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Abstract

Phenotype‐based filtering and prioritization contribute to the interpretation of

genetic variants detected in exome sequencing. However, it is currently unclear how

extensive this phenotypic annotation should be. In this study, we compare methods

for incorporating phenotype into the interpretation process and assess the extent to

which phenotypic annotation aids prioritization of the correct variant. Using a cohort

of 29 patients with congenital myasthenic syndromes with causative variants in

known or newly discovered disease genes, exome data and the Human Phenotype

Ontology (HPO)‐coded phenotypic profiles, we show that gene‐list filters created

from phenotypic annotations perform similarly to curated disease‐gene virtual panels.

We use Exomiser, a prioritization tool incorporating phenotypic comparisons, to rank

candidate variants while varying phenotypic annotation. Analyzing 3,712 combina-

tions, we show that increasing phenotypic annotation improved prioritization of the

causative variant, from 62% ranked first on variant alone to 90% with seven HPO

annotations. We conclude that any HPO‐based phenotypic annotation aids variant

discovery and that annotation with over five terms is recommended in our context.

Although focused on a constrained cohort, this provides real‐world validation of the

utility of phenotypic annotation for variant prioritization. Further research is needed

to extend this concept to other diseases and more diverse cohorts.
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1 | INTRODUCTION

Next‐generation sequencing (NGS) has progressively transformed

the way rare diseases are diagnosed from a serial gene‐by‐gene
approach to one in which variation across the whole genome or its

protein‐coding sequence (exome) is analyzed following a single

experimental assay. However, each exome may contain as many as

30,000 variants from the reference sequence (Gilissen, Hoischen,

Brunner, & Veltman, 2012), several thousand of which may have a

putative protein‐altering effect. Despite the growth and increasing

sophistication of bioinformatics tools predicting the pathogenicity of

these variants based on functional consequences and population

frequency alone (Eilbeck, Quinlan, & Yandell, 2017), a typical exome

sequence may have as many as 500 rare variants (population

frequency <1%) with a potential functional effect (Kernohan et al.,

2018). For many rare diseases it therefore remains the case that

phenotypic assessment is essential to differentiate between a

number of candidate variants that look equally plausible from a

genetic perspective when the whole exome or genome is evaluated.

Deep phenotyping of undiagnosed cases thus remains a crucial part

of diagnosis and gene discovery in rare disease (Boycott et al., 2017),

but the subsequent variant assessment may still rely on a disease

expert’s knowledge or recognition of a specific phenotype rather

than on computer guidance. We aimed to test the hypothesis that

increased phenotypic annotation using the Human Phenotype

Ontology (HPO; Köhler et al., 2019) as a standardized terminology

system aids computer‐based detection and prioritization of the

correct causative variant.

Clinicians submitting whole‐exome and whole‐genome sequen-

cing data (WES/WGS) to national and international diagnostic or

gene discovery initiatives such as RD‐Connect, the Undiagnosed

Diseases Network International, the US Centers for Mendelian

Genomics or the UK 100,000 Genomes Project are required to

provide phenotypic annotations using the HPO for each case they

submit (Köhler et al., 2019). The HPO provides a highly comprehen-

sive and granular set of terms for annotating individual atomic

phenotypes observed in the patient within a logical hierarchical

structure and has become the most widely used phenotypic

annotation mechanism across the rare disease field for diagnosis

and gene identification. Various mechanisms are then available for

incorporating this phenotypic knowledge into the diagnostic or

discovery workflow. At the most straightforward level, it is possible

to restrict searches to “virtual panels” of genes associated with a

particular phenotype. The best known of these approaches mimics

the diagnostic approach of sequencing using gene panels by filtering

an exome or genome against a curated shortlist of genes that have

already been implicated with a specific global phenotype such as

NMD (a disease‐gene list). As an alternative which has been made

possible thanks to gene:HPO associations curated from the literature

and online databases and available from the HPO developers, it is

possible to use individual atomic phenotypes to build a gene list on

the fly that collates all genes associated with any of the individual

HPO terms. Both of these gene list approaches provide a simple yes/

no, presence/absence result. More sophisticated algorithms are also

available, such as those used by the Exomiser suite of tools (Smedley

et al., 2015), some of which use comparisons from animal models as

well as human data (Bone et al., 2016). These enable computer‐aided
assessment and numerical ranking of the likelihood that a particular

variant is causative.

However, information about the depth to which phenotypic

annotation should be done to maximize the chance of finding the

causative variant is largely lacking. During development of the

algorithms, researchers created simulations in which they spiked

unaffected exomes with causative variants and trialed them with

synthetic HPO term sets. Other work has been done through the

Monarch Initiative to develop methods for assessing “phenotypic

annotation sufficiency” and provide metrics to assist users

(Washington et al., 2014) and some phenotypic annotation tools

such as PhenoTips incorporate these methods to help submitters

assess how complete their annotation is (Buske, Girdea et al., 2015).

More analyses on real datasets are of benefit to confirm these tests

in a real‐world situation.

The RD‐Connect Genome Phenome Analysis Platform (GPAP) is

an international database and analysis interface for genomic and

phenotypic data that contains whole‐exome and whole‐genome data

and corresponding phenotypic information from over 5,000 indivi-

duals with rare disease and family members (Lochmüller et al., 2018).

The RD‐Connect platform provides an opportunity to test phenotypic

analysis algorithms on real data. A preliminary analysis of a subset of

cases (n = 210) in the platform from the BBMRI‐LPC 2016 whole‐
exome sequencing call for rare diseases (http://www.bbmri‐lpc.org/)
showed a linear correlation between the number of individual HPO

terms each case has been annotated with and the proportion of cases

that have received a solution in the platform, with the greater the

number of HPO annotations, the more likely the case is to have been

solved (Beltran, S. unpublished data). Recent data on the diagnosis

rate coming out of the 100,000 Genomes Project has shown a similar

result (Caulfield, M., 2018). However, such analyses contain many

potentially confounding variables, including differences in typical

annotation levels and in solve rates for different disease domains, as

well as the consideration that cases that have been more extensively

studied by the submitter may have both more comprehensive

annotation and also a greater likelihood of being solved without

their being a causal relationship between the two. Without further

investigation, it is therefore difficult to consider the correlation as

proof that increasing phenotypic annotation is in itself the cause of

the improved solve rate.

