
Efficient Re-computation of Big Data Analytics Processes in the Presence of
Changes: Computational Framework, Reference Architecture, and Applications

(Invited Paper)

Paolo Missier and Jacek Cała
School of Computing
Newcastle University

Newcastle upon Tyne, UK
Paolo.Missier@ncl.ac.uk, Jacek.Cala@ncl.ac.uk

Abstract—Insights generated from Big Data through ana-
lytics processes are often unstable over time and thus lose
their value, as the analysis typically depends on elements that
change and evolve dynamically. However, the cost of having to
periodically “redo” computationally expensive data analytics
is not normally taken into account when assessing the benefits
of the outcomes. The ReComp project addresses the problem
of efficiently re-computing, all or in part, outcomes from
complex analytical processes in response to some of the changes
that occur to process dependencies. While such dependencies
may include application and system libraries, as well as the
deployment environment, ReComp is focused exclusively on
changes to reference datasets as well as to the original inputs.
Our hypothesis is that an efficient re-computation strategy
requires the ability to (i) observe and quantify data changes,
(ii) estimate the impact of those changes on a population of
prior outcomes, (iii) identify the minimal process fragments
that can restore the currency of the impacted outcomes, and
(iv) selectively drive their refresh. In this paper we present
a generic framework that addresses these requirements, and
show how it can be customised to operate on two case studies
of very diverse domains, namely genomics and geosciences. We
discuss lessons learnt and outline the next steps towards the
ReComp vision.

Keywords-process recomputation; recomputation optimisa-
tion; provenance; data analysis; black-box process; workflow

I. INTRODUCTION

In many areas of science and business, knowledge insights
produced using Big Data analytics are valuable, but often
unstable over time. This is because the processes used to
produce such knowledge outcomes are sensitive to multiple
types of changes that may occur to the reference data
sources, application and system libraries used by the process,
as well as to the raw input data itself. In high throughput
genomics, for instance, where the processing time for a
batch of whole-genomes is measured in tens of HPC cluster
hours [1], the pipelines depend both on algorithm packages
that are periodically updated (e.g. GATK1), as well as on
reference datasets that evolve rapidly over time (for instance,
the well-known dbSNP variants database2).

1https://software.broadinstitute.org/gatk/
2https://www.ncbi.nlm.nih.gov/snp/

Failing to react to these changes leaves the clinician in
the genetic diagnostic lab exposed to the risk of using
obsolete results for important decision-making, while the
genetics researcher will be missing out on the opportunity
to improve their experimental results. On the other hand,
over-reacting to each and every change is likely inefficient,
as most changes may have little real impact on the original
outcomes, in terms of updating a diagnosis or changing a
business decision.

In this paper we address the problem of efficiently
re-computing unstable analytics outcomes in response to
changes in the elements that contributed to their original
computation, namely inputs, reference datasets, tools, li-
braries, and deployment environment.

We suggest that an ideal strategy that avoids unneces-
sary re-computation requires the ability to (i) observe and
quantify changes, (ii) estimate the impact of those changes
on the original outcomes, and (iii) identify the process
fragments that are dependent on the changed element. To
formalise such a strategy, we have developed ReComp, a
meta-process designed to harness an underlying analytics
process P . ReComp accepts a sequence of input changes and
provides the data analyst with do/don’t re-compute decisions
in response to each of those changes. ReComp is generic in
that knowledge of (i) and (ii) must be provided for each
type of underlying process P and for the specific types of
data handled by P , and (iii) is computed using a description
of P ’s structure, along with the recorded history of its past
executions, i.e., the provenance of P ’s prior outcomes. Note
that, for the purpose of this paper, we focus exclusively
on changes in the reference datasets, while other types of
changes are beyond the scope of this work and are still being
investigated.

A. Paper contributions

Firstly, we provide a detailed account of the ReComp
computational model as well as of the reference technical
architecture of its domain-agnostic, customisable framework.
Secondly, to illustrate ReComp’s customisation we have
chosen two case studies taken from two very different do-
mains of science and engineering, namely a simple process

for the interpretation of human genetic variants to help the
diagnosis of genetic diseases, and a simulation of flood
events in urban areas. For each of these two case studies, we
provide a brief description of data diff and impact estimation
functions for each of the two case studies.

Finally, we discuss lessons learnt from the customisation
exercise. Realistically, often only imperfect knowledge of (i-
iii) above will be available in practice, limiting the accuracy
of the resulting re-computation decisions. In particular, a
black-box process that does not reveal its internal structure
makes it difficult to achieve (iii), namely identify the sub-
process fragments that need re-computing. We report on
the balance between the accuracy of data diff and impact
estimation functions designed for a particular process, and
the resulting accuracy of the resulting ReComp decisions.

B. Case studies

Our case studies provide a practical motivation for this
work, by giving examples of two user processes. The first
aims to control re-computation of a black-box, compute-
intensive simulation process used in flood modelling. The
second shows the use of ReComp to manage a data analytics
workflow used to help the expert geneticist’s interpretation
of human variants for genetic diagnostic purposes. This is a
simple grey-box process, that is, a workflow that only reveals
its internal structure at the level of connections amongst
its component workflow blocks. The two cases differ in
structure of their processes, the computational complexity,
data dependencies and in their ability to capture data and
process provenance. They will help us show the flexibility
in how ReComp, with little adaptation, may be used in these
diverse environments.

1) Black-box process: City Catchment Analysis Toolkit
(CityCAT) [2] is a modelling software developed at Newcas-
tle University to simulate the risks of floods in the extreme
weather conditions. It uses a coupled 1D/2D hydraulic
model and requires extensive amount of processing power
to generate a set of time frames that show water flowing
through the selected urban area. Inputs to the simulation, like
the buildings and infrastructure of an urban area, undergo
continuous change, and so it is crucial to make a decision
whether to save costs and rely on a past version of simulation
outputs, or update the inputs and redo the simulation and
flood risk analysis again.

