
Preserving the value of large scale data analytics
over time through selective re-computation

Paolo Missier, Jacek Ca la, and Manisha Rathi

School of Computing Science, Newcastle University, UK,
{Paolo.Missier, Jacek.Cala}@ncl.ac.uk, Manisha.Rathi@pwc.com

Abstract. A pervasive problem in Data Science is that the knowledge
generated by possibly expensive analytics processes is subject to decay
over time as the data and algorithms used to compute it change, and
the external knowledge embodied by reference datasets evolves. Deciding
when such knowledge outcomes should be refreshed, following a sequence
of data change events, requires problem-specific functions to quantify
their value and its decay over time, as well as models for estimating the
cost of their re-computation. Challenging is the ambition to develop a
decision support system for informing re-computation decisions over time
that is both generic and customisable. With the help of a case study from
genomics, in this paper we offer an initial formalisation of this problem,
highlight research challenges, and outline a possible approach based on
the analysis of metadata from a history of past computations.

Keywords: selective re-computation, incremental computation, partial
re-computation, provenance, metadata management

1 Your data will not stay smart forever

A general problem in Data Science is that the knowledge generated through
large-scale data analytics tasks is subject to decay over time, following changes
in both the underlying data used in their processing, and the evolution of the
processes themselves. In this paper we outline our vision for a general system,
which we refer to as ReComp, that is able to make informed re-computation
decisions in reaction to any of these changes. We distinguish two complementary
patterns, which we believe are representative of broad areas of data analytics.

1. Forwards ReComp. In this pattern, knowledge refresh decisions are
triggered by changes that occur in the inputs to an analytics process, and are
based on an assessment of the consequences of those changes on the current
outcomes, in terms of expected value loss, or opportunities for value increase.

2. Backwards ReComp. Conversely, in this pattern the triggers are obser-
vations on the decay in the value of the outputs, and re-computation decisions
are based on the expected value improvement following a refresh.

In both cases, when a limited re-computation budget is available, estimates
of the cost of refresh are needed. Cost may be expressed, for instance, as time
and/or cost of cloud resource allocation.

To make these patterns concrete, we now present one instance of each.



1.1 Forwards: impact analysis

Data-intensive workflows are becoming common in experimental science. In ge-
nomics, for instance, it is becoming computationally feasible to process the hu-
man genome in search of mutations that may help diagnose a patient’s genetic
disease. In this scenario, which we expand on in Sec. 1.4, a diagnosis given in
the past may be affected by improvements in the underlying genome sequenc-
ing technology, but also possibly in the bioinformatics algorithms, and by up-
dates in the external reference data resources like the many human variation
databases [12,4]. In a Forwards ReComp scenario, each of these changes would
trigger a decision process aimed at predicting which patients would benefit the
most from a reassessment of their diagnosis. A limited budget leads to a problem
of prioritising re-computations over a subset of the patients’ population, using
estimates of the future cost of re-enacting the workflows. A similar scenario oc-
curs when long-running simulations are used e.g. to predict flood in large cities.
In this case, the problem involves understanding the impact of changes to the
urban topology and structure (new green areas, new buildings), without having
to necessarily run the simulation anew every time.

1.2 Backwards: cause analysis

In machine learning, it is well-known that the predictive power of a trained su-
pervised classifier tends to decay as the assumptions embodied by the data used
for training are no longer valid. When new ground truth observations become
available while using the model, these provide a measure of actual predictive
performance and of its changes over time, i.e., relative to the expected theo-
retical performance (typically estimated a priori using cross-validation on the
training set). We may view the trained model as the “knowledge outcome” and
the problem of deciding when to refresh (re-train) the model as an instance of
Backwards ReComp. Here the expected performance of the new model must be
balanced against the cost of retraining, which is often dominated by the cost of
generating a new training set.

1.3 The ReComp Vision

Fig. 1 provides a summary of our vision of a ReComp meta-process for making re-
curring, selective re-computation decisions on a collection of underlying analytics
processes for both these patterns. In both cases, the meta-process is triggered by
observations of data changes in the environment (top). In the Forwards pattern,
on the left, these are new versions of data used by the process. This pattern re-
quires the ability to (i) quantify the differences between two versions of a data,
(ii) estimate the impact of those changes on a process outcomes, (iii) estimate
the cost of re-computing a process, (iv) use those estimates to select past process
instances that optimise the re-computation effort subject to a budget constraint,
and (v) re-enact the selected process instances, entirely or partially.