Our experimental setup was designed to answer a number of

related questions using real data but in a controlled setting. How

well does a traditional disease‐gene filter (equivalent to a

diagnostic panel) perform in capturing the causative variant while

excluding nonrelevant variants? How does the performance of a

gene list derived from HPO annotations compare to an expert‐
curated disease‐gene list? How well does Exomiser perform

against the gene‐list strategies when using the human data

comparison algorithm; what added value does the human, animal
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and interactome comparison provide; and what is the benefit of

adding more phenotypic annotations? To answer these questions,

we set up two sets of experiments using the same patient cohort.

As described in Section 2 and depicted in Figure 1, experiment set

1 focused on gene list filters, while experiment set 2 focused on

the Exomiser tool for variant prioritization. Experiment 1a filtered

variants against a published disease‐gene list for neuromuscular

disorders (Kaplan & Hamroun, 2015). Experiment 1b filtered the

same variants against a list of genes generated from a standar-

dized set of clinically relevant HPO terms, while Experiment 1c

filtered them against individual gene lists derived from the HPO

terms entered by the submitting clinician. Experiment 2a used the

Exomiser tool with its human data comparison algorithm to

prioritize variants based on different numbers of standardized

and submitter‐entered HPO terms and assess the added value of

increased numbers of annotations, while Experiment 2b performed

the same tests using the human, model organism and interactome

comparison algorithm to assess the relative performance of the

two algorithms on our cohort.

2 | MATERIALS AND METHODS

2.1 | Editorial policies and ethical considerations

The RD‐Connect GPAP has received ethics approval from the Parc de

Salut MAR Clinical Research Ethics Committee on 27 October 2015

under Ref. No. 2015/6456/I. All data used in this study had been

originally submitted to RD‐Connect under the ownership of the study

principal investigator (PI), H. L., and was accessed by authorized

researchers in compliance with the RD‐Connect Code of Conduct. As

with all data in the RD‐Connect GPAP, no individuals in this study

were personally identifiable and all had been consented by the

submitting clinician to analysis of their data for research purposes in

accordance with local ethics regulations.

2.2 | Patient cohort

Since our aim was to explore the effect of varying phenotypic

annotation on the solve rate in a real patient cohort, we needed to

select a set of patients whose cause of disease was already known to

establish our ground truth, and to minimize nonphenotypic variables

to focus on the effect of phenotype. From the cases available within

the study PI’s cohort in the RD‐Connect GPAP, we selected a

restricted cohort of 29 individuals with a confirmed genetic diagnosis

(“solved cases”), all of which had a similar phenotypic profile and

homozygous causative variant. All individuals had originally been

clinically suspected of a congenital myasthenic syndrome (CMS;

Thompson et al., 2018) based on their phenotypic presentation to the

submitting clinician and had been submitted within the RD‐Connect
PhenoTips instance as CMS cases. All were subsequently diagnosed

with a homozygous recessive cause of disease that was confirmed by

further analysis by the submitting center. Our review of the cases

confirmed the compatibility of the phenotypic description with CMS.

The aim of restricting the initial analysis cohort in this way was to

minimize the effect of the genetic variation on the analysis to focus

on the effect of phenotype on the analysis results. The 29 cases

covered 18 different genes in total (see Table 1). Twenty two of the

twenty nine cases (11 genes) had causative variants in genes that

have been previously associated with CMS according to the Online

Mendelian Inheritance in Man (OMIM) database (Amberger, Bocchi-

ni, Scott, & Hamosh, 2019); 5 cases (5 genes) had variants in genes

that were associated with other human disease but not CMS; and 2

cases (2 genes) had no human disease associated according to OMIM

but have been assigned as causative by the submitting clinician on

the basis of segregation and downstream analysis. The exomes

analyzed came from several different projects and were not all from

the same original sequencing provider but had all been reprocessed

from the raw data (FASTQ or untrimmed BAM) using the standard

RD‐Connect analysis pipeline (Laurie et al., 2016) to standardize

variant calling and annotation in line with standard RD‐Connect
practice.

Knowing the confirmed diagnosis of these cases allowed us to

assess the success of different analyses in terms of their ability to

prioritize the correct causative variant. A standard workflow

recreating the recommended analysis approach for a new case in

RD‐Connect was applied to all cases. First, the total number of

variants in each exome before applying filters was assessed. Then,

to reduce the number of variants to evaluate in the phenotypic

part of the analysis, each exome was filtered using a standard set

of genomic filters available within RD‐Connect, including variant

class and population frequency (Table S1). At each stage it was

F IGURE 1 Experimental setup. We performed five analyses on
the same cohort of 29 patients using both a standardized set of HPO
terms and the clinician‐entered terms unique to each case. We first

assessed the detection rate of gene list filters and then assessed the
performance of Exomiser with Phenix and hiPHIVE algorithms. CMS,
congenital myasthenic syndrome; HPO, Human Phenotype Ontology;

WES, whole‐exome sequencing
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confirmed that the confirmed pathogenic variant was still present

in the resulting data set and had not been filtered out. On

achieving a filtered data set of rare, plausibly pathogenic variants

based on variant data alone, we applied several methods of

prioritizing by phenotype, as described in Experiments 1 and 2

below.

2.3 | Standardized HPO set

All individuals selected for the analysis had varying numbers of HPO

terms entered by the submitting clinician at the time of submission

(ranging from 1 to 18 terms, all specific to that individual), and these

were used as part of our analyses as described below. In addition to

these submitter‐entered HPO terms, we also generated a standar-

dized or simulated set of seven HPO terms using phenotypic features

that are common to many of the CMS types and frequently used to

describe CMS patients. This standardized set was designed to be

applied across all cases to enable us to assess the effect of varying

the phenotypic annotation. In this standardized set we endeavored to

cover a range of different branches of the HPO hierarchy, including

neurological, muscular, respiratory, joint, and eye phenotypes. It was

intentionally generated by expert knowledge without reference to

the existing HPO gene:phenotype annotations in order not to be

biased towards known annotations. We applied the standardized list

in Experiments 1b and 2 below. An overview of the experimental

workflow is provided in Figure 1.

