
Towards a Cost Model for Scheduling

Scientific Workflows Activities in Cloud Environments

Vitor Viana, Daniel de Oliveira, and Marta Mattoso

Federal University of Rio de Janeiro, Brazil

{vitorgv, danielc, marta}@cos.ufrj.br

Abstract

Cloud computing has emerged as a new computing

model that enables scientists to benefit from several

distributed resources such as hardware and software.

Clouds are an opportunity for scientists that need high

performance computing infrastructure to execute their

scientific experiments. Most of the experiments

modeled as scientific workflows manage the execution

of several activities and produce a large amount of

data. Since scientists work with large amounts of data,

parallel techniques are often a key factor on the

experimentation process. However, parallelizing a

scientific workflow in the cloud environment is far

from trivial. One of the complex tasks is to define the

configuration of the environment, i.e. the number and

types of virtual machines and to design the parallel

execution strategy. Due to the number of options for

configuring an environment it is a hard task to be done

manually and it may produce negative impact on

performance. This paper proposes a lightweight cost

model that is based on concepts of quality of service

(QoS) in cloud environments to help determining an

adequate configuration of the environment according

to restrictions imposed by scientists.

Keywords: Scientific Workflows, Cloud Computing

1. Introduction

Over the last years, in the scientific experimentation

process [1,2], due to the effective need of analyzing an

increasing amount of information and complex

scientific data, scientists use several programs and

toolkits in their experiments. These experiments make

use of several computing resources and are commonly

modeled as scientific workflows [1]. In scientific

workflows, a specific set of programs is organized in a

coherent flow of activities in which the outcome of an

activity is transferred to the next activity of the flow as

an input to be consumed. Scientific workflows are

normally handled by mechanisms, called Scientific

Workflow Management Systems (SWfMS) [3].

The activities of a scientific workflow can also be

re-executed many times as needed, varying the input

data of the workflow or its parameters in order to

analyze the data products generated by the workflow

execution. This situation is commonly named

parameter sweep [4] and it occurs when the same

workflow is exhaustively executed using different

input data files and/or different configurations until the

exploration finishes. In addition, in most scenarios,

these workflow variations are time-consuming and

cannot be processed in a feasible time by a single

computer or a small cluster. Due to this characteristic,

scientific workflows require some degree of

parallelism to reduce total execution time.

Although workflow parallelism is a key issue, it is

not the only impact factor on total execution time. The

workflow execution may be unfeasible if scientists do

not run their experiments in high performance (HPC)

environments associated to parallel techniques such as

parameter sweep. Clouds [5] have emerged as an

alternative HPC environment where Web-based

services allow for different kinds of users to obtain a

large variety of resources. Clouds have demonstrated

applicability to a wide-range of problems in several

domains, including scientific ones [6]. An important

advantage provided by clouds is that scientists are not

required to assemble expensive computational infra-

structure to execute their experiments or even

configure many pieces of software. Images can be pre-

configured to be instantiated on demand. An average

scientist is able to run experiments by allocating the

necessary resources in a cloud [7]. In addition, cloud

resources are available via Web services, and can be

dynamically re-configured to fulfill a variable demand

(i.e. scalability). The use of these services is typically

operated by a pay-per-use model [5].

Although clouds represent a step forward, the

management of a parallel execution of scientific

workflows in clouds is an open issue [8]. In addition,

cloud-based configuration services are not available in

the existing SWfMS. A specific infrastructure for

running parallel scientific workflows in clouds is

necessary. One of the recently proposed solutions to

provide this infrastructure is named SciCumulus [8].

SciCumulus is a middleware designed to distribute,

manage and monitor parallel execution of scientific

workflows activities (or even entire scientific

workflows) using a SWfMS in the cloud, such as

Amazon EC2 [9]. SciCumulus orchestrates the

execution of workflow activity in a distributed set of

Virtual Machines (VM). SciCumulus configures the

cloud environment for the workflow execution, thus

creating VMs to execute activities, setting up

parameters and staging data in and out.

However, in its current version, SciCumulus creates

the VMs according to the scientist definition. This

way, scientists have to inform the number of necessary

VMs and its configuration. However, there may be

several combinations to choose when configuring an

environment and it can be tedious and error-prone

according to Juve and Deelman [8].