2) Grey-box process: Simple Variant Interpretation
(SVI) [3] is a tool that aims to identify variants in human
genome that may be responsible for an individual’s pheno-
type, i.e. the manifestation of a suspected genetic disease.
Recently, it has been implemented as a workflow on e-Sci-
ence Central (e-SC) – our in-house workflow management
system (WfMS) [4], [5].

The SVI workflow relies on two external reference
databases: one, called OMIM GeneMap, translates pheno-
type description into a broad set of related genes. The

other, NCBI ClinVar, is used to determine whether a
specific genetic variation may have deleterious effects on
the patient’s genes function. Using the databases, SVI takes
annotated patient variants and suspected phenotype and clas-
sifies the variants according to a simple traffic light system
of the red, green and amber colour to denote pathogenic,
benign and variants of unknown or uncertain pathogenicity,
respectively.

The reference databases are updated on a daily and
monthly basis, respectively, and these changes may poten-
tially affect a large cohort of patients’ genomes analysed.
Thus, the key question is when, if ever, a particular patient
analysis should be rerun to ensure it reflects the most up-to-
date knowledge of genetic mutations but without incurring
unnecessary costs.

C. Overview of the approach

Updated

outcomes

Compute/

quantify

changes

Input and

reference

data Monitor

changes

Optimise/

prioritise

outcomes

Estimate

the impact

of changes

and cost of

refresh

Monitor

cost, collect

provenance &

knowledge

History DB

Re-

compute

selected

outcomes

Figure 1. The main loop in the ReComp framework that handles selective
re-computation of the user process.

ReComp defines a meta-process that is able to monitor
and control an underlying data-intensive process P . A high-
level functional view of such meta-process is shown in
Fig. 1. Firstly, we assume that P ’s execution is provenance-
aware, that is, a provenance trace is generated every time
P is executed. ReComp acquires all such traces and stores
them into its History Database (HDB). Note that traces
can be either very granular or very high-level depending
on the process execution environment. ReComp is tolerant
to varying provenance detail, as explained in Sec. III-B,
however a completely black-box process is going to be less
amenable to optimisation.
ReComp’s input consists of notifications of changes that

have occurred in any of P ’s data dependencies, namely
reference datasets as well as inputs, which are provided
by source-specific monitoring facilities (for instance, we
assume that ReComp can be notified of changes in the
ClinVar DB). ReComp progresses through a loop that

involves (i) quantifying the extent of the changes, (ii) esti-
mating their impact on a cohort of past outcomes (each being
the result of one execution instance and documented by its
provenance) and selecting those for re-execution, (iii) a step
to identify the minimal process fragments to re-execute for
each of the selected instances, followed finally by requests
to the deployed instances to re-execute as needed. Note that
HDB is used throughout, as explained later (Sec. III-B).

The Core architecture is presented in Sec. III. Examples
of process-specific elements, namely data-diff and impact
estimation functions, are given in Sec. IV.

II. RELATED WORK

To the best of out knowledge, the most recent account on
state-of-the-art approaches to the general problem addressed
by ReComp is the 2018 report on the first workshop on
Problems and techniques for Incremental Re-computation:
provenance and beyond [6]. Workshop contributions covered
the spectrum of Re-computation, defined as “the repeated
execution of a process, all or in parts, under slightly different
inputs or configuration each time, and making use of one or
more prior execution baselines as a basis for optimization”.

Within this context, work that makes a connection be-
tween re-computation and process provenance is perhaps
the closest to ReComp, specifically Ashish Gehani’s talk
on “Supporting Incremental Re-Computation with Whole
System Provenance: Issues and Approaches”. The approach
is centred on SPADE, a framework for capturing fine-
grained system-level provenance information that can later
be used to improve process re-execution [7]. A related, but
older approach enables smart re-run of Kepler workflows
(SRM) [8]. The idea is to react to changes in one or more
parameters in a workflow actor by only executing those parts
of the workflow that are affected by the changes, taking data
dependencies into account. The approach relies on coarse-
grain provenance traces and intermediate data collected and
stored during workflow execution, and is derived from a
similar approach implemented in VisTrails [9]. Both works
inspired ReComp’s partial re-execution mechanism. On one
hand it relies on provenance collected from workflow runs,
similar to SRM, while on the other hand, to calculate the
minimal re-computation subgraph we use the data version-
ing mechanism provided by e-SC, which is closer to file
versioning in SPADE. Although the idea is not new, ours is
the first implementation to operate off the e-SC workflow
model, and it plays only a partial role in a more ambitious
picture, where we seek to prioritise re-execution within a
large collection of prior outcomes.

Slightly more peripheral to ReComp is the area of Incre-
mental computation, which can be viewed as one of the ways
re-computation can be optimised, however it is arguably
more general, as it does not require a prior baseline because
a first time executions may be incremental. Relatively older
research [10], [11] has addressed the problem of reacting

effectively to incremental changes in the program’s input
data. These techniques are based on dependency graphs,
memoisation and partial evaluation – concepts similar to
what we use to re-compute our process, yet applied on the
scale of a single algorithm or program.

A number of incremental computation solutions has also
been applied to Big Data problems. Most notable are Dryad-
Inc [12], Haloop [13] and Incoop [14] and more recently
iiHadoop [15]. Again, the main difference between these
and our approach is that we consider re-computation in
broader sense, not limited to only a single algorithm or
execution for which input data has been updated. We aim
to reduce at the same time the number of past execu-
tions which need re-computation, as well as the amount
of processing required within each execution. To achieve
this goal, other more recent incremental techniques can in
principle be considered as the basis for re-execution. These
include differential dataflows [16] and parallel incremental
computation, implemented in iThreads [17].