2.4 | Hierarchy of terms and information content

Our initial standardized set of terms was selected to cover

clinically appropriate CMS annotations at a level of specificity

that reflects common use among CMS experts. Since the HPO

represents these terms within a hierarchy, it is possible to explore

the way that changing the level of specificity affects the

performance of the prioritization tools by using terms that appear

at higher levels in the hierarchy, We define “parent terms” as those

appearing one level up in the hierarchy from our original terms,

and “grandparent terms” as those appearing two levels up. The

information content (IC) of each HPO term can be calculated as a

function of the frequency with which that term or its subclasses

appear as annotations for the diseases in the HPO disease:phe-

notype database (Groza et al., 2015). The IC thus reflects the

clinical specificity of the term (broader terms appear more

frequently when their subclasses are also included, while

more specific terms are less frequent) and is an important

component of the algorithms underlying the Exomiser tools. It is

TABLE 1 Cases included in the analysis

Genes
No.
cases OMIM disease associations Comment

AGRN 1 CMS Well known CMS gene

CHAT 1 CMS Well known CMS gene

CHRND 1 CMS Well known CMS gene

CHRNE 2 CMS Well known CMS gene

COLQ 4 CMS Well known CMS gene

DOK7 1 CMS Well known CMS gene

GFPT1 5 CMS Well known CMS gene

MUSK 3 CMS Well known CMS gene

COL13A1 1 CMS Recent CMS gene—annotated in OMIM but no phenotype

result from Exomiser and therefore considered a novel gene

for the purposes of this study

DPAGT1 2 CMS + congenital disorder of glycosylation, type Ij Known CMS gene but also CDG‐associated

SLC25A1 1 CMS + combined D‐2‐ and L‐2‐hydroxyglutaric aciduria Recent CMS gene—annotated in OMIM but considered a novel

gene for the purposes of this study

CLP1 1 Pontocerebellar hypoplasia type 10 No CMS association in OMIM. Some phenotypic overlap

DHCR7 1 Smith‐Lemli‐Opitz syndrome No CMS association in OMIM. Some phenotypic overlap

HSPG2 1 Schwartz‐Jampel syndrome type 1 No CMS association in OMIM. Some phenotypic overlap

POLG 1 Progressive external ophthalmoplegia, mitochondrial

DNA depletion syndrome, mitochondrial recessive

ataxia syndrome

No CMS association in OMIM. Some phenotypic overlap

TOR1A 1 Dystonia‐1, torsion Also recently associated with arthrogryposis multiplex

congenita

CTNND2 1 None Candidate gene

TENM2 1 None Candidate gene

Abbreviations: CDG, congenital disorders of glycosylation; CMS, congenital myasthenic syndrome; OMIM, Online Mendelian Inheritance in Man.
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calculated as the negative log of pt, where pt is the frequency of

occurrence of the term among all the annotations in the HPO

disease:phenotype database.

( ) = −t pIC log .t

Using disease and annotation numbers available in the online

HPO browser (https://hpo.jax.org/app/browse/) we calculated the IC

for each of our seven terms in the standardized set. To assess the

performance of the algorithms with more general terms with lower

information content, we then extracted the parent terms and

grandparent terms and calculated the IC in the same way. The

values are shown in Table 2.

2.5 | Experiment 1a: Disease‐gene list

A disease‐gene list or “virtual panel” is commonly used in clinical

diagnostics where exome sequencing has been performed. This

restricts the output to variants in a predefined set of genes that have

already been associated with human disease with a particular global

phenotypic presentation. Several lists curated by disease domain

experts are available within the RD‐Connect system and can be

applied as a filter on the data. Since our cohort all had a clinical

starting diagnosis of CMS, which is a neuromuscular disease (NMD),

we applied the 2016 version of the Neuromuscular Gene Table list

(Kaplan & Hamroun, 2015), a comprehensive and carefully curated

set of genes associated with NMD which has become the de facto

standard for the neuromuscular field. To evaluate this filtering

method, we defined our detection rate as the proportion of cases in

which the known causative variant was among the variants returned.

We also assessed the total number of variants returned.

2.6 | Experiments 1b and 1c: Gene lists generated
from HPO terms

As an alternative to a virtual panel for a disease domain, it is possible

to generate a gene list by compiling all genes that have been

annotated in the literature as associated with an individual HPO term

or collection of terms. This makes use of curated gene:phenotype

annotations compiled by the HPO developers and updated on a

monthly basis. A PhenoTips‐developed RESTful API (The PhenoTips

developers, 2017) enables the compilation of a list of genes based on

a given set of HPO terms. Our analysis used the annotation set from

September, 2018 (The HPO developers, 2018). Here, we performed

two analyses. First, we took the actual phenotypic terms entered by

the submitting clinician and used the API within RD‐Connect to

generate a gene list from those terms. Since each case had a unique

annotation set, this created a unique gene list for each patient.

Second, we used the same RD‐Connect function with our seven

standardized HPO terms, which enabled us to apply a consistent set

of terms and therefore a consistent gene list across the 29 cases.

Again our detection rate for both cases was the proportion of cases

in which the known causative variant was returned.