Forwards:	React	to	changes		
in	data	used	by	processes	

Backwards:	restore	value		
of	knowledge	outcomes	

Re-compute	
Selected	outcomes	

Es0mate:	
-  Benefit	
-  Cost	of	refresh	

Quan0fy	
knowledge

decay	

Es0mate:	
-	Impact	of	changes	
-	Cost	of	refresh	

Quan0fy	
data	

changes	

Monitor	data	
changes	

Input,	
reference	data	
versioning	

Op0mise	/	
Priori0se	
Outcomes	

Knowledge	
outcomes	

Provenance,
Cost	

New	ground	
truth	

Data	change	events	

Fig. 1. Reference ReComp patterns

The Backwards pattern, on the right, is triggered by changes in data that
can be used to assess the loss of value of knowledge outcomes over time, such as
new ground truth data as mentioned earlier. This pattern requires the ability to
(i) quantify the decay in the value of knowledge, expressed for instance in terms
of model prediction power; (ii) estimate the cost and benefits of refreshing the
outcome, and (iii) re-enact the associated processes.

To realise these patterns we envision a History database (centre). It contains
both the outcomes that are subject to revision, and metadata about their prove-
nance [19] and cost. Estimation models are learnt from the metadata which is
updated upon each re-computation cycle. Note that for simplicity we only focus
on changes in the data. Changes in the underlying processes, although relevant,
require separate formalisation which is beyond the scope of this paper.

1.4 Example: Genetic variants analysis

The Simple Variant Interpretation (SVI) process [12] is designed to support clini-
cal diagnosis of genetic diseases. First, patient variants, such as single-nucleotide
polymorphisms, are identified by processing the patient’s genome via a rese-
quencing pipeline. Then, the SVI workflow (Fig. 2) takes these variants (about
25,000) and a set of terms that describe patient’s phenotype, and tries to establish
the deleteriousness of a small subset of those variants relevant to the phenotype
by consulting external reference mutation databases. SVI uses the ClinVar1 and
OMIM Gene Map2 reference databases, described in more detail later.

1 https://www.ncbi.nlm.nih.gov/clinvar
2 https://www.omim.org

https://www.ncbi.nlm.nih.gov/clinvar
https://www.omim.org


The reliability of the diagnosis depends on the content of those databases.
Whilst the presence of deleterious variants may sometimes provide conclusive
evidence in support of the disease hypothesis, the diagnosis is often inconclusive
due to missing information about the variants, or due to insufficient knowledge
in those databases. As this knowledge evolves and these resources are updated,
there are opportunities to revisit past inconclusive or potentially erroneous diag-
noses, and thus to consider re-computation of the associated analysis. Further-
more, patient’s variants, used as input to SVI, may also be updated as sequencing
and variant calling technology improve.

We use SVI in our initial experiments, as it is a small-scale but fair represen-
tative of large-scale genomics pipelines that also require periodic re-computation,
such as those for variant calling that we studied in the recent past [3].

Fig. 2. The SVI workflow; inputs x = [varset , ph], external resources D = [OM ,CV ].

1.5 Contributions

We make the following contributions. (i) A semi-formal description of the selec-
tive re-computation problem, which due to space constraints is limited to the
forwards case, exemplified by the SVI case study; (ii) an outline of the associ-
ated research challenges, and (iii) an initial analysis of the role of metadata, and
specifically of provenance, as part of the ReComp vision.

This work reflects the initial phase of a project centred on the design of the
ReComp meta-process (recomp.org.uk). What makes ReComp particularly chal-
lenging is the ambition to develop a generic and customisable decision support
system for informing data analytics re-computation decisions over time, in a
setting where most approaches appear to be problem-specific.

2 Reacting to data change events

We formalise the forwards pattern of the ReComp problem in more detail, as-
suming an ideal scenario where a history of past program executions has been
recorded, each data item is versioned, and a family of data diff functions, one
for each of the data types involved in the computation, are available to quantify
the extent of change between any two versions.