III. RECOMP ARCHITECTURE

A. External services

A high level view of the ReComp architecture is shown
in Fig. 2. The Core consists of the ReComp Loop service
and the History Database (HDB), and is supported by three
external services, for data-diff, impact functions, and selec-
tive re-execution. Any realisation of ReComp for a specific
user-defined process and dataset will need to provide an im-
plementation for the corresponding three service interfaces,
defined in List. 1. Specifically, compute_difference
calculates the difference between two datasets that flow
through a selected input, called a process input port,
during two subsequent executions. The result is a data
structure, called difference set, which is then used
by the compute_impact service in conjunction with a
past_output, to provide an estimate of the impact of
the changes on that output. In the current implementation,
impact is binary (either there is some impact, or there is
none). Finally, the reexecute_process function is used
to rerun a past process execution using a special reference
structure which we call the restart tree. The tree, presented in
detail in [18], describes how different parts of both simple
and complex hierarchical processes have been affected by
given data changes.

We follow a common dataflow abstraction for compu-
tation, where each computation component has input and
output ports, and ports are connected through data channels
to form a computation graph. Following this abstraction,
input and output data are bound to input/output ports
during execution. As there are potentially multiple inputs
and outputs, including intermediate outputs from some of
the components, multiple compute_difference and
compute_impact services can be deployed, each associ-
ated with a different input and output port, respectively (but

Listing 1. The interface of the three external functions used by the ReComp
Loop service.
function compute_difference(old_data, new_data,

↪→ config) : difference_sets

function compute_impact(past_output,
↪→ difference_sets : array, context_data :
↪→ array, config) : {0, 1}

function reexecute_process(restart_tree, config)
↪→ : execution_id

not all ports must have an impact functions associated with
them). The ReComp Core will have access to the bindings of
data to ports through the provenance trace. It is, however, the
responsibility of the process runtime environment to capture
that information.

ReComp Core

HDB
«ProvONE store»

Tabular-Diff
Service

Tabular-Diff
Service

Difference
Function

ReExecution
Service A

ReExecution
Service A

ReExecution
Function

Impact
Service B
Impact

Service B
Impact

Function

ReComp
Loop

User
Process

Runtime Environment

Inputs Outputs

Interface
DiffService

Interface
ImpactService

Interface
ReExecService

Process and data provenance

Figure 2. The two core components of the ReComp framework, the
ReComp Loop service and History DataBase, control the re-computation
of a user-defined process via a set of external functions.

B. The History Database (HDB)

HDB is a provenance store and query service used
to manage coarse-grain provenance facts about data and
processes. To store the facts we use the ProvONE data
model [19], an extension of the generic PROV standard [20],
that enables us to capture information about simple black-
box processes as well as more complex workflow structures.
Additionally, we use HDB to maintain ReComp-specific
process annotations such as references to external services
and their configuration parameters. Key elements of the
model are the document and execution statements,
which are equivalent to entity and activity in PROV.
These are used to describe information about data artifacts
and processes involved in generating the artifacts, the so
called retrospective provenance.

Listing 2. An example of three requests to retrieve, store and update
simple provenance facts in HDB.

GET /hdb/document?id=doc-0

PUT /hdb/execution?id=ex-1&startTime=2019-05-13

POST /hdb/used?id=usg-2&opType=update
{

"prov:activity: "ex-1",
"prov:entity": "doc-0"

}

Listing 3. An example of a HDB query to retrieve port information related
to a specific usage statement.

POST /hdb/query
{

"query": "used(_UId, ’ex-1’, ’doc-0’, _, _),
↪→ hadInPort(_UId, PId), port(PId, PAttrs)"

}

What distinguishes ProvONE from PROV, however, is
its ability to capture also prospective provenance, i.e. the
workflow structure of the process that generates a data arti-
fact. This is in contrast to retrospective provenance, which
contains a trace of a specific past process execution and
how it consumed particular input data. ProvONE, instead,
includes program and port statements which may be used
to define the structure of the user process, its inputs and out-
put ports. We use these statements to instrument the process
so the external functions can be attached appropriately.

To store and retrieve provenance information, HDB ex-
poses a dedicated two-level API. The basic interface operates
on simple provenance facts (List. 2), whereas the more
generic interface can execute user-defined queries (List. 3).
The queries are expressed using Prolog, the underlying
implementation language of HDB. Prolog offers great flex-
ibility in constructing queries and also enables stored rules
to be invoked. For example, query in List. 3 retrieves
information about all ports through which execution ex-1
used document doc-0. That information is required to
obtain the details of a difference service attached to process
ports. We discuss the interaction between HDB and other
components of the framework in the following section.

C. The ReComp Loop Service

The ReComp Loop service coordinates the overall
re-computation of processes. It reacts to the change events,
uses difference and impact services to analyse the impact
of the changes on past executions and submits a subset of
affected executions to rerun.

The sequence diagram in Fig. 3 shows how the Loop
service reaches a recomp/no-recomp decision for a given
data change and then triggers re-execution, by interacting
with the external services. The change notification, in the

form of a PROV data derivation statement, is stored in
the HDB and triggers the Loop service. The notions of
recomputation front and restart trees are presented in detail
in [18] and are not further discussed here. Suffice it to
say that each restart tree is a composite process reference
considered as an atomic unit of possible re-computation.

In the loop, each restart tree is considered in turn.
For each tree all referenced compute_difference ser-
vices are invoked (cf. “for all annotated ports”). Then
for each non-empty data difference set, all the available
compute_impact functions found downstream of the
related port are invoked. If all the functions detect no impact,
that port is removed from the tree and the tree is pruned. The
overall result of this impact analysis run for each restart tree
is a decision whether or not the referenced process should be
recomputed. If after pruning the tree remains non-empty, the
decision is positive and the execution service is activated.