2.7 | Experiment 2. Variant prioritization using the
Exomiser

The Exomiser is an application designed to find and prioritize

potential disease‐causing variants in WES and WGS data (Smedley

et al., 2015). As input it takes a VCF file and a set of phenotypes in

HPO, and from this it annotates, filters and prioritizes likely causative

variants. It creates a variant score from predicted pathogenicity and

population frequency data and a phenotypic relevance score based

TABLE 2 Standardized set of HPO terms with parent and grandparent terms and information content

Original term set Parent term set Grandparent term set

HPO ID Term IC HPO ID Term IC HPO ID Term IC

HP:0100285 EMG: impaired neuromuscular

transmission

2.83 HP:0003457 EMG abnormality 1.66 HP:0011804 Abnormality of muscle

physiology

0.55

HP:0002872 Apneic episodes precipitated by

illness, fatigue, stress

3.33 HP:0002104 Apnea 1.79 HP:0002793 Abnormal pattern of

respiration

1.66

HP:0000597 Ophthalmoparesis 1.73 HP:0000496 Abnormality of eye

movement

0.80 HP:0012373 Abnormal eye

physiology

0.54

HP:0000508 Ptosis 1.24 HP:0012373 Abnormal eye

physiology

0.54 HP:0000478 Abnormality of the

eye

0.38

HP:0001290 Generalized hypotonia 1.11 HP:0001252 Muscular hypotonia 0.82 HP:0003808 Abnormal muscle tone 0.68

HP:0003473 Fatigable weakness 2.39 HP:0001324 Muscle weakness 0.99 HP:0011804 Abnormality of muscle

physiology

0.55

HP:0002804 Arthrogryposis multiplex

congenita

1.94 HP:0002803 Congenital

contracture

1.86 HP:0001371 Flexion contracture 1.11

Note: The original standardized set of HPO terms selected for relevance across CMS cases is presented with the IC value for each term generated from

values for annotation and disease numbers available from the HPO website (values downloaded 17 April, 2019). “Parent” and “grandparent” terms were

obtained by going up one and two levels respectively in the HPO hierarchy and IC values generated in the same way.

Abbreviations: CMS, congenital myasthenic syndrome; EMG, electromyogram; HPO, Human Phenotype Ontology; IC, information content.
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on a comparison of how closely the given phenotype matches the

known phenotype of disease genes. The two scores combined are

then used to rank the candidate variants in terms of the likelihood

that each may be causative. The phenotypic relevance score can be

set to base its results on human data only (PhenIX algorithm), model

organism data only (PHIVE), or human, model organism and

interactome data combined (hiPHIVE). Mode of inheritance may be

entered to include only those results compatible with the assumed

inheritance pattern. By providing a score and a ranking for each

variant with each phenotypic combination, the Exomiser results

provide a more sophisticated method for evaluating the effect of

phenotypic annotation beyond the inclusion/exclusion method

provided by the gene list experimental setup.

In the RD‐Connect GPAP, users have the possibility to submit

candidate variants and associated phenotypes to Exomiser for

analysis, but it can only be run with the HPO terms entered by the

submitting clinician, and not with our standardized set of terms. For

this test, therefore, we installed a separate Exomiser instance on a

local server. We extracted the filtered candidate variants from the

RD‐Connect platform in VCF format and used them in Experiments

2a and 2b as follows.

2.8 | Experiment 2a: Variant prioritization using
the Exomiser with its human data comparison
algorithm (PhenIX)

Using the VCFs containing the filtered variants together with the

standardized HPO set described above, we set Exomiser to its

human‐only algorithm (PhenIX) and homozygous recessive inheri-

tance pattern and sequentially ran all possible variations of cases and

HPO terms, from one HPO term to seven terms in the standardized

set in combination with all 29 cases (3,683 separate combinations).

We then repeated the test with the “real” HPO set for each case as

entered by the submitter (29 further experiments). We captured the

output for the known causative variant, including the gene‐variant
score (genomic data alone; no consideration of phenotype), gene‐
pheno score (the match of the phenotype with the gene at gene level,

excluding variant pathogenicity assessment), and gene‐combined

score (combines the variant and phenotype scores to give an overall

assessment of likelihood that the variant is causative). We also

captured the rank of the causative variant in each case.

To assess whether the level of specificity of our annotations

affected the score and rank obtained using the Exomiser algorithm,

we also repeated the analysis using the parent and grandparent

terms, capturing the same scores and ranks for comparison against

those obtained using our original annotations.

2.9 | Experiment 2b: Variant prioritization using
the Exomiser with its human, model organism and
interactome comparison algorithm (hiPHIVE)

We repeated the same experimental setup as for 2a, the only

difference being that Exomiser was set to run with the hiPHIVE

algorithm. The same set of results was captured and compared

against the data for the PhenIX algorithm to provide an assessment

of whether and under what circumstances it is beneficial to include

comparison against model organism and interactome data.

3 | RESULTS

We analyzed the 29 cases using the methods described (see Figure 1

for summary). An overview of the number of variants per exome and

the results of the experiments is provided in Table 3. The detection

rates of the gene list filters are summarized in Figure 2. The results

using the Exomiser algorithms with different HPO combinations are

then further analyzed separately.

3.1 | Overall results and performance of gene list
filters

As expected, before filtering, all exomes started with large numbers of

homozygous variants (mean: 59,236; range: 25,626–81,527). After

filtering by variant class high/moderate/low (i.e., excluding modifiers)

and setting a population frequency filter of 0.001 in ExAC (Lek et al.,

2016) and filtering by homozygous inheritance pattern, the variant

number reduced to a more manageable size (mean: 34 variants; range:

6–102) with the causative variant still present in all cases. In Experiment

1a, filtering with the 2016 version of the neuromuscular gene table as a

virtual panel (416 genes) retained the confirmed causative gene in 23 of

29 cases, resulting in a detection rate of 79.3%. Of the six cases where

the neuromuscular gene table did not identify the causative gene as a

possibility, in three cases it provided no candidates, while in three more

cases it provided other incorrect genes while excluding the correct one

(false positives). The lists based on HPO terms retained the confirmed

causative gene in 22/29 cases (standardized HPO list resulting in a list

of 616 genes) and 23/29 cases (real HPO list for each case), detection

rates of 75.9% and 79.3%, respectively, very similar to the neuromus-

cular gene table results. As expected, the gene list filters were unable to

pick up the new CMS genes in the cohort and this strategy thus

naturally fails in a discovery paradigm. Of the cases where the correct

result was not returned, the standardized HPO list provided false

positives in five of seven cases (standardized list) and two of six cases

(real list). The overall false positive rate is 10.3% for the neuromuscular

gene table list, 17.2% for the standardized HPO list, and 6.8% for the

real HPO list. In 3/29 cases the causative gene was not returned by any

of the three gene‐list methods.