This way, given a set of types of VMs, the decision

of which one will perform an activity is not a simple

task to accomplish. This paper aims at developing a

lightweight cost model to help determining an adequate

environment configuration before scheduling workflow

activities in cloud environments. The main idea is to

determine an effective configuration of the

environment according to some restrictions informed

by scientists (total workflow execution time and

monetary cost). This configuration is produced based

on information collected from the cloud environments

and the types of VMs available.

By using this lightweight model and some

important information provided by scientists we are

able to develop a new component to couple to

SciCumulus scheduler – the optimizer. With this

component we can determine the best possible

configuration of the environment that can be used in

the workflow scheduling. By setting up the

environment with the best possible configuration, the

responsibility of the scheduler is focused on selecting

the specific VM that will perform a certain activity in a

given time. The cost model presented in this paper

aims at being QoS-oriented, meaning that it is targeted

on improving the satisfaction of scientists, maintaining

a good Quality of Service (QoS). Restrictions are

commonly specified by scientists and used in the

approach proposed in this paper to provide some

differentiation between the VMs to be used. The

approach proposed in this paper is based on two

criteria (total execution time and monetary cost), with

the priority ordering chosen by the scientist, initially

optimizing the first criterion and based on the

optimization tries to optimize the next criterion.

This paper is organized as follows. Section 2

discusses related work and background. Section 3

briefly describes the SciCumulus architecture. Section

4 introduces the proposed cost model for supporting

dynamic resource scheduling in the cloud. Section 5

presents some experimental results. Finally, Section 6

concludes and presents future work.

2. Related Work and Background

The term “Quality of Service” (QoS) [10] refers to

all non-functional features of a service (in our case the

parallel workflow execution in a cloud) that can be

used by a client (or a scientist in the context of this

paper) to evaluate the quality of service. Important

features related to QoS are: (i) Performance; (ii)

Reliability; (iii) Capacity and; (iv) Cost. However, in

this paper we focus only on Performance and Cost.

Initially, the term "Quality of Service" refers to some

performance aspects of a network, not including any

control or interference by the end user. However,

nowadays the specification of quality criteria is widely

used and currently covers various domains of computer

science such as distributed and parallel computing, and

in the context of this paper allowing the definition of

quality criteria by scientists, to specify the level of

quality you want in running scientific workflows.

Following we provide a brief description of some

existing work in the literature that relate in some way

to the issue that we are dealing in this paper. Furtado et

al. [11], presents a comparison between scheduling in

distributed databases. The authors analyze the

centralized and hierarchical architecture according to

the throughput and QoS constraints for distributed

services, similarly to this paper. About the QoS

constraints, the authors state that the time constraints

(e.g. deadlines) are among the mostly used QoS

criteria. Although the authors use QoS constraints in a

cost-model, their objective is different from the ones

presented in this paper because they do not intend to

configure the environment. Furtado et al. intend to

schedule distributed queries in a pre-configured

environment (distributed database).
Dias et al. [12] proposes Heracles, an approach that

uses Peer-to-Peer (P2P) techniques to manage

distributed scientific workflows on huge clusters based

on QoS criteria such as deadlines. However, different

from the approach proposed in this paper, Heracles is

focused on clusters and does not address cloud

configuration issues.

According to Juve and Deelman [8] Amazon cloud

provides several good alternatives to HPC systems for

workflow computation such as communication and

storage services, yet they discuss on the virtualization

overhead as one of challenges to overcome. We did not

find any proposal to address the issue of cloud

configuration for scientific workflows.

3. SciCumulus Architecture

SciCumulus is a cloud middleware designed and

implemented to manage the parallel execution of

scientific workflow activities (or even entire scientific

workflows) from a SWfMS into a cloud environment,

such as Amazon EC2. SciCumulus architecture is

composed by three layers that are also distributed: (i)

Desktop - dispatches workflow activities to be

executed in the cloud environment using a local

SWfMS such as VisTrails [13], (ii) Distribution -

manages the execution of activities in cloud

environments, and (iii) Execution - executes programs

from workflows. The conceptual architecture was

proposed in details by Oliveira et al. [14] in a previous

paper.