2.1 Definitions

Executions. Suppose we can observe a set of N executions of an analytics ap-
plications, which for simplicity we represent as single program P . Each execution
i : 1 . . . N takes input xi and may also use data from a set of reference datasets
D = {D1 . . . Dm} to produce value yi. We assume that each of xi and Dj ∈ D
may have multiple versions updated over time. We denote the version of xi at
time t as xt

i, and the state of resource Dj at t as dtj . For each execution we also
record its cost cti (e.g. time or monetary expression that summarises the cost of
cloud resources). We denote one execution of P that takes place at time t by:

〈yti , cti〉 = exec(P, xt
i, d

t) (1)

where dt = {dt1 . . . dtm} is the state at time t of each reference datasets Dj . As
mentioned in Sec. 1.3, we assume that P stays constant throughout.

Example 1. SVI consists of one single process P , which initially is executed
once for each new patient. It takes input pair x = 〈varset , ph〉 consisting of the
set of patient’s variants and patient’s phenotype ph = {dt1, dt2, . . . } expressed
using disease terms dt i from the OMIM vocabulary, for example Alzheimer’s.
SVI associates a class label to each input variant depending on their estimated
deleteriousness, using a simple “traffic light” notation:

y = {(v, class)|v ∈ varset , class ∈ {red, amber, green}}

D = {OM ,CV } consists of two reference databases, OMIM GeneMap and Clin-
var, which are subject to periodic revisions. GeneMap maps human disorder
terms dt to a set of genes that are known to be broadly involved in the disease:

OM = {〈dt , genes (dt)〉}

Similarly, ClinVar maintains catalogue V of variants and associates a status to
each variant v ∈ V , denoted varst(v) ∈ {unknown, benign, pathogenic}:

CV = {〈v, varst(v〉}

SVI uses OM and CV to investigate a patient’s disease ()Fig. 2). Firstly,
the terms in ph are used to determine the set of target genes that are relevant
for the disease hypothesis. These are defined as the union of all the genes in
genes(dt) for each disease term dt ∈ ph. Then, a variant v ∈ varset is selected
if it is located on the target genes. Finally, the selected variants are classified
according to their labels from varst(v). �

Data version changes. We write xt
i → xt′

i to denote that a new version of
xi has become available at time t′, replacing the version xt

i that was current at

t. Similarly, dtj → dt
′

j denotes a new release of Dj at time t′.
Diff functions. We further assume that a family of type-specific data diff

functions are defined that allow us to quantify the extent of changes. Specifically:

diff X(xt
i, x

t′

i ) diff Y (yti , y
t′

i ) (2)



compute the differences between two versions of xi of type X, and two versions
of yi of type Y . Similarly, for each source Dj ,

diff Dj
(dtj , d

t′

j ) (3)

quantifies differences between two versions of Dj . The values computed by each
of these functions are going to be type-specific data structures, and will also
depend on how changes are made available. For instance, dtj , d

t′

j may represent
successive transactional updates to a relational database. More realistically in
our analytics setting, and on a longer time frame, these will be two releases of
Dj , which occur periodically. In both cases, diff Dj

(dtj , d
t′

j ) will contain three sets
of added, removed, or updated records, respectively.

Example 2. Considering that the set of terms dt in OMIM is fairly stable,

diff OM (OM t,OM t′) returns updates in their mappings to genes that have changed
between the two versions (including possibly new mappings):

diff OM (OM t,OM t′) = {〈t, genes(dt)〉|genes(dt) 6= genes′(dt)}

where genes′(dt) is the new mapping for dt in OM t′ .
The difference between two versions of ClinVar consists of three sets: new,

removed, and status-changed variants:

diff CV (CV t,CV t′) =

{〈v, varst(v)|varst(v) 6= varst ′(v)} ∪ CV t′ \ CV t ∪ CV t \ CV t′

where varst ′(v) is the new class associated to v in CV t′ . �

Change Impact. To describe the impact of a single change that occurs at
time t′ on an output yti , t < t′, suppose we have computed new yt

′

i using the new

version of the data. E.g., if the change is dtj → dt
′

j , we would have computed:

〈yt
′

i , c
t′

i 〉 = exec(P, xt′

i , d
t′) (4)

where dt
′

= {dt1 . . . dt
′

j . . . dtm}. We define the impact of this change using type-
specific function fY () defined on the difference between the two versions of yi:

imp(dtj → dt
′

j , y
t
i) = fY (diff Y (yti , y

t′

i )) ∈ [0, 1] (5)

where yt
′

i is computed as in (4). In the case of our classified variants, for instance,

fY () could be defined as fY (diff Y (yti , y
t′

i )) = 0 if the diagnosis has not changed
between two versions, and 1 if it has changed.