3.2 | Exomiser

The Exomiser results are not directly comparable with the gene list

results, since Exomiser assigns variants a priority score rather than

including or excluding them based on a predefined list. When

considering the variant alone, Exomiser provides a variant score

based on population frequency and pathogenicity inferences. Using

this score and the associated ranking compared with the other
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variants evaluated, we could assess how well Exomiser performed in

the absence of phenotypic data, and thus what added value the

phenotypic data provided. We see (Table 3) that using variant data

alone, the confirmed causative variant ranked in the first position in

18 out of 29 cases (62%). With all seven HPO terms considered and

using the (human data) PhenIX algorithm, this increased to 26 out of

29 cases (89.6%). This indicates that even though we are dealing with

variants that have been prefiltered to be highly plausible, the

addition of phenotypic data does improve the ranking of the correct

variant. Our experimental design then enabled us to look more

deeply into the data to analyze the numbers and combinations of

terms and genes that performed well or poorly, and the difference

between human and animal data.

3.3 | Exomiser with known CMS genes: Using
PhenIX (Experiment 2a)

Analyzing the Exomiser rankings and scores in further detail provided

some findings that allowed us to further stratify the data. Exomiser

results are provided to the user with a ranking according to a combined

score ranging from 0 to 1 that combines both the variant and the

phenotypic score, but the variant‐only score and phenotype‐only score

are also presented. Our results with the PhenIX algorithm showed a

global difference between known CMS genes and those not associated

with CMS, as is to be expected from the gene:phenotype annotations on

which Exomiser bases its human‐data algorithms. We therefore

analyzed the known genes separately and found that although the

variant‐only ranks were already generally high, reflecting a strong

candidate from the genotypic perspective, the ranking of the known

CMS genes did further improve even with a small number of phenotypic

annotations: on adding a single HPO term, the mean rank improved

from 1.6 (variant alone) to 1.09 (one HPO annotation). In addition, we

found that even with these high ranks, adding further HPO terms

progressively improved the rank until all cases had achieved a rank of

1.0 (Figure 3a), which occurred at 6 HPO terms.

However, evaluating not only the rank but also the score itself is

also an important part of the analysis of the results: while the rank is

a measure of the performance relative to the other variants being

analyzed, the score is a measure of that variant’s estimated

pathogenicity and its match with the phenotype completely

independently of the other variants present. Given that a “perfect”

score would be 1.0 and that highly plausible variants in known

disease genes frequently achieve combined scores as high as 0.997, it

is evident that a low score of for example, 0.02 would raise questions

about the likelihood of a variant’s pathogenicity even if it were in first

position in terms of ranking. Across all cases with known CMS genes,

the score with a single HPO annotation ranged from 0.0695 to 0.923

(minimum and maximum mean values). It is evident from these

results that it is perfectly possible for a variant to achieve a top score

with even a single phenotypic annotation if this annotation happened

to “hit the mark” and match the gene:phenotype annotations

perfectly. It is also clear that with fewer annotations, the algorithm

may be misled. We, therefore, also wanted to assess whether

additional phenotypic annotation increased not only the rank but the

likelihood of achieving a plausible score. Setting a value of 0.5 for the

combined score as a reasonable threshold derived from user

experience and combining that with the desirability of achieving a

top rank, we showed that the probability of achieving both a

score > 0.5 and a rank of 1 increased from 0.63 to 0.94 as the number

of HPO annotations increased from one term to seven (Figure 3b).

Extrapolating the trend line with higher HPO numbers suggests that

the probability would reach unity at around nine HPO terms. Figure

3 further suggests that increasing the number of HPO terms to five

or above increases the reliability of the analysis when it comes to

known genes: not that it is not possible to achieve a high rank and

score with fewer, but rather that the outcome is less likely to be

incorrectly skewed by a phenotypic term that happens not to be

associated with the gene in question. In addition to the progressive

increase in the score of the known causative variant with increased

annotation numbers, we observed a similar progressive decrease in

the mean score of the second‐ranked variant when analyzing the

subset of cases where the correct variant was consistently ranked

top. When going from one to seven annotations, the mean score of

the top‐ranked variant increased from 0.50 to 0.57, while that of the

F IGURE 2 Venn diagram of gene list experiments. Experiments
1a, 1b, and 1c each returned a subset of the total number of known
causative variants. Filtering with the 2016 version of the
neuromuscular gene table as a virtual panel (416 genes) retained the

confirmed causative gene in 23 of 29 cases, while the lists based on
HPO terms retained the confirmed causative gene in 22/29 cases
(standardized HPO list resulting in a list of 616 genes) and 23/29

cases (real HPO list for each case) respectively. In 3/29 cases the
causative gene was not returned by any of the three gene‐list
methods. The diagram shows the overlap between the three

methods. HPO, Human Phenotype Ontology; NMD, nonsense‐
mediated decay
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second‐ranked variant decreased from 0.059 to 0.017 (Table S2 and

Figure S1). This shows that additional annotation has the effect of

increasing the confidence in the top result by increasing the distance

between the top and second‐ranked variants.

We then looked into the maximum and minimum scores obtained

across all combinations to assess the variability of the combined

score with different levels of phenotypic annotation. For each case

we plotted the highest and lowest scores achieved with any number

of HPO annotations from the standardized set, as well as the score

achieved with the real submitter‐entered HPO annotations, and the

highest standardized score with a number of HPO terms equal to the

number entered by the submitter. Where the number of submitter‐
entered terms was greater than the maximum available in the

standardized list (seven terms), we used the result for seven. The

results, illustrated in Figure 4, show that while the maximum

achieved with any combination of terms is the best performing

result (highest or equal highest in 100% of cases), the score achieved

with the real HPO terms outperforms the equivalent number of

standardized terms in the majority of cases (78%). This is a useful

check on the use of simulated annotations, as discussed below.