The Desktop layer is responsible for starting

parallel execution of workflow activities in the cloud.

The components of the Desktop layer are deployed in

an existing Scientific Workflow Management Systems

(SWfMS) such as VisTrails [13]. The local

components installed in the local SWfMS starts the

parallel execution in the cloud. There are three main

components: Uploader, Dispatcher, and Downloader.

The Uploader moves data to the cloud while

Downloader gathers the final results from cloud VMs.

The Dispatcher launches the execution process of

cloud activities [14] in the cloud and communicates

directly to the execution broker in the distribution

layer.

The Distribution layer manages the execution of

parallel activities in cloud environments by creating

cloud activities that contain the program to be

executed, its parallelism strategy, parameters values

and input data to be consumed. The layer has six

components: Execution Broker, Parameter Sweeper,

Encapsulator, Scheduler, Data Summarizer and

Distribution Controller. The Execution Broker makes

the connection between the desktop layer and the

distribution layer. The Parameter Sweeper handles the

combinations of parameters received by the desktop

layer for a specific workflow activity that is being

parallelized. The Encapsulator generates all cloud

activities to be transferred to the virtualized instances.

The Scheduler defines which VMs receive a specific

cloud activity to execute. The Distribution Controller

transfers cloud activities to the available virtual

machines and monitors its execution. The Data

Summarizer is combines the final results to organize

the final results to be transferred to the client layer

(SWfMS).

Finally, the Execution layer is responsible for

invoking executable codes in many VMs available for

use. It has three main components: instance controller,

configurator and executor. The Instance Controller

makes the connection between the distribution layer

and the execution layer. It is also responsible for

controlling the execution flow in the instance when the

cloud activity is associated to two or more applications

to be executed. The Configurator sets up the entire

environment. The Configurator unpacks the cloud

activity, creates replicas of the program to a specific

location; create workspaces to store parameter files, if

needed, and stores data to be consumed. Finally, the

Executor invokes the specific application and stores

provenance data to a repository also stored in the

cloud.

This way, SciCumulus provides a computational

infrastructure to support workflow parallelism with

provenance gathering of the cloud environment.

SciCumulus architecture is simple and may be

deployed and linked to any existing SWfMS,

diminishing effort from scientists.

Although SciCumulus has three layers with several

complex components, the approach proposed in this

paper is in the scope of the distribution layer. The

proposed cost model and the component that

determines the best cloud configuration based on this

cost model can be coupled to SciCumulus scheduler.

4. Dynamic Selection of Resources in Cloud

Environments

With the evolution of cloud computing, several

computing resources are already available for use. For

example, Amazon EC2 [9] provides more than 10

different types of VMs. Each one of them has a

different memory capacity and CPU power. Choosing

the type of VM to be used in the parallel execution of a

scientific workflow is not a trivial task and can impact

directly in the performance of the experiment. In

addition, given this wide range of available resources,

we can commonly find services offered by different

cloud providers such as Amazon EC2
1
, IBM

2
 and

GoGrid
3
, but with equivalent functionality. Moreover,

in the same cloud environment, we can have multiple

VM instantiated.

This way, it is necessary to have cloud services able

to determine which of these computing resources to

instantiate and use by following a specific criterion

such as total workflow execution time or overall

monetary cost. To make this type of choice possible,

functionally equivalent resources should be searched,

cataloged and a cost model has to be applied in order to

1 aws.amazon.com/ec2/
2 www.ibm.com/ibm/cloud/
3 www.gogrid.com/

determine the best possible environment configuration

to use.

The proposed model aims at presenting a two

criteria cost model with QoS support for clouds,

enabling better resources usage and compliance with

the requirements of the workflow (informed by

scientists). Before starting the execution of a

distributed workflow the scientist has to inform the

restrictions for the execution as a simplified Service

Level Agreement (SLA). This way, scientists describe

important (and commonly found) requirements for the

experiment execution (total execution time and

execution cost). These criteria are based on those

described in the papers presented in the related work

presented in section 2.