2.2 Problem statement

Suppose a change is detected at t′; for simplicity let it be dtj → dt
′

j as above. Let
Ot = {yt1, . . . ytN} denote the set of all outcomes that are current at time t. The



ReComp goal is to select the optimal subset Ot
rc ⊆ Ot of outcomes that, subject

to budget C, maximise the overall impact of the change if they are re-computed:

max
Ot

rc⊂Ot

∑
yi∈Ot

rc

imp(dtj → dt
′

j , y
t
i),

N∑
i:1

ct
′

i ≤ C (6)

As neither the impact nor the actual re-computation costs are known, however,
solving this problem requires that we learn a set of cost and impact estimators:

{〈împ(dtj → dt
′

j , y
t
i), ĉ

t′

i 〉|yti ∈ Ot} (7)

The optimisation problem can thus be written as:

max
Ot

rc⊂Ot

∑
yi∈Ot

rc

împ(dtj → dt
′

j , y
t
i),

N∑
i:1

ĉt
′

i ≤ C (8)

3 ReComp Challenges

A number of process and management challenges underpin this optimisation goal
for the Forwards ReComp pattern.

3.1 Process Management Challenges

1. Optimisation of re-computation effort. Firstly, note that we must solve
one instance of (8) for each data change event. Each instance can be formulated
as the 0-1 knapsack problem in which we want to find vector a = [a1 . . . an] ∈
{0, 1}N that achieves

max

N∑
i:1

viai subject to

N∑
i:1

wiai ≤ C (9)

where vi = împ(dtj → dt
′

j , y
t
i), wi = ĉt

′

i .

A further issue is whether multiple changes, i.e. to different data sources,
should be considered together or separately. Also, in some cases it may be ben-
eficial to group multiple changes to one resource, e.g. given dtj → dt

′

j , we may

react immediately or wait for the next change dt
′

j → dt”j and react to dt → dt
′′
.

2. Partial recomputation. When P is a black box process, it can only be
re-executed entirely from the start. But a white-box P , like the SVI workflow,
may benefit from the “smart re-run” techniques, such as those developed in the
context of scientific data processing [1,10].

Specifically, suppose that a granular description of P is available, in terms
of a set of processing blocks {P1 . . . Pl} where some Pj encodes a query to Dj .
These, along with dataflow dependencies of the form: Pi → Pj , form a directed



workflow graph. If re-computation of P is deemed appropriate following a change
in Dj , logically there is no need to restart the computation from the beginning,
as long as it includes Pj (we know that a new execution of Pj will return an
updated result). In theory, the exact minimal subgraph of P that must be re-
computed is determined by the available intermediate data saved during prior
runs [10]. An architecture for realising this idea is also presented in [9]. In prac-
tice, however, for data analytics tasks where intermediate data often outgrow
the actual inputs by orders of magnitude, the cost of storing all intermediate
results may be prohibitive. An open problem, partially addressed in [18], is to
balance the choice of intermediate data to retain with the retention cost.

3. Learning cost estimators. This problem has been addressed in the
recent past, but mainly for specific scenarios that are relevant to data analytics
like workflow-based programming on clouds and grid, [16,11]. But for instance
[13] showed that runtime, especially in the case of machine learning algorithms,
may depend on features that are specific to the input, and thus not easy to learn.

4. Process reproducibility issues. Actual re-computation of older pro-
cesses P may not be straightforward, as it may require redeploying P on a new
infrastructure and ensuring that the system and software dependencies are main-
tained correctly, or that the results obtained using new versions of third party
libraries remain valid. Addressing these architectural issues is a research area of
growing interest [5,2,17], but not a completely solved problem.

3.2 Data Management Challenges

5. Learning impact estimators. Addressing optimisation problem (8) requires
that we first learn impact estimators (7). In turn, this needs estimating differ-

ences d̂iff Y (yti , y
t′

i ) for any yti ∈ Ot and any data change. But the estimators are
going to be data- and change-specific and so, once again, difficult to generalise.
This is a hard problem. In particular it involves estimating difference diff Y (y, y′)
between two values y = f(x1 . . . xk), y′ = f(x′1 . . . x

′
k) for unknown function f ,

given changes to some of the xi and the corresponding diff X(xi, x
′
i). Clearly,

some knowledge of function fY () is required, which is also process-specific and
thus hard to generalise into a reusable re-computation framework.