Repeating the analysis using the parent and grandparent terms of

our originally selected terms showed that the mean Exomiser combined

score increased as we moved up in the hierarchy, that is, the broader

terms (lower information content) resulted in a higher score for the

confirmed causative variant. The mean score across the entire cohort

increased from 0.48 to 0.71 to 0.78 (original terms to parent to

grandparent terms). This held true across all numbers of HPO

annotations and when evaluating both the entire cohort and the

subcohort comprised of known CMS genes (Table 4b). However, it was

not reflected in the mean rank of the causative variant, which showed a

global worsening from original to parent to grandparent across all

annotation numbers. When assessed with the known gene subcohort,

our original set of terms had shown a clear trend of improvement in

ranking as number of annotations increased, as described above. This

trend was absent in the analysis of the mean ranks with the parent

terms, while with the grandparent terms the trend was reversed and

showed a slight worsening in mean rank with increasing annotation

levels. Evaluating the scores of the second‐ranked variants in the cohort

where the known causative variant was consistently ranked top showed

that the combined score of the second‐ranked variant also consistently

increased from original to parent to grandparent term use, thus showing

that the use of less specific terms increases the scores of the incorrect

variant as well as the correct one.

3.4 | Genes not previously associated with CMS
and inclusion of model organism and interactome
comparisons (experiment 2b)

The mean rank of the variant‐only score for the genes not previously

associated with CMS (new CMS genes) was 4.25. When assessing

F IGURE 3 Effect of increasing the number of phenotypic annotations. (a) Change in mean rank of causative variant based on Exomiser
PhenIX combined score with increasing number of HPO annotations (known CMS genes). (b) Probability of causative variant achieving a rank of
1 and score > 0.5 (known CMS genes). CMS, congenital myasthenic syndrome; HPO, Human Phenotype Ontology
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these genes with the human data PhenIX filter, the rank did improve

on addition of HPO terms (Table 4a), but not to the same levels as

with the known genes. The improvement was due to the contribution

of the variants in CTNND2, DHCR7, POLG, SLC25A1, and TOR1A, all of

which do have a different human disease associated (Table 1) and

some moderate overlap in phenotype with CMS. It is the cases that

have not previously been associated with the human disease under

examination where one might expect the alternative Exomiser

algorithm, hiPHIVE (which combines human, animal and interactome

data) to be of interest, since the effects of gene defects are often

observed and published in animal models before a human disease

analogue is found, and understanding gene function on the basis of

relationships with other genes in related pathways is a common

approach. We compared the Exomiser combined score obtained with

the PhenIX algorithm with that obtained from the hiPHIVE algorithm

and stratified the results by known versus new CMS gene. Our

results show that mean scores from the known CMS genes increased

from 0.627 to 0.944 when moving from PhenIX to hiPHIVE, while

those from the non‐CMS genes increased from 0.161 to 0.688. All

cases showed this increase individually, and cases that scored in the

lower range with PhenIX tended to increase more substantially with

hiPHIVE, resulting in a convergence of scores at the higher range

(Figure 5). This indicates that including animal and interactome data

does increase the level of evidence about a particular gene:pheno-

type correlation for both known and novel genes. However, an

important caveat is that we did not observe a corresponding

improvement in rank of the known causative variant, because the

score of other variants in the analysis was also increased with the

addition of the animal and interactome data. Across all experiments

and all variants included in the ranking (i.e., every variant considered

and not purely the causative variant), the mean Exomiser combined

score was 0.0389 with PhenIX and 0.334 with hiPHIVE—a tenfold

increase. Thus we see that the Exomiser combined score increases

F IGURE 4 Case‐by‐case comparison of Exomiser PhenIX combined score values for different HPO configurations. The Exomiser combined
score varied substantially depending on the HPO terms used. We show the minimum and maximum scores achieved irrespective of the number
of HPO terms, as well as the score achieved with the clinician‐entered HPO terms for that case, and the maximum score achieved with an
equivalent number of terms from the standardized set. HPO, Human Phenotype Ontology

TABLE 4a Mean results stratified by number of HPO annotations
for known versus new genes

Number of

HPO
annotations

Mean rank of

causative
variant with

PhenIX (known
genes)

Mean rank of

causative
variant with

PhenIX (new
genes)

Probability of

achieving
rank = 1 and

score > 0.5
(known genes)

0 1.6 4.25 N/A

1 1.092857143 2.107142857 0.626984127

2 1.064285714 1.916666667 0.648148148

3 1.045714286 1.914285714 0.684126984

4 1.027142857 1.885714286 0.731746032

5 1.00952381 1.863095238 0.756613757

6 1 1.875 0.817460317

7 1 1.875 0.944444444

Abbreviation: HPO, Human Phenotype Ontology.
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across the board when moving from the PhenIX to the hiPHIVE

algorithm, so it is important not to draw conclusions purely from the

increase.

To find the reasons for the cases in which the algorithms did not

rank our known gene in first position, we need to look at the

individual cases and examine not only the score of the causative gene

but also the other variants present. Looking at the individual genes,

we see that COL13A1 is one where the addition of the animal and

interactome data improved the performance, as the rank improved

from 4 (PhenIX) to 1 (hiPHIVE). This gene is in fact a recent CMS

gene, (Logan et al., 2015) now listed in OMIM and with new cases just

published (Dusl et al., 2019). However, when analyzed against human

data alone the Exomiser gene:pheno score was zero, thus it is

evidently too recent to have been included in the gene:phenotype

correlation used by Exomiser at the time of running the analysis,

while the data from animal models and interactome data apparently

makes the variant much more convincing, resulting in a score

increase from 0.000849 to 0.843. In contrast, the rank of TENM2

worsened from 4 to 10, despite its absolute score increasing from

0.000812 to 0.194. The top scoring gene in this case, RFC3, received

a score of 0.757. Clearly, then, even animal model and interactome

data does not provide a high level of evidence for this gene as a cause

of the phenotype. The third gene to show a change, SLC25A1, was

ranked first by the PhenIX algorithm but second by the hiPHIVE

algorithm. With hiPHIVE, the scores of the top three variants cluster

closely together at 0.749, 0.747, and 0.746, indicating that the

algorithm has very similar levels of evidence for each. Like COL13A1,

SLC25A1 is a relatively recent CMS gene (Chaouch et al., 2014) and

the evidence in databases is lacking. However, when annotations are

added, Exomiser’s performance does improve correspondingly. We

ascertained that COL13A1 annotations had been added to the HPO

gene:phenotype annotations after we had performed our initial

experiments and therefore chose to re‐run the experiment for

COL13A1 with seven HPO terms and the PhenIX algorithm using the

February, 2019 annotation set. This resulted in a highly convincing

rank of 1 and combined score of 0.998 for our known causative

variant. This chance opportunity to test the effect of the addition of

highly relevant annotations confirms the ability of the Exomiser

algorithm to respond when the relevant data is available to it.