Thus, it would be under the responsibility of an

optimizer component (coupled to SciCumulus

scheduler) to determine which cloud resource should

be instantiated in a given time. In other words, this

optimization component would be in charge of

optimizing the dynamic selection of VMs before

scheduling cloud activities. For an optimizer be able to

make the selection of an appropriate form, two

requirements must be met. First, cost parameters

applicable to scalable and distributed resources and its

operations should be established; and second, a cost

model that takes into account these parameters should

be developed so that resources can be chosen based on

these parameters.

The next sub-sections present the parameters

considered in the development of the cost model and

the cost model itself. This cost model is a basis of the

optimizer in order to simulate and achieve the best

possible configuration of the environment according to

the number and type of VMs.

4.1 Formalization of the Parameters

In this sub-section, we present the parameters

related to the cloud environment and used to create a

lightweight cost model for determining the best

possible configuration of the environment. Let us

consider VM = {VM0, VM1, VM2, … , VMn-1} as the set

of n available types of VMs identified by an agent Ag.

For each machine VMi, also consider the set Pi = {P0,

P1, P2, ... , Pm-1}, set of m programs installed and

configured by each machine VMi.

This way, we are able to define CTi,j as the total

monetary cost of running a particular program Pj in a

virtual machine VMi in time Ti,j. In a simplified way,

we can define CTi,j as the sum of the average cost of

initializing the virtual machine VMi, the average cost

of executing the program Pj in VMi for a specific time

Ti,j and the average cost of data stage in and out

involved in executing the program Pj in VMi. The CTi,j

is defined as the longest initialization time of the VMs

(since all VMs initialize in parallel) plus the time

required for a particular program to run in a VM plus

data transfer. Following in this sub-section we explain

each one of the considered parameters and its

formalization:

(i) Availability: The availability of a VM,

denoted by D(VMi) in the proposed cost

model, corresponds to the percentage of

time that a type of VM is available for use,

considering a time interval T. It is a

fundamental criterion; however, the

responsible for guaranteeing the

availability is the service provider. For

example, Amazon EC2 guarantees an

availability of 99%.

(ii) Reliability: A VM may be available but

may not be able to address a specific

request by several problems in a network,

such as network congestion or problems in

implementation. We define reliability of a

VM as R(VMi) as the ratio between the

number of requests serviced by this VM

and the number of requests made.

(iii) Initialization Cost: Cost for a given VM to

initialize. The initialization cost is

estimated by analyzing the historical

initialization times of each type of VM and

using the VM configuration, e.g., its

capacity, the operating system, and so on.

(iv) Transfer Cost: Cost needed to stage in and

stage out a certain amount of data from the

client machine to the provider.

(v) Storage Cost: Cost based on space needed

for storage of information in the cloud.

(vi) Runtime Cost: Cost of execution of a

program P,j of a virtual machine VMi

includes the cost / time spent since the

beginning of the program execution until

its end, ignoring the costs of startup and

transfer involved.

4.2 The Proposed Cost Model

Cost models have been used successfully to

estimate the costs involved in diverse areas of

computing, as in database systems [10], among others.

A cost model consists of a set of formulas that

estimates the costs involved in a particular computing

environment [15], in our case the cloud environment. It

can be used for a quantitative simulation of each

possible configuration of the environment, thereby

allowing that the best possible choice that can be

identified objectively, avoiding the actual

implementation of all possible combinations present in

the model, which can be costly.

A cost model is usually implemented in a system

that performs several simulations. This system is

usually called optimizer. In the context of this paper,

the optimizer initially receives the activities of the

workflow to execute and the combination of data and

parameters to be explored. It identifies the set of cloud

activities [14,17] produced from the execution of these

explorations of parameters and input data. It separates

these cloud activities into several subsets to be

executed in several VMs. After identifying each cloud

activity involved in the execution, the optimizer uses

the cost model to simulate several executions and to

decide whether to choose a type and number of VM

based on one of these two criteria. The approach

proposed in this paper is based on a two criteria

(performance – overall execution time and monetary

cost), with the priority ordering chosen by the scientist,

initially optimizing the first criterion and based on the

optimization tries to optimize the next criterion: (i)

Execution Time: In this case, the choice of VMs will

follow the combination of VMs that produce the

smallest execution time. However, we also try to

optimize the monetary cost, since it cannot exceed the

limit previously set by scientists. (ii) Monetary Cost:

Here, the situation is the opposite one; the choice of

VMs to instantiate to perform a set of cloud activities

is prioritized by the monetary cost involved. However,

we also try to optimize the overall execution time of

the cloud activities that shall not exceed the

predetermined limit of total execution time.