Example 3. Recalling our example binary impact function fY () for CV , we

would like to predict whether any new variant added to CV t′ will change a
patient’s diagnosis. Using forms of provenance, some of which is described later
(Sec.4), we may hope not only to determine whether the variant is relevant for
the patient, but also whether the new variant will change the diagnosis or it will
merely reinforce it. This requires domain-specific rules, however, including check-
ing whether other benign/deleterious variants are already known, and checking
the status of an updated or new variant. �

6. Proliferation of specialised diff functions. Suppose processes P1 and
P2 retrieve different attributes from the same relational database Dj . Clearly, for
each of them only changes to those attributes matter. Thus, data diff functions



such as those defined in Sec. 2.1 are not only type-specific but also query-specific.
For K processes and M resources, this potentially leads to the need for KM
specialised diff functions.

7. Managing data changes. There are practical problems in managing
multiple versions of large datasets, each of which may need to be preserved
over time for potential future use by ReComp. Firstly, each resource will expose a
different version release mechanism, standard version being the simple and lucky
case. Once again, observing changes in data requires source-specific solutions.
Secondly, the volume of data to be stored, multiplied by all the versions that
might be needed for future re-computation, leads to prohibitively large storage
requirements. Thus, providers’ limitations in the versions they make available
translates into a challenge for ReComp.

8. Metadata formats. ReComp needs to collect and store two main types
of metadata: the detailed cost of past computations of P , which form ground
truth data from which cost estimators can be learnt; and provenance metadata,
as discussed next (Sec. 4). The former, although a simpler problem, requires the
definition of a new format which, to the best of our knowledge, does not cur-
rently exist. Provenance, on the other hand, has been recorded using a number
of formats, often system-specific. Even when the PROV model [14] is adopted,
it can be used in different ways despite being designed to encourage interop-
erability. Our recent study [15] shows that the ProvONE extension to PROV
(https://purl.dataone.org/provone-v1-dev) is a step forward to improve
interoperability but it still is limited as it assumes that the traced processes are
similar and implemented as a workflow.

3.3 The ReComp meta-process

To address these challenges we have started to design a meta-process that can
observe executions of the form (1), detect and quantify data changes
using diff functions (2, 3), and control re-computations (4).

ReComp is an exercise in metadata collection and analysis. As suggested in
Fig.1, it relies on a history database that records details of all the elements that
participate in each execution, as well as on the provenance of each output yi, to
provide the ground data from which estimators can hopefully be learnt. However,
not all processes and runtime environments are transparent to observers, i.e.,
they may not allow for detailed collection of cost and provenance metadata.
Thus, we make an initial broad distinction between white-box and black-box
ReComp, depending on the level of detail at which past computations can be
observed and the amount of control we have on performing partial or full re-
computations on demand.

4 Provenance in white-box Recomp

As an example of the role of metadata, we analyse how provenance might be
used in a white-box, fully transparent ReComp setting. Our goal is to reduce the

https://purl.dataone.org/provone-v1-dev


size of the optimisation problem, that is, to identify those yt ∈ Ot that are out
of scope relative to a certain data change. Formally, we want to determine the
outputs yti ∈ Ot such that for change dtj → dt

′

j , we can determine that

imp(dtj → dt
′

j , y
t
i) = 0

For example, the scope of a change in ClinVar that reflects a newly discovered
pathogenic status of a variant can be safely restricted to the set of patients who
include that variant and whose phenotype renders the associated gene.

To achieve such filtering in a generic way, suppose we have access to the
provenance of each yti . While this refers generally to the history of data deriva-
tions from inputs to outputs through the steps of a process [19], in our setting we
are only interested in recording which data items from Dj were used by P during
execution. In a favourable yet common scenario, suppose that Dj consists of a
set of records, and that P interacts with Dj through well defined queries QDj

using for instance a SQL or a keyword search interface. Then, the provenance of
yti includes all the data returned by execution of each of those queries: Qdt

j
, along

with the derivation relationships (possibly indirect) from those to yti . Instead,
here we take an intensional approach and record the queries themselves as part
of the provenance:

