

4.2.3 Dual input node

The dual input streaming node maintains two input queues as data is coming in.
The key difference is that the queues will have multiple traversals performed on
them, and therefore need to be persistent, unlike the simple single input request
queue.

DStreamingNode(a, b, c) = (appendA, appendB, proc)
�

i=1..k

Threadi(proc)

| DStreamingProcessor(a, b, c, proc)
| DSQueue(appendA, execA, proc) | DSQueue(appendB, execB, proc)

DStreamingProcessor(a, b, c, proc) =!(a(x).appendA(x).executeB(x)+

b(x).appendB(x).executeA(x))

| terminate.halt
k
.c(x)

DSQueue(append, exec, proc) = (νnext) append(x).DSQNode(append, next, proc, x)
| !exec(y).next(y)
DSQNode(append, exec, proc, x) = (νnext) append(y).DSQNode(append, next, proc, y)
| !exec(y).y(s, d)

(s.x(s, d). (d.0 + s.terminate(x)) + d.x(s, d). (d.proc(x, y).next(y) + s.0))
Thread(proc) = proc(x, y).τr.(νm) out(m).Thread(proc) + halt.0

13

The stop tokens are added to the queues in the same manner as normal
tokens, however the queue node will not send a request involving a stop token
to the thread, and will ignore it. If the request should contain two stop tokens,
that indicates that the execution is at the end, and a terminate signal is sent.

The blocking variety is identical, except that it adds an additional start

message that the threads expect before they can start any execution.

DBlockingNode(a, b, c) = (appendA, appendB, proc, start)
�

i=1..k

start.Threadi(proc)

| DBlockingProcessor(a, b, c, proc)
| DBQueue(appendA, execA, proc) | DBQueue(appendB, execB, proc)

DBlockingProcessor(a, b, c, proc) =!(a(x).appendA(x).

x(s, d)(d.0 + s.activateA(executeB)) + b(x).appendB(x).x(s, d)(d.0 + s.activateB(executeA))

| terminate.halt
k
.c(x)

|activateA.activateB.start
k

DBQueue(append, exec, proc) = (νnext) append(x).DBQNode(append, next, proc, x)
| !exec(y).next(y)
DBQNode(append, exec, proc, x) = (νnext) append(y).DBQNode(append, next, proc, y)

| !exec(y).y(s, d). (d.proc(x, y).next(y) + s.x(s, d). (d.0 + s.terminate(x)))
Thread(proc) = proc(x, y).τr.(νm) out(m).Thread(proc) + halt.0

4.2.4 Data source node

The data source node is a simple token producer, that generates data items
in sequence, sending them out on all of its channels. A single output channel
variant, outputting k data items on channel out has the form:

DataSource(out, k) = •
i=1..k

(νd)out(d)

The general variety, given n output channels, takes the form:

DataSource(out1, ..., outn, k) =
�

i=1..n

•
j=1..k

(νd)outi(d)

4.2.5 Example: Simple workflow

The workflow used in this example is depicted in Figure 1(page 5). It represents
a data producer, sending data into two blocking nodes, that are connected to two
further blocking nodes that send their outputs into a dual input streaming node
which starts processing the data tokens as soon as they arrive. The parameters
to the workflow are the size of the input list and the number of items in each
list.

14

The workflow has seven bound channels (p, q, r, s, t, u), and one free channel v

(that can communicate with outside entities), is represented using the following
formula:

W (v) = (ν p, q, r, s, u)(LG(p, q) | A0(p, r) | A1(r, t) | B0(q, s) | B1(s, u) | F (t, u, v))
LG := DataSource

A0 := BlockingNode

A1 := BlockingNode

B0 := BlockingNode

B1 := BlockingNode

F := DualStreamingNode

The workflow is considered terminated after there are no more tokens being
passed around the system, and therefore no more events which can cause the
change of process states.

5 Use case: simulating a workflow

Figure 3: Simulation run of the example workflow

In order to run the workflow simulation, such as shown in Figure 3 there
are several steps to be performed. Firstly, the SCUFL document needs to be
translated into the process model. Then the execution times need to be entered
for each node - either manually or based on performance logs. Finally, the

15

code is generated for SPiM engine. Since the SCUFL workflow representation
already contains the processor information, number of threads for each node
and the type of channels between the processors, the preprocessor extract these
directly from the XML document saved by Taverna. As a next step, the actual
depths of each input, as described in section 2.2 are calculated and compared
to declared depths of the processor, specifying the iterative behaviour. The
average execution times are not currently stored in the representation, although
there are plans to add them as annotations to the document, so presently they
are manually added.