The performance cost involved on using a cost

model for an optimizer may not be high, because

although negligible in most of the published literature,

it can have an important role in distributed

environments where high communication costs may be

involved in obtaining information about the

environment. Therefore, we need a model that takes

into account the characteristics of VMs, the cloud

environment and their programs, and that is able to be

simulated several times under different conditions

without impacting on the performance of workflow

that is being executed by SciCumulus.

Given the configuration of the machines offered by

the cloud provider, we developed a cost model that

aims at determining which configuration and

combinations of VMs to use to execute a particular

workflow following some restrictions and taking into

account the parameters discussed in the previous sub-

section. Thus, we propose a dynamic model to estimate

the costs involved in the execution of a workflow in a

cloud environment and based on this estimative

determine the best environment configuration to be

used by an orchestrator such as SciCumulus. Following

we detail each one of the parameters involved in the

cost model.

4.2.1 Total Execution Cost

The total cost of running a program Pj of a virtual

machine VMi, denoted by CT is defined in Equation 1,

 (Eq. 1)

where CI is the cost of initializing the virtual machines,

CE is the cost of executing the programs P
j
 in the

virtual machines and CR is the transfer cost involved in

executing the programs P
j
in the virtual machines.

We can extend Equation 1 so that it encompasses

also the quality criteria of "availability" and

"Reliability" as defined in the previous section. Thus,

we are ensuring that the cost model is not static,

because, after repeated executions of scientific

workflows, the parameters "Availability" and

"Reliability" can vary, making instances constantly

unavailable or unreliable. Thus, Equation 2 defines the

total cost of implementation.

 (Eq. 2)

The values of D(VMi) and R(VMi) are integer

numbers varying between 0 and 1, to divide the total

execution time for these quality criteria, we will be

increasing the execution time of VMs less reliable or

constantly unavailable.

Ideally, each provider should provide this

information to client applications that wish to use their

resources. Thus, we can define initialization cost as in

Equation 3.

 ∑

 (Eq. 3)

The execution cost is the sum of the costs of

executing the programs Pj of a particular virtual

machine VMj (
 .

 ∑ ∑

 (Eq. 4)

The transfer cost is calculated based on the volume

of data that we stage in and stage out to and from the

cloud environment and the price charged by the service

provider. We define it as Equation5,

 (Eq. 5)

where CU is the cost of uploading, the CD is the cost of

downloading and CS is the cost of storing data in the

provider.

4.2.2 Total Execution Time

The total execution time of running all programs Pj

in VMi, denoted by TT is defined in Equation 6,

 (Eq. 6)

where TI is the higher startup time of the virtual

machines, TE is the cost of implementing the programs

P
j
 in the virtual machines and TR is the transfer time

involved in executing the programs Pj in the virtual

machines.

The initialization time should be calculated

beforehand by analyzing initialization times
 of each

VMi and taking the highest one because all VMs

instantiate in parallel, as defined by Equation 7.

 (Eq. 7)

The runtime is the sum of execution times of

programs Pj in a given virtual machine VMi varying

with the number of parameters of the activity. Equation

8 defines execution time.

 ∑ ∑

 (Eq. 8)

The transfer time is calculated based on the volume

of data that we capture and send the server and

available bandwidth. We define it as follows:

 ∑

 ∑

 (Eq. 9)

Where
 is the time to upload and

 is the time to

download from and to a specific VMi.

4.3 Using the Model in SciCumulus

In order to evaluate the model in a real scientific

workflow cloud environment we introduce an

optimization component in SciCumulus architecture.

The optimization component is a simulator

implemented in Java that simulates several

combinations of types of VMs, transferring data and so

on to produce the best possible environment

configuration for SciCumulus.