IV. CUSTOMIZING THE RECOMP FRAMEWORK

In order to use the ReComp framework to control the
recomputation of a user-defined process a few steps need
to be taken into account initally (Fig. 4). Of these the two
most important are to understand input data changes and
the impact they may have on process outputs. Once this
is achieved, the external functions to compute differences,
impact and re-execute the process are needed. Finally, the
process needs to be annotated to link the functions to specific
fragments of the process, so ReComp can take control over
its re-computation.

A. Understanding Changes and Impact

Although changes in data and their impact on past outputs
are, usually, very specific to each user-defined process, a
common aspect behind re-computation of any process is
the frequency of data changes and how deep impact they
have on process outputs. For example, if data changes
are frequent and only a small subset of them is likely to
affect outputs, there is an opportunity to optimise re-com-
putation. Conversely, if every change invalidates previous
result completely, ReComp can only be used to automate
re-computation but will not be able to reduce its cost.

To illustrate these points, in Fig. 5 we show the impact
of changes of eight consecutive versions of the ClinVar
database (08/15–03/16) on the outputs of the SVI workflow
for three patient samples classified using ClinVar version
07/15. The black square denotes a significant change in sam-
ple classification, whereas dots show insignificant changes
or no change at all. In this example, taken from our larger
study [4], a significant change is one that causes the patient’s
diagnosis to change, i.e., either because a new pathogenic
variant has been discovered, or because a patient’s variant
previously thought to be pathogenic has now been found
to be benign. Other, more subtle measures of impact are
possible, too. Importantly, however, in these three cases and

given a function which can accurately estimate the impact
as defined above, ReComp may reduce the number of SVI
re-executions from 24 to only 5.

However simple this exploratory analysis, it becomes a
clear and strong motivation to follow the proposed approach
and implement the ReComp external functions. Later in this
paper we briefly outline a few examples of a difference and
impact functions. For now, however, we focus on the final
step needed to bring a process under ReComp control – the
annotations.

B. Process Annotations

For ReComp to be able to control re-computation we have
to instrument the process of interest, to let our framework
know how data difference and impact may be computed and
how the process may be rerun. List. 4 shows an example of
a hypothetical program with one input and one output port,
annotated as needed by ReComp.

The first statement in the example specifies program
prog-0 and identifies a service that can rerun it (lines
1–4). The three ReComp-specific annotations refer to
(1) the interface implemented by the given service, (2)
the location where the service is available, and (3) op-
tional configuration that is passed when making a ser-
vice call, respectively. The service implements interface
uk.org.recomp.ReExecService that declares func-
tion reexecute_process presented earlier in List. 1.

Then, the listing describes two ports. Input ports, like
input-0 in lines 6–10, are annotated in a way very similar
to programs. They link a port with a service that imple-
ments the compute_difference function, such as the
uk.org.recomp.DiffService interface. Annotation
of output ports is slightly extended, however, because impact
functions need more details to run. Lines 12–16 are equiva-
lent to the previous program and input port annotations. Line
17 refers to a list of input ports which the impact function
needs a difference set of (port input-0 in this example).
List 18 refers to the list of context ports, i.e. input ports
which data is passed to the function as-is, without computing
difference. In the SVI use case this may be, for example, a
patient phenotype hypothesis which determines a subset of
genes an impact function needs to consider.

The annotations declare also configuration parameters
defined in documents *-config-0. These are function-
specific parameters, like an impact threshold value in the
flood modelling use case, which the Loop service passes on
to the function every time a call is made.

C. Binding between Program, Port and Past Executions

As shown above, the effort to annotate a process, such
that ReComp is able to control its re-computation, is rather
minimal. We only need to declare which ports have a
difference or impact function attached to them and add

loop

:LoopSvc

annotate restart-tree

:HDB

store fact

wasDerivedFrom(,)D1 D0

compute_diff(,)D0 D1

wasDerivedFrom(,)D1 D0

diff_set = {added, ...}

query: recomputation front

recomp-front

query: usage, hadInPort,...

port(,)P Attrs

:DiffSvc :ImpactSvc

compute_impact(,diff_sets, ...)O0

impact ∈ {0, 1}

:ReExecSvc

loop

[for all restart-trees]

[for all annotated ports]

loop
[for all diff_set]≠ ∅

reexecute_process(restart-tree, cfg)

return

query: wasAssociatedWith

query: program

query: data lineage

query: impact info

[restart-tree]≠ ∅

opt

Figure 3. Key interactions between the ReComp Loop service and other framework components.

1. Understand
data changes

2b. Implement
difference
function(s)

2a. Understand
the impact of
changes

3. Implement
impact
function(s)

4. Implement process
re-execution
function

5. Annotate
the process

6. Control process
re-computation
with ReComp

Figure 4. Common steps to harness a user-defined process with the ReComp framework.

ClinVar ver-

sion

Patient Id

08/15

09/15

10/15

11/15

12/15

01/16

02/16

03/16

C_0051 ■ · · · · · ■ ·

C_0065 ■ · · · · · · ■

D_1136 · · ■ · · · · ·

Figure 5. Impact of changes in the ClinVar database
on the output of the SVI workflow.

a statement with a reference to a service that is able to
re-execute the process.

As mentioned earlier, however, we assume that the process
runtime environment is able to accurately capture retrospec-
tive provenance, i.e. the steps involved in the generation
of past process outputs. ReComp needs retrospective prove-
nance to be able to bind past process executions with relevant
ports and programs, and so be able to find the annotations.

This binding is possible only if the runtime environment is

able to capture port related details during process execution.
Fig. 6 shows a relevant part of the ProvONE conceptual
model which links together the retrospective and prospective
representation of the user process. Whilst this requirement
is not very stringent and many environments, especially
workflow management systems, can fulfil it, our framework
will only be able to control the re-computation of a given
process if the above information is captured using the
ProvONE statements. That may need an implementation of

Listing 4. Annotations attached to a process and its two ports using the
ProvONE data model and ReComp specific attributes.