4 | DISCUSSION

From a practical user perspective, we are interested in how to

maximize the likelihood that a user will be able to correctly identify

the causative variant, and to minimize the time this takes. Our

variant class and population frequency filters dramatically reduced

the number of variants under consideration, and we consider this to

be a necessary first step before considering phenotype. Our

intentional selection of homozygous recessive cases, which was done

to restrict the genotypic variables in our experiment set, was an

added constraint on variant numbers: we would expect larger

numbers of variants to remain after the variant‐based filtering ifT
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we had chosen cases with a dominant or compound heterozygous

inheritance pattern. Additional variant‐based filters such as those

based on pathogenicity inferences are often also applied either

before or after phenotype‐based filtering, but we did not use these to

observe the tool performance in the absence of this restriction.

Once we arrive at consideration of the phenotype, our results

confirm that as a first quick phenotype‐based filter, using a virtual

panel like the neuromuscular gene table is an effective strategy to

rapidly determine whether there are candidate variants in a gene

already associated with a related disease. This is an approach familiar

to many clinicians from a diagnostics‐based workflow and panel

sequencing, where a diagnosis will typically only be returned if it is in

a confirmed disease gene. While we cannot extrapolate from our

highly constrained CMS cohort to other rare diseases, it is

noteworthy that in our case the HPO‐based gene list provides

comparable detection rates to the curated gene list. This is an

important finding because not all disease areas have a comparable

curated and regularly updated gene list available, and in these cases

the option of generating a customized HPO‐based phenotypic filter

may be particularly valuable. Other studies with diagnostic exomes in

a wider range of phenotypes have found HPO‐based filtering to have

high detection rates for known genes, with one study on 55 cases

finding this strategy included the correct variant among the returned

results in 100% of cases (Kernohan et al., 2018).

It is worth mentioning here that curated disease‐gene lists like

the neuromuscular gene table tend to be updated only periodically

and thus may often lag behind the latest discoveries by months or

years, and this can affect results: two of our six negative results

(COL13A1 and SLC25A1), where the confirmed causative variant was

not returned, would have become positive if the very latest version

of the neuromuscular gene table had been used, but this is not yet

available within the RD‐Connect system owing to the recency of the

update (December, 2018; Bonne, Rivier, & Hamroun, 2018). Despite

being generated on the fly from the phenotypic input, the HPO‐based

F IGURE 5 Comparison of combined score between PhenIX and hiPHIVE algorithms. (a) Change in combined score when changing algorithm
from PhenIX to hiPHIVE: known CMS genes. (b) Change in combined score when changing algorithm from PhenIX to hiPHIVE: genes not

previously associated with CMS. CMS, congenital myasthenic syndrome
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list is not immune to this effect, and also returned negative results in

the case of some more recent known disease genes. This may be

explained by the fact that the correlation between the phenotype

and the gene still relies on curated gene:phenotype annotations in

online databases, and while the annotations produced by the HPO

developers are updated monthly, they nevertheless rely on extrac-

tion of data from published literature and online genetics databases

and a delay is to be expected. Disease genes with atypical

phenotypes are also less likely to be captured by either method, as

they will not have been included in the curation effort for a domain‐
specific list and may not have been annotated with the relevant

phenotype for gene:phenotype correlation.

It is important to note that in cases where more than one result is

returned, neither the disease‐gene list nor the HPO‐based list

method makes any attempt to rank or otherwise quantify the

variants returned by likelihood of causality; they merely express

whether a variant has been found in a gene associated with the

disease phenotype or not. The user must then assess likelihood by

following up each candidate by other methods such as pathogenicity

prediction using in silico tools, segregation analysis where family

members are available, and Sanger sequencing confirmation. Within

our use case of the RD‐Connect interface, segregation analysis is

possible for all family members whose data is in the system, and the

results of pathogenicity prediction tools such as PolyPhen2,

MutationTaster, and SIFT and the CADD score for the variant are

presented to the user alongside the variant results, making this

further refinement a fairly rapid process, but this may be a more

manual process where an analysis system of this kind is not in use.

While over half of cases returned more than one candidate for

further investigation, we did not consider this an inaccurate result in

itself, since it is standard practice to follow up multiple candidates.

However, the cases in which candidates were returned but the

correct candidate was not among them, which we have termed false

positives in the results above, are worthy of note when using a gene

list filter, since it is more misleading for the user if incorrect results

are returned than if nothing is returned—the latter clearly shows that

further investigation of other genes is necessary, while false positives

may lead the user further down the wrong track.

Exomiser is a more flexible tool than a simple gene‐list filter. By
combining an assessment of the variant pathogenicity with an

algorithm for weighting based on phenotypic matching, it provides

the user with more specific data on which to base further

investigations. When using human data alone, it performs very well

with known genes, ranking the known causative variant top in 100%

of cases when run with six or more HPO terms. It is unavoidably still

affected by the same biases that affect the gene‐list filters, in that a

gene without previous human disease association cannot achieve a

high phenotypic score. However, it is less likely to exclude the

causative variant completely even when it does not rank it highly. Its

results may be skewed with smaller numbers of phenotypic

annotations, as we see in the variation in combined score between

0.007 and 0.922 (average minimum‐maximum across all known genes

when run with a single phenotypic annotation). This variation

presumably occurs because the algorithm returns a high result when

the single annotation happens to perfectly match a database

annotation and a low result when the annotation is not present.

Adding more phenotypic annotations decreases the likelihood of any

single mismatch throwing the algorithm off.