The SPiM representation is a direct mapping of the process model, with
some simplifications added. Most notably, since SPiM offers a basic set of data
structures, individual queues of data tokens are replaced by simple counters.
The translation of a streaming node is shown below:

let NodeStreaming(inp:chan(token),
out:chan(token),
requests:int,
halted:bool,
thread_chan:chan(chan)) =

if (requests>0) then (
(*receive a new item and place it in the queue,
distinguish between stop and data token*)

do ?inp(t);match(t)
case("stop")
NodeStreaming(inp, out, requests, true, thread_chan)
case("data")
NodeStreaming(inp, out, requests+1,halted,thread_chan)

(*move the item from the queue into an execution thread*)
or !thread_chan(out);NodeStreaming(inp, out, requests-1, halted, thread_chan)

) else if (requests = 0 and -halted) then (
?inp(t);match(t)

case("stop") NodeStreaming(inp, out, requests, true, thread_chan)
case("data") NodeStreaming(inp, out, requests+1,halted,thread_chan)

) else !out("stop")

and Thread(proc:chan(chan), r:float) = ?proc(A);delay@r;(!A | Thread(proc,r))

5.1 Thread utilization

Tracing the number of threads used in a particular node is accomplished by
simply observing the number of instances of Thread processes for that node. In
the first graph shown in Figure 4, we can see how the number of processors for
B0 node varies over time and then stays constant as all data is processed. Note
that at no point are all ten processors used. However, increasing the execution
time of the task leads to the behaviour depicted in the second graph, with the

16

Figure 4: Available threads for B0 node, at varying task lengths.

resources being fully utilized.

5.2 Intermediate node output

Another interesting detail is when and how the output is produced. In the graph
shown in Figure 5, the output of node A1 is shown. The node, as expected,
only starts producing output once A0 has finished with execution and sent the

17

Figure 5: Output production of nodes A0 and A1

stop token onwards.

Figure 6: Output production of node F

The diagram in Figure 6 shows the output of terminating node F . As this is

18

a dual input node that has no block on the inputs, it starts performing the cross-
product of inputs received from A1 and B1 as soon as these become available,
reflected by the F outputs being produced in parallel to the A1 ones in the
graph.

6 Summary

This paper presented a process model for streaming execution semantics in Tav-
erna, using stochastic process algebra to capture the execution behaviour of the
workflow nodes, based on the types of link inputs, and their iterative behaviour.
The work done has been demonstrated in constructing a simulator for the work-
flows, using the SPiM tool, and can be developed further for alternative types
of performance analysis, adaptation to other models, and for comparison with
other tools.

6.1 Future work

The model introduced here can be developed in several directions. Firstly, before
it can be incorporated into an analysis tool, a mechanism is needed to generate
ensemble averages of the simulation runs, to provide more reliable predictions.
Secondly, a more accurate simulation can be obtained by characterising the
channels between the processor ports with transfer rates. While an obvious
feature in any distributed execution setting, Taverna is still not capturing this
information. Finally, developing a model checker based on CSL, or a similar
logic, would enable static model checking on workflows, in the style of PRISM.
This requires resolving the state problem in such a way to still characterise
the data/stop token coordination, but group similar states together, possibly
through statistical modelling of aggregated rate transitions of grouped states.
This is conceptually similar to the lumping technique popular in performance
tools.

6.2 Acknowledgments

The authors would like to thank Stian Soiland-Reyes for advice on Taverna
processor behaviour and Richard Hayden on useful information about the PEPA
tool.

References

Aziz A, Sanwal K, Singhal V, Brayton R (2000) Model-checking continuous-
time markov chains. ACM Trans Comput Logic 1(1):162–170, DOI http://
doi.acm.org/10.1145/343369.343402

Bergstra JA, Klop JW (1989) Acpτ : a universal axiom system for process spec-
ification. In: Wirsing M, Bergstra JA (eds) Algebraic methods: theory, tools

19

and applications, Springer-Verlag New York, Inc., New York, NY, USA, pp
447–463

Bernardo M, Donatiello L, Gorrieri R (1994) Mpa: a stochastic process algebra.
Tech. rep.