1 program(prog-0, [

2 recomp:reexec-interface =

↪→ "uk.org.recomp.ReExecService",

3 recomp:reexec-svc-url = "http://...",

4 recomp:reexec-config = "reexec-config-0"]).

6 port(input-0, [

7 prov:label = "An input port",

8 recomp:diff-interface =

↪→ "uk.org.recomp.DiffService",

9 recomp:diff-svc-url = "http://...",

10 recomp:diff-config = "diff-config-0"]).

12 port(output-0, [

13 prov:label = "An output port",

14 recomp:impact-interface =

↪→ "uk.org.recomp.ImpactService",

15 recomp:impact-svc-url = "http://...",

16 recomp:impact-config = "impact-config-0"],

17 recomp:impact-input-ports = ["input-0"],

18 recomp:impact-context-ports = []).

20 hasInPort(prog-0, input-0).

21 hasOutPort(prog-0, output-0).

23 document(diff-config-0, [...]).

24 document(impact-config-0, [...]).

25 document(reexec-config-0, [...]).

Figure 6. A part of the ProvONE conceptual model relevant to ReComp,
which binds the retrospective and prospective provenance representation.

a provenance wrapper or adapter component as discussed
later.

V. APPLICATIONS TO THE SELECTED CASE STUDIES

In this paper we focus on two very distinct processes: a
compute intensive flood modelling simulation tool (black-
box) and a data analysis workflow that helps classify
pathogenicity of patient genetic variations (grey-box).

A. Black-box Process – Flood Modelling

CityCAT is a home-grown tool developed at Newcastle
University, which takes a number of user inputs including
the digital elevation model (DEM), set of building and
green area polygons, configuration of the rainfall event

ReExecutionSvc

ImpactSvc
«Azure Blob API» CityCAT

«Windows exec.»

CityCAT runner
service

HDBSvc

ReComp
Core

Common Data
Store

«Azure BlobStore»

GML diff
service «HTTP»

CityCAT
impact
service

«HTTP»

DifferenceSvc

«HTTP» CityCAT
ReComp wrapper

«Python script»

Figure 7. ReComp components supporting the re-computation of flood
modelling tool CityCAT.

CityCAT

surface-mapsbuildings

DEM

i3

i2

i1

o1

o2

green-areas

rainfall-event

advanced-config log-file
i4

i5

CityCAT
wrapper

surface-maps
gml-input

i3

i2

i1

o1

shape-input

aux-input

Figure 8. The CityCAT program definition using the ProvONE data model.

and some additional configuration parameters, and computes
a sequence of surface maps with the predicted level of
water at subsequent time points. Although ReComp could
potentially be used to monitor all these inputs, together with
the evolution of the CityCAT software itself, we limit our
study to changes in the city area and infrastructure, and
their impact on the output surface maps. The updates to
the infrastructure are provided by the DigiMap Ordnance
Survey in the UK every six months.3

The tool is a single Windows executable, thus two simple
adaptations are required to bring it under ReComp control.
Firstly, we need to adapt the process because CityCAT reads
and stores data in the local filesystem, thus to let it interact
with ReComp deployed on the Cloud we need to make
the input and output data available to the ReComp Core
and the external functions. Secondly, the executable is a
simple black-box process that does not generate data and
process provenance information. Thus, we implemented a
wrapper script that can download inputs and upload simu-
lation outputs to a common data store (Azure BlobStore in
our case) and push the corresponding provenance facts into
HDB (Fig. 7). The wrapper script defines how the CityCAT
process and its executions are represented in provenance
traces. As depicted in Fig. 8, we defined the process with
three input and one output port. The gml-input and
shp-input are equivalent and allow the input polygon
data to be passed in two different formats GML and SHP,
respectively. The aux-input aggregates all other input
files which CityCAT requires to run, such as the elevation
model and rainfall event configuration. For the purpose of
our experiments we consider these files as being static.

Difference and Impact Functions: We developed a
generic difference service that takes from two versions

3https://digimap.edina.ac.uk/os

Listing 5. Some of the annotations linked to two CityCAT ports.
port(gml-input, [

prov:label = "GML input",

recomp:diff-svc-url = "http://...", ...])

port(surface-maps, [

prov:label = "Surface maps",

recomp:impact-input-ports = ["gml-input"],

recomp:impact-config = "impact-config-0", ...])

document(impact-config-0, [

threshold = 0.2, min-depth = 0.2,

dilation = 15, ...])

program(ccw-runner, [

recomp:reexec-svc-url = "http://..."]).

of building and green area polygons in the GML format
and produces four change sets representing addition and
removal of buildings and land. The impact function maps
these differences into six change types specific to CityCAT,
such as buildings that changed into land and hard surface,
and analyses average water depth over the footprint of the
changes. The impact function exposes three configuration
parameters that allow the user to control its sensitivity.
The threshold parameter refers to the depth of water in
the footprint such that the higher the threshold, the deeper
the water level that is considered insignificant. Parameters
dilation and min-depth indicate the breadth of the
footprint from the original change and the minimal depth of
water during impact calculation, respectively. Together they
control whether the function is sensitive to deep changes of
small footprint or shallow but more widespread changes.

Re-execution Function: the next element required to
automate the re-computation is the re-execution function. In
the case of a black-box process and CityCAT specifically,
this is a relatively straightforward task. The key detail here
is that the function needs access to HDB and the common
data store in order to retrieve past configuration and input
data used to generate previous output. These details are used
to configure a new re-execution of CityCAT in which only
the GML input is modified.