prov(yti) = {QDj , j : i . . .m}
where each query is specific to the execution that computed yti . The rationale
for this is that, by definition, an output yti is in the scope of a change to dj if

and only if P used any of the records in diff Dj
(dtj , d

t′

j ), that is, if and only if

QDj
returns a non-empty result when executed on the difference diff Dj

(dtj , d
t′

j ).
In practice, when Dj is a set of records, we may naturally also describe

diff Dj
(dtj , d

t′

j ) as comprising of three sets of records – new: r ∈ dt
′

j \dtj , removed:

r ∈ dtj \ dt
′

j , and updated: r ∈ dt
′

j ∩ dtj where some value has changed. This
makes querying the differences a realistic goal, requiring minor adjustments to
QDj

(to account for differences in format), i.e., we can assume we can execute

QDj
(dt

′

j \ dtj), QDj
(dtj \ dt

′

j ), and QDj
(dt

′

j ∩ dtj).

Example 4. Consider patient Alice whose phenotype is Alzheimer’s. For SVI,
this is also the keyword in query to GeneMap: QOM = “Alzheimer’s”. Sup-
pose that performing the query at time t returns just one gene: QOM (omt) =
{PSEN2}. Then, SVI uses that gene to query CV , and suppose that noth-
ing is known about the variants on this gene: QCV (cvt) = ∅. At this point,
the provenance of SVI’s execution for Alice consists of the queries: {QOM ≡
“Alzheimer′s′′, QCV ≡ “PSEN2′′}. Suppose that later at time t′ CV is updated
to include just one new deleterious variant along with the gene it is situated
on: 〈227083249, PSEN2, pathogenic〉. When we compute diff CV (cvt, cvt

′
), this

tuple is included in cvt
′ \ cvt and is therefore returned by a new query QCV on

this differerence set, indicating that Alice is in the scope of the change. In con-
trast, executing on the same diff set a similar CV query from another patient’s
provenance, where PSEN2 is not a parameter, returns the empty set signalling
that the patient is definitely not affected by the change. �



Note that similar idea of using provenance for partial re-computation has
been studied before [7,8]. The goal was to determine precisely the fragment of
a data-intensive program that needed to be re-executed to refresh stale results.
However, it required full knowledge of the specific queries, which we do not. A
formal definition of correctness and minimality of a provenance trace with respect
to a data-oriented workflow is proposed by members of the same group [6]. The
notion of logical provenance may be useful in our context, too; once mapped to
PROV that has since emerged as a standard for representing provenance.

Note also, that the technique just sketched can only go as far as narrowing
the scope of a change, yet reveals little about its impact. Still, in some cases
we may be able to formulate simple domain-specific rules for qualitative impact
estimation that reflect our propensity to accept or prevent false negatives, i.e.
ignoring a change that has an impact. An example of such a conservative rule
would be “if the change involves a new deleterious variant, then re-compute all
patients who are in the scope of that change”.

The earlier example illustrates how queries saved from previous executions
can be used to determine the scope of a change, assuming that the queries
themselves remain constant. However this assumption can be easily violated, also
in our running example. Suppose that at time t OM is updated instead of CV ,
e.g. an additional gene X is related to Alzheimer’s. We now have QOM (omt′) =
{PSEN2, X}, therefore QCV ≡ “PSEN2, X′′ rather than just “PSEN2” as recorded in
the provenance. This brings the additional complication that the stored queries
may need to be updated prior to being re-executed on the diff records.

Finally, note that in this specific example, when the change occurs in the
input, that is, in the patient’s genome, the scope of the change consists of just
one patient. In this case, it may well be beneficial to always re-compute, as
computing diff X(xt

i, x
t′

i ) to determine which parts of the genome have changed
and whether the change will have any impact may be just as expensive, and thus
inefficient. These questions are the subject of our current experimentation.

4.1 Conclusions

In this paper we have made the case for a new strand of research to investigate
strategies for the selective, recurring re-computation of data-intensive analytics
processes when the knowledge they generate is liable to decay over time. Two
complementary patterns are relevant: forwards impact analysis, and backwards
cause analysis. With the help of a case study in genomics we offered a simple
formalisation of the former,3 and outlined a number of challenges in designing a
generic framework for a broad family of underlying analytics processes.