Exomiser’s algorithm is particularly helpful in less straightforward

cases, with newer genes or those with an unusual phenotype. Of the

nine cases where the correct variant was excluded by at least one of the

gene list filters, Exomiser with its phenotypic rating nevertheless ranked

that variant top in six cases, and if we extend this to both PhenIX and

hiPHIVE and look at both top and second‐ranked variants, then

Exomiser met the criteria in eight cases out of nine. Given that in a

standard workflow the user would be likely to follow up at least the top

three cases at minimum, this is a strong result for cases with less

common diagnostic variants. In our study, all the cases with known

genes (both the typical CMS genes as well as the other disease genes

with overlapping phenotypes) were confirmed by the treating clinician

including segregation and full phenotype review. This is also true of the

newer CMS genes, COL13A1 and SLC25A1. The genes that have not

been related to human disease remain candidate genes until a second,

confirmatory family with the same genetic defect has been identified

and functional assays have been carried out. Here, too, phenotypic

approaches are also increasingly used in algorithms to assess similarity

between patients (Haendel, Chute, & Robinson, 2018) and “match-

maker” APIs attempt to use this method to find confirmatory cases

across multiple databases (Buske, Schiettecatte et al., 2015).

From the end‐user perspective it is helpful to know how many

phenotypic annotations are required for a reliable outcome. Varying

the number of HPO terms from the standardized list in the Exomiser

analysis enabled us to show that even a single HPO annotation

improved the mean ranking of the variant over that obtained using

genotypic data alone, but that the algorithm was susceptible to being

skewed by insufficient data. In our cohort, annotation with six or

more terms ranked the known causative variant top in all cases when

dealing with known genes, and with seven terms the probability of

achieving both a rank of 1 and a combined score above 0.5 was 0.94,

thus suggesting that while it is desirable to annotate with more than

five terms, going above nine may not add much value, at least in our

disease area. However, since we also showed that repeating the

analysis with less specific annotation sets slightly decreased the

mean rank obtained and reversed the trend of improving rank with

increasing annotation even while the mean combined score in-

creased, it is evident that the choice of specificity of annotation does

make a difference, which is important for the clinical annotator to

know from a practical perspective. Our original terms were chosen

without explicit reference to their IC but rather as a real example of

terms that CMS experts would frequently use in clinical practice, and

from this limited experiment it would appear that this may achieve

better ranking results than requesting annotators to intentionally

select broader terms. Our analysis of the second‐ranked variants

showed that the use of less specific annotation increased the scores

of incorrect variants as well as the known causative variant,

presumably because less specific annotation acts as more of a
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general “catch‐all.” This further demonstrates that the absolute score

must be interpreted with caution and always viewed in the context of

the scores and ranks of the other variants. These points would need

further evaluation in a larger cohort to make confident recommenda-

tions, but from our limited data set it would appear that greater

specificity in annotation is preferable and that highly unspecific terms

may even lead to poorer performance. It should be noted that the

algorithm still ranked the known causative variant top in the majority

of cases even with the use of less specific terms, which is indicative of

its robustness.

Our study intentionally restricted the cohort evaluated to be able to

apply a standard set of phenotypic annotations across all cases and

to reduce the number of genotypic variables. This limits its applicability

to other disease groups and other inheritance patterns. Further

research to extend the concept will be of value and may consist both

in repeating the phenotypic variation tests in a similarly limited cohort

in a different disease area and in assessing a larger cohort of unsolved

cases without limitation to a disease area using only the clinician‐
entered phenotypic annotations and not a controlled set as in our study.

Further, while our study did intentionally include a small number of

novel CMS genes to enable a comparison between a diagnostic

paradigm with known genes and a discovery paradigm with novel

genes, this did not make up a large number of cases in our study, and

only two had no prior human disease association at all. It would thus be

valuable to perform a trial of Exomiser with its hiPHIVE algorithm on a

larger cohort of cases solved for the first time with a novel gene. This

may become possible through the case aggregation taking place in RD‐
Connect through projects like BBMRI‐LPC, Solve‐RD (https://solve‐rd.
eu) and the European Joint Programme for Rare Disease (http://www.

ejprarediseases.org/), and internationally in Care4Rare Solve (Boycott

et al., 2017). These projects also aim to solve some of the most

challenging unsolved rare disease cases, and good phenotypic annota-

tion is expected to play an important role. It is likely to be useful for

conditions with suspected dominant or sporadic inheritance, which

usually have a large number of rare heterozygous variants that need to

be compared and prioritized. Simulating the optimal number of HPO

terms for these and other more complex inheritance patterns is

warranted but was beyond the scope of this study.

In the discovery paradigm, there are of course other in silico

strategies for variant prioritization open to the researcher, including

assessment of tissue expression and protein:protein interactions, other

tools incorporating phenotype (Pengelly et al., 2017), and strategies for

uncovering implicit associations between gene and functional effects

even when these have not yet been published through direct evidence

(Hettne et al., 2016). The tools studied here may only form a part of the

analysis strategy in such cases, and functional analysis in model

organisms as well as confirmatory cases from second families remains

the mainstay of confirming a novel gene discovery. However, we have

shown that phenotype is a highly valuable prioritization strategy in the

diagnostic paradigm, and that it also adds value in the discovery

paradigm when Exomiser is used. These tools depend on annotation of

gene:phenotype relationships in databases derived from associations

curated from the published literature. New methods for extracting and

packaging these relationships such as those offered by phenopackets

(Mungall, 2016) will improve the performance of the tools by increasing

the data they use as input, particularly when combined with the rapid

growth of databases like RD‐Connect where genomic data is associated

with HPO‐coded phenotypic profiles. Both in the discovery paradigm

and in cases with nonspecific or unusual phenotypic presentation, the

use of Exomiser provides added value over a simple gene list filter, since

it provides a more sophisticated prioritization method rather than

simple inclusion or exclusion. In all cases, the benefit of the tools is the

way they enable the user to filter out extraneous information and

quickly approach a small subset of strong candidates for follow‐up,
rather than replacing the human user in the diagnostic process. Overall,

our results therefore still speak to the necessity for expert evaluation in

all cases, both at the initial patient encounter when phenotyping and

coding is performed as well as during the interpretation and re‐
evaluation of sequencing data in the context of phenotype.
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