Process Annotations: with the difference and impact
functions ready to use, the final preparation step is to
annotate the process. List. 5 shows the most relevant parts
of CityCAT annotations, which otherwise are very similar to
the ones shown previously in List. 4. We annotate only the
two ports that are relevant for ReComp, i.e. gml-input
and surface-maps. Additionally, we pass configuration
of the impact function to configure function’s sensitivity. The
last two lines refer to the re-execution service which is able
to rerun CityCAT via the wrapper script.

Patient
«workflow»Phenotype

«workflow»

ReExecutionSvc

e-Science
Central

e-SC workflow
runner service

HDBSvc

Tabular diff
service

DifferenceSvc

«HTTP»

SVI
«workflow»

ProvONE Adapter

ImpactSvc

e-SC API

ReComp
Core

SVI impact
service

Figure 9. ReComp components supporting the re-computation of the SVI
workflow.

B. Grey-box Workflow – Simple Variant Interpretation

SVI is a workflow that takes annotated patient variants
and suspected phenotype and classifies the variants with
a simple traffic light system of the red, green and amber
colour to denote pathogenic, benign and variants of unknown
or uncertain pathogenicity, respectively. It relies on two
external databases: one, like OMIM GeneMap, helps to
translate phenotype description into a broad set of related
genes; the other, e.g. NCBI ClinVar, is used to determine
whether genetic variation may have deleterious effect on
genes function.

The overall approach to harness SVI with ReComp is
similar to the black-box case presented earlier. We have to
implement the three external functions and annotate process
ports. In detail, however, there is a number of differences in
how this is achieved (Fig. 9).

Process Adaptations: SVI as a workflow runs on e-Sci-
ence Central. The system includes its own data storage,
provenance capture facility and API to control and manage
workflows. Thus, there is no need to implement a wrapper.
Instead, ReComp external functions can use the e-SC API
to access input and output data from the WfMS directly.
Regarding the provenance information, however, e-SC cap-
tures them using a customised OPM model [21]. There-
fore, we implemented a simple adapter which can translate
provenance statements from the e-SC specific model into
the generic ProvONE model. Using the adapter e-SC is able
to communicate the provenance information directly to the
ReComp core via the HDB interface.

Difference and Impact Functions: as in the previous ex-
ample we implemented a generic difference function which
can compute changes between any two tabular data sets and
produces four subsets of added, removed and two versions
of changed records. The function can compute a generic
more detailed difference, or more precise difference that
indicates only changes relevant to the given process (for
details see [4]). The way it operates is configured via port
annotations.

The difference sets are then used by impact functions

to estimate their influence on past process outcomes. With
SVI being a workflow we have partial insight into the
structure and semantics of its parts. Thus, we implemented
multiple, simpler impact functions overlooking the influence
of changes on different parts of the process. For example,
one of the functions measures the impact of changes in
OMIM GeneMap on the set of genes relevant to the user-
defined phenotype hypothesis. Another one takes into ac-
count changes of pathogenicity in ClinVar and computes
impact on the final SVI output. And to simplify the im-
plementation we included all the functions into a single SVI
impact service.

Re-Execution Function: to rerun SVI which is managed
by e-Science Central we used system’s dedicated workflow
management API. As previously, the key part of re-execution
is to replicate the exact configuration of a past execution and
amend only the relevant parts indicated by the restart tree.
But given the knowledge about the structure of the workflow
enables also more sophisticated re-execution in which only
parts of a workflow are rerun.

The idea, similar to the smart rerun of scientific work-
flows [22], [23], can reduce the cost of re-execution. In case
of e-SC workflows, however, it requires additional effort to
edit workflow structure programmatically because e-Science
Central does not support partial workflow re-execution. We
left the implementation of this aspect for the future. Our re-
execution function can simply rerun the complete workflow
with configuration based on a selected previous execution
and updated as required.

Process Annotations: except for the number and selec-
tion of ports and programs, annotating a workflow is very
similar to doing so for a black-box process. Being able to
rely on the runtime environment to capture statements on the
verge between the retrospective and prospective provenance,
i.e. hadInPort and hadOutPort, makes annotating a
user process as simple as it could be. We only need to
make sure that port and process identifiers of annotated ports
match those used by the WfMS.

VI. BENEFITS AND COSTS – LESSONS LEARNT

Here we discuss the effort required to bring a new process
under ReComp control, and we compare it with the full re-
computation cost when ReComp is not used.

The two use cases presented in this paper are intention-
ally very different in nature, and so allow us to look at
the problem of process re-computation from very different
angles. CityCAT is a compute intensive black-box tool which
implements a complex hydraulic model and can take hours
to run on a multi-core system, whereas SVI is a simple data
analytics workflow that runs in the range of minutes usually
over a large cohort of patients.

Based on our experiences from adapting ReComp to the
two selected use cases, in Tab. I we present more details of
how the differences between them affect the effort required

Table I
KEY ASPECTS LEARNT FROM THE ADAPTATION OF THE RECOMP

FRAMEWORK TO THE TWO SELECTED USE CASES.

Use Case

Aspect Flood Modelling SVI

Process Type black-box → easy to
manage

grey-box (workflow) →
medium–hard to manage

Experiment
Structure

one–a small number of
runs

a set of phenotypes,
each with a cohort of
patients

Change(s) single changing input;
low rate (biannual)

two changing inputs;
medium/high rate
(monthly/daily)

Process
Adaptation

medium effort (wrapper
+ provenance handler)

medium effort
(provenance adapter)

Difference
Function(s)

low–medium effort
(some expert knowledge
needed)

low effort (simple
tabular difference)

Impact
Function(s)

single anchor point;
very hard to implement

multiple anchor points;
low–medium effort

Re-execution
Function

low effort medium effort (some
expert knowledge
needed)

Optimisation
Opportunities

low: opaque structure high: partial
re-execution possible

medium: 30–60% reruns
unneeded

high: typically >90%
reruns unneeded

to bring them under ReComp control and what optimisation
opportunities arise from it.