To address these problems, we propose a ReComp meta-process that can collect
metadata (cost, provenance) on a history of past computation and use it to learn
cost and impact estimators, as well as to drive partial re-computation on a subset
of prior outcomes. As an example of our early investigation in this direction, we
have discussed the role of data provenance in an ideal white-box scenario.

3 Analysis of the specific “backwards” cases will appear in a separate contribution.



References

1. I. Altintas, O. Barney, and E. Jaeger-frank. Provenance Collection Support in the
Kepler Scientific Workflow System. Procs. WORKS 2006, 4145:118–132, 2006.

2. L. C. Burgess, D. Crotty, D. de Roure, J. Gibbons, C. Goble, P. Missier, R. Mortier,
T. E. Nichols, and R. O’Beirne. Alan Turing Intitute Symposium on Reproducibil-
ity for Data-Intensive Research – Final Report, 2016.

3. J. Ca la, E. Marei, Y. Xu, K. Takeda, and P. Missier. Scalable and efficient whole-
exome data processing using workflows on the cloud. Future Generation Computer
Systems, 65(Special Issue: Big Data in the Cloud), Dec 2016.

4. G. M. Cooper and J. Shendure. Needles in stacks of needles: finding disease-causal
variants in a wealth of genomic data. Nat Rev Genet, 12(9):628–640, Sep 2011.

5. J. Freire, N. Fuhr, and A. Rauber. Reproducibility of Data-Oriented Experiments
in e-Science (Dagstuhl Seminar 16041). Dagstuhl Reports, 6(1):108–159, 2016.

6. R. Ikeda, A. Das Sarma, and J. Widom. Logical provenance in data-oriented
workflows? In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 877–888. IEEE, apr 2013.

7. R. Ikeda, S. Salihoglu, and J. Widom. Provenance-based refresh in data-oriented
workflows. Proceedings of the 20th ACM international conference on Information
and knowledge management, pages 1659–1668, 2011.

8. R. Ikeda and J. Widom. Panda: A system for provenance and data. Proceedings of
the 2nd USENIX Workshop on the Theory and Practice of Provenance, TaPP’10,
33:1–8, 2010.

9. D. Koop, E. Santos, B. Bauer, M. Troyer, J. Freire, and C. T. Silva. Bridging work-
flow and data provenance using strong links. In Scientific and statistical database
management, pages 397–415. Springer, 2010.

10. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,
J. Tao, and Y. Zhao. Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice and Experience, 18(10):1039–1065, 2006.

11. M. J. Malik, T. Fahringer, and R. Prodan. Execution time prediction for grid
infrastructures based on runtime provenance data. In Procs. WORKS 2013, pages
48–57, New York, New York, USA, 2013. ACM Press.

12. P. Missier, E. Wijaya, R. Kirby, and M. Keogh. SVI: a simple single-nucleotide Hu-
man Variant Interpretation tool for Clinical Use. In Procs. 11th International con-
ference on Data Integration in the Life Sciences, Los Angeles, CA, 2015. Springer.

13. T. Miu and P. Missier. Predicting the Execution Time of Workflow Activities
Based on Their Input Features. In I. Taylor and J. Montagnat, editors, Procs.
WORKS 2012, Salt Lake City, US, 2012. ACM.

14. L. Moreau, P. Missier, K. Belhajjame, R. B’Far, and J. t. Cheney. PROV-DM:
The PROV Data Model. Technical report, World Wide Web Consortium, 2012.

15. W. Oliveira, P. Missier, K. Ocaña, D. de Oliveira, and V. Braganholo. Analyz-
ing Provenance Across Heterogeneous Provenance Graphs. In Procs. IPAW 2016,
volume 5272, pages 57–70. 2016.

16. I. Pietri, G. Juve, E. Deelman, and R. Sakellariou. A Performance Model to
Estimate Execution Time of Scientific Workflows on the Cloud. In Procs. WORKS
2014, pages 11–19. IEEE, nov 2014.

17. V. Stodden, F. Leisch, and R. D. Peng. Implementing reproducible research. CRC
Press, 2014.

18. S. Woodman, H. Hiden, and P. Watson. Workflow Provenance: An Analysis of
Long Term Storage Costs. Procs WORKS 2015, pages 9:1—-9:9, 2015.

19. PROV-Overview. An Overview of the PROV Family of Documents, April 2013.


	Preserving the value of large scale data analytics over time through selective re-computation