Briais S (2009) ABC – Another Bisimulation Checker. Http://lamp.epfl.ch/ sbri-
ais/abc/, Last accessed, May 2009

Curcin V, Ghanem MM, Guo Y (2009) Analysing scientific workflows with com-
putational tree logic. Cluster Computing 12(4):399–419, DOI http://dx.doi.
org/10.1007/s10586-009-0099-6

Gilmore S, Hillston J (1994) The PEPA Workbench: A Tool to Support a
Process Algebra-based Approach to Performance Modelling. In: Proceedings
of the Seventh International Conference on Modelling Techniques and Tools
for Computer Performance Evaluation, Springer-Verlag, Vienna, no. 794 in
Lecture Notes in Computer Science, pp 353–368

Goderis A, Brooks C, Altintas I, Lee EA, Goble CA (2007) Composing different
models of computation in Kepler and Ptolemy II. In: Shi Y, van Albada GD,
Dongarra J, Sloot PMA (eds) International Conference on Computational
Science (3), Springer, Lecture Notes in Computer Science, vol 4489, pp 182–
190

Gottschalk F, van der Aalst WMP, Jansen-Vullers MH, Verbeek HMW (2007)
Protos2cpn: using colored Petri Nets for configuring and testing business
processes. International Journal on Software Tools for Technology Transfer
10(1):95–110

Hermanns H, Herzog U, Mertsiotakis V, Rettelbach M (1995) Stochastic pro-
cess algebras – constructive specification techniques integrating functional,
performance and dependability aspects. In: Quantitative Methods in Parallel
Systems, Springer

Hillston J (2005) Fluid flow approximation of pepa models. In: Proc. 2nd Inter-
national Conference on Quantitative Evaluation of Systems (QEST’05), IEEE
Computer Society Press, pp 33–42

Hoare CAR (1983) Communicating sequential processes. Commun ACM
26(1):100–106

Hull D, Wolstencroft K, Stevens R, Goble CA, Pocock MR, Li P, Oinn T (2006)
Taverna: a tool for building and running workflows of services. Nucleic Acids
Research 34:729–732

Huth MRA, Ryan MD (2000) Logic in Computer Science: Modelling and reason-
ing about systems. Cambridge University Press, Cambridge, England, URL
citeseer.ist.psu.edu/huth99logic.html

20

Johnston WM, Hanna JRP, Millar RJ (2004) Advances in dataflow program-
ming languages. ACM Comput Surv 36:1–34, DOI http://doi.acm.org/10.
1145/1013208.1013209

Kwiatkowska M, Norman G, Parker D (2009) Prism: Probabilistic model check-
ing for performance and reliability analysis. ACM SIGMETRICS Performance
Evaluation Review 36(4):40–45

Microsoft (2007) Spim viewer. Http://research.microsoft.com/en-
us/projects/spim/. Last accessed, May 2010.

Milner R (1989) Communication and Concurrency. Prentice–Hall

Milner R (1990) Functions as processes. In: Paterson MS (ed) Automata,
Languages and Programming: Proc. of the 17th International Colloquium,
Springer, New York, pp 167–180

Missier P, Paton N, Belhajjame K (2010) Fine-grained and efficient lineage
querying of collection-based workflow provenance. In: Procs. EDBT, Lau-
sanne, Switzerland

Moller F, Stevens P (2009) Edinburgh Concurrency Workbench user manual
(version 7.1). Available from http://homepages.inf.ed.ac.uk/perdita/cwb/.
Last accessed May 2009

Peschanski F, Hym S (2006) A stackless runtime environment for a pi-calculus.
In: VEE ’06: Proceedings of the 2nd international conference on Virtual
execution environments, ACM, New York, NY, USA, pp 57–67

Phillips A, Cardelli L (2004) A correct abstract machine for the stochastic pi-
calculus. In: Concurrent Models in Molecular Biology

Phillips A, Cardelli L (2007) Efficient, correct simulation of biological processes
in the stochastic pi-calculus. In: Computational Methods in Systems Biology,
Springer, LNCS, vol 4695, pp 184–199

Phillips A, Cardelli L, Castagna G (2006) A graphical representation for bio-
logical processes in the stochastic pi-calculus. Transactions in Computational
Systems Biology 4230:123–152

Priami C (1995) Stochastic pi-calculus. Comput J 38(7):578–589

Rockl C, Hirschkoff D, Berghofer S (2001) Higher-Order abstract syntax with
induction in Isabelle/HOL: Formalizing the pi-calculus and mechanizing the
theory of contexts. In: Proceedings of Conference on Foundations of Software
Science and Computational Structures, pp 364–378

Sroka J, Hidders J, Missier P, Goble C (2009) Formal semantics for the Taverna
2 Workflow Model. Journal of Computer and System Sciences DOI 10.1016/j.
jcss.2009.11.009, URL http://dx.doi.org/10.1016/j.jcss.2009.11.009

21

Turi D, Missier P, Roure DD, Goble C, Oinn T (2007) Taverna Workflows:
Syntax and Semantics. In: Proceedings of the 3rd e-Science conference,
Bangalore, India, DOI http://dx.doi.org/10.1109/E-SCIENCE.2007.71, URL
http://dx.doi.org/10.1109/E-SCIENCE.2007.71

22