CityCAT being a black-box process is relatively straight-
forward to manage, nonetheless, it requires some effort to
develop a wrapper script. The script’s main job is to expose
data used by the tool and to capture provenance infor-
mation as required by the framework. SVI as a workflow
requires more sophisticated approach to re-computation.
Despite being made up of a relatively simple graph of tasks,
in order to handle full-fledged workflows ReComp must
consider more sophisticated structures, including recursively
nested sub-workflows. To do so it uses the notion of restart
tree mentioned earlier and defined in [18]. Additionally, to
control SVI we had to develop a provenance adapter which
can translate provenance facts captured by e-SC, the WfMS
it runs on, into the ProvONE format needed by ReComp.

The next aspect is the structure of a single experiment
which also differs considerably between Flood Modelling
and SVI. CityCAT simulations are usually run once for a
single or a small number configuration settings to model
e.g. different rainfall events. SVI, however, is typically used
to analyse cohorts of patients spread across a set of different
phenotypes, while all these analyses use the same reference
databases. That, together with the processing runtime and the
rate of changes of process inputs, determine opportunities for

optimisation that arise from re-computation.
The rate of changes for For CityCAT is relatively low as

updates to urban infrastructure are published about twice a
year via the DigiMap web service. However, the compu-
tation complexity of the tool and the manual effort of a
domain expert needed to analyse the results set the cost
of re-computation very high. In contrast, in the case of
SVI input data may change rapidly. The OMIM GeneMap
database is updated daily, while new version of NCBI
ClinVar is published every month. Thus, despite the rerun
of a single SVI execution is relatively cheap, multiplied by
the number of changes and analysed patient samples set the
total cost of re-computation to a high level, too.

Next, we compare the re-computation cost with the effort
required to bring the two processes under ReComp control.
Firstly, however, we note that the development effort is made
only once, and so will be offset by running ReComp for
longer period. Secondly, our judgment of effort is relative
and intentionally imprecise as different development teams
with different skills would solve the problem at different
speeds.

From the experience we gained the easiest tasks were to
develop the re-execution function for the CityCAT wrapper.
It involved the implementation of the ReExecService
interface and starting a wrapper process. As CityCAT is a
black-box, the amount of reconfiguration work needed to
instantiate a new process based on the past configuration was
relatively small. Implementing the function for SVI required
more work because SVI included a number of tasks which
differ from patient to patient and phenotype to phenotype. It
also required some expert knowledge to reconfigure existing
e-Science Central workflow using provenance data from past
workflow invocations.

Another low effort task was to develop a difference func-
tion for tabular data. This was implemented using Python
Pandas library4 which offers useful constructs to build it.
However, other implementations could use a SQL engine
equally easy. A difference function for the CityCAT input
data in the SHP and GML formats was also relatively
straightforward to code but it required some expert knowl-
edge on the use of geospatial libraries and understanding of
the specialized file formats.

Of medium effort was also the task of the initial adaptation
of processes. In the case of Flood Modelling the key part was
to design the wrapper. Due to lack of ready to use ProvONE
python libraries, the main effort went into the design and
implementation of a simple provenance capture mechanism
that stores information in HDB in the ProvONE data format.
Similar, although slightly more effort was needed to code a
provenance adapter for e-SC. If conversion from the dedi-
cated OPM model to ProvONE was relatively easy, a little
more work and expert knowledge was needed to capture

4http://pandas.pydata.org/

details on the verge between prospective and retrospective
representation (the hadInPort and hadOutPort state-
ments). They have not been captured by e-SC previously.

Ultimately, most of our effort was spent on the implemen-
tation of the impact functions. As SVI is a relatively simple
tool, the impact analysis, and then design and implementa-
tion of appropriate functions was not too difficult. Addition-
ally, given the workflow structure we could code multiple
simpler functions rather than one more sophisticated. But
in the case of Flood Modelling scenario, the design and
development of the impact function was a single most
difficult task. It required good understanding of the input
changes and the outputs. It also required expert discussion
on potential approach and extensive trial-and-error effort.
And due to the nature of the problem, finding the impact of
change still remains a challenge in specific corner-cases for
which only running the full hydraulic model could give the
accurate answer.

A quantitative evaluation of the benefits that ReComp
brings to data analytics is necessarily going to be on a
case-by-case basis, and is outside the scope of this paper.
We are currently testing the ReComp concept on additional
case studies. The healthcare space provides particularly good
examples that call for efficient solutions to the recurring
re-computation of computationally expensive analytics pro-
cesses, where rapidly evolving domain knowledge combine
with the dynamic nature of big datasets (for instance, pa-
tients’ Health Records).

ACKNOWLEDGMENT

This work has been supported by EPSRC in the UK [grant
no.: EP/N01426X/1] and a grant from the Microsoft Azure
for Research programme.

REFERENCES

[1] J. Cala, E. Marei, Y. Yu, K. Takeda, P. Missier, J. Cała,
E. Marei, Y. Xu, K. Takeda, and P. Missier, “Scalable and
Efficient Whole-exome Data Processing Using Workflows
on the Cloud,” Future Generation Computer Systems,
Special Issue: Big Data in the Cloud, vol. 65, no. Special
Issue: Big Data in the Cloud, 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2016.01.001

[2] R. Bertsch, V. Glenis, and C. Kilsby, “Urban flood simulation
using synthetic storm drain networks,” Water (Switzerland),
vol. 9, no. 12, 2017.

[3] P. Missier, E. Wijaya, R. Kirby, and M. Keogh, “SVI: A
Simple Single-Nucleotide Human Variant Interpretation Tool
for Clinical Use,” in Data Integration in the Life Sciences,
N. Ashish and J.-L. Ambite, Eds. Springer International
Publishing, 2015, pp. 180–194.

[4] J. Cała and P. Missier, “Selective and Recurring Re-
computation of Big Data Analytics Tasks: Insights from a
Genomics Case Study,” Big Data Research, vol. 13, pp.
76–94, sep 2018. [Online]. Available: https://linkinghub.els
evier.com/retrieve/pii/S2214579617303520

[5] H. Hiden, S. Woodman, P. Watson, and J. Cala, “Developing
cloud applications using the e-Science Central platform,”
Philosophical transactions. Series A, Mathematical, physical,
and engineering sciences, vol. 371, no. 1983, jan 2013.

[6] P. Missier, T. Malik, and J. Cala, “Report on the First
International Workshop on Incremental Re-computation:
Provenance and Beyond,” {SIGMOD} Record, vol. 47, no. 4,
2018. [Online]. Available: https://sigmodrecord.org/2019/05
/02/report-on-the-first-international-workshop-on-increment
al-re-computation-provenance-and-beyond

[7] H. Lakhani, R. Tahir, A. Aqil, F. Zaffar, D. Tariq, and
A. Gehani, “Optimized Rollback and Re-computation,” in
2013 46th Hawaii International Conference on System Sci-
ences, no. i. IEEE, jan 2013, pp. 4930–4937.

[8] I. Altintas, O. Barney, and E. Jaeger-frank, “Provenance Col-
lection Support in the Kepler Scientific Workflow System,”
Work, vol. 4145, pp. 118–132, 2006.

[9] L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger,
C. Silva, and H. Vo, “VisTrails: Enabling Interactive Multiple-
View Visualizations,” in VIS 05. IEEE Visualization, 2005.,
no. Dx. IEEE, 2005, pp. 135–142.

[10] U. A. Acar, G. E. Blelloch, M. Blume, R. Harper, and
K. Tangwongsan, “An experimental analysis of self-adjusting
computation,” ACM Transactions on Programming Lan-
guages and Systems, vol. 32, no. 1, pp. 1–53, 2009.

[11] G. Ramalingam and T. Reps, “A categorized bibliography
on incremental computation,” Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages – POPL ’93, pp. 502–510, 1993.

[12] L. Popa, M. Budiu, Y. Yu, and M. Isard, “DryadInc: Reusing
work in large-scale computations,” HotCloud’09 Workshop
on Hot Topics in Cloud Computing, pp. 2–6, 2009. [Online].
Available: http://static.usenix.org/events/hotcloud09/tech/ful
l papers/popa.pdf

[13] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop,”
Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp.
285–296, sep 2010.

[14] P. Bhatotia, A. Wieder, R. Rodrigues, U. a. Acar, and
R. Pasquin, “Incoop: MapReduce for incremental computa-
tions,” Proceedings of the 2nd ACM Symposium on Cloud
Computing - SOCC ’11, pp. 1–14, 2011.

[15] A. G. Bin Saadon and H. M. O. Mokhtar, “iiHadoop: an
asynchronous distributed framework for incremental iterative
computations,” Journal of Big Data, vol. 4, no. 1, p. 24, dec
2017.

[16] F. D. McSherry, D. G. Murray, R. Isaacs, and M. Isard,
“Differential Dataflow,” in 6th Biennial Conference on
Innovative Data Systems Research (CIDR ’13), 2013.
[Online]. Available: http://cidrdb.org/cidr2013/Papers/CIDR1
3 Paper111.pdf

[17] P. Bhatotia, P. Fonseca, U. A. Acar, B. B. Brandenburg,
and R. Rodrigues, “iThreads,” ACM SIGARCH Computer
Architecture News, vol. 43, no. 1, pp. 645–659, 2015.

[18] J. Cała and P. Missier, “Provenance Annotation and Analysis
to Support Process Re-computation,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
2018, vol. 11017 LNCS, pp. 3–15. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-98379-0{\ }1

[19] V. Cuevas-Vicenttı́n, B. Ludäscher, P. Missier, K. Belhajjame,
F. Chirigati, Y. Wei, S. Dey, P. Kianmajd, D. Koop, S. Bowers,
I. Altintas, C. Jones, M. B. Jones, L. Walker, P. Slaughter,
B. Leinfelder, and Y. Cao, “ProvONE: A PROV Extension
Data Model for Scientific Workflow Provenance,” 2016.
[Online]. Available: http://jenkins-1.dataone.org/jenkins/view
/DocumentationProjects/job/ProvONE-Documentation-trunk
/ws/provenance/ProvONE/v1/provone.html

[20] L. Moreau, P. Missier, K. Belhajjame, R. B’Far, J. Cheney,
S. Coppens, S. Cresswell, Y. Gil, P. Groth, G. Klyne,
T. Lebo, J. McCusker, S. Miles, J. Myers, S. Sahoo,
and C. Tilmes, “PROV-DM: The PROV Data Model,”
World Wide Web Consortium, Tech. Rep., 2012. [Online].
Available: http://www.w3.org/TR/prov-dm/

[21] S. Woodman, H. Hiden, P. Watson, and P. Missier,
“Achieving reproducibility by combining provenance with
service and workflow versioning,” in Proceedings of the
6th workshop on Workflows in support of large-scale
science - WORKS ’11. New York, New York, USA:
ACM Press, 2011, pp. 127–136. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2110497.2110512

[22] I. Altintas, O. Barney, and E. Jaeger-frank, “Provenance Col-
lection Support in the Kepler Scientific Workflow System,”
Work, vol. 4145, pp. 118–132, 2006.

[23] H. Lakhani, R. Tahir, A. Aqil, F. Zaffar, D. Tariq, and
A. Gehani, “Optimized Rollback and Re-computation,” in
2013 46th Hawaii International Conference on System Sci-
ences, no. i. IEEE, jan 2013, pp. 4930–4937.