The optimizer simulates the execution of

SciCumulus components with several environment

configurations according the criteria informed by

scientists. To simulate the execution and the

environment, the optimizer uses several information

captured from the cloud environment by an

autonomous agent. This agent is independent from

SciCumulus and crawlers the several cloud providers

capturing information about types of VMs, pricing,

VM capacity, and transferring rates. All of this

information is stored in a specific DB schema of

SciCumulus and can be considered important

provenance data [9,17]. The information about the

experiment and environment definition is fundamental

to scientific experimentation process. This data is

called Provenance Data [18].

Figure 1 an excerpt of the additional components for

the SciCumulus architecture

5. Experimental Results

We performed several tests to validate our cost

model in defining the environment for SciCumulus. In

this Section we present the most relevant experimental

simulated results achieved by the optimizer component

and the real results to evaluate if the environment setup

proposed is indeed the best possible choice for the

experiment being executed. For the simulation, we

used an extended version of CloudSim [18]. Scientists

have to inform the primary and secondary criteria to

optimize (performance or cost in order). According to

the QoS data provided by scientists the cost model was

then calibrated taking into account the cloud activities

to be executed, the size of input data and the size of

output data.

We used the X-ray crystallography scientific

workflow [19] results to calibrate the cost model with

real information about program execution time. This

workflow is a very representative one and due to this

characteristic, it was chosen as use case for the next

Provenance Challenge
4
. X-ray crystallography

experiments concern on determining the three-

dimensional structure of the molecules by analyzing

4 twiki.ipaw.info/bin/view/Challenge/FourthProvenanceChallenge

QoS

Constraints

DB
Cloud

Environment

SWfMS

SciCumulus

Simulator

...

Environment

Configuration

VM#1 VM#2 VM#n

Scheduler

Agent

Environment
information

the diffractions patterns obtained from X-ray scattering

experiments. The X-ray crystallography scientific

workflow is composed by several programs and

toolkits such as CCP4. The information about the

cloud environment was captured from Amazon EC2

environment using Amazon API tools encapsulated in

the agent. The workflow used to test the cost model

and the optimizer processes 2,000 images in groups of

3 and it is composed by 667 cloud activities to be

distributed among the VMs in the cloud environment.

This workflow executes in approximately 45,876

seconds in a single machine.

The optimizer first simulates the instantiation of

one VM for each cloud activity. Intuitively we can

visualize that this is not an appropriate policy to

follow. This way, the optimizer starts to reduce the

number of VMs and analyzes if the total execution

time reduces proportionally until we reach the

restriction values for performance or cost (depending

on the priority choice of the scientist). This process is

executed for each one of VM types analyzing

performance and monetary cost. The restrictions

imposed in this simulation were total execution time of

1 hour and 10 dollars of cost maximum.

Since we are executing embarrassingly parallel

experiments, the performance varied the type of VM

was not significant when the number of VMs involved

in the execution increases. This behavior can be

explained since embarrassingly parallel experiments

are the most scalable patterns for clouds [20,21]. In our

simulation, the execution time restriction (1 hour =

3,600 seconds) was reached using from 16 up to 256

virtual cores as presented in Figure 2.

Although the performance is quite similar using

different configurations, the monetary cost was

significantly different. For example, the price paid

varies from US$ 2,448 (16 cores) to US$ 39,168 (256

cores). In this simulation we defined as the primary

priority the monetary cost instead of execution time.

This way, the optimizer fixed the number of VMs in 16

(because the restriction of total execution time was

fully satisfied) and started to vary the type of VM in

order to reduce cost. As result, the high CPU extra-

large instance was considered the suitable one from the

monetary point of view.

Figure 2 Simulated results for the execution of the

workflow

Since we have chosen the high CPU extra-large

instances in Amazon EC2 to use, we simulated the

monetary cost of running the experiment using from 2

cores up to 16 cores to evaluate the cost model and the

optimizer. All simulations produced a monetary

prediction lower than the real cost, the results were

only up to 8% lower. It indicates that a fine tuning in

the optimizer is indeed needed. However, the behavior

of the simulator follows the real execution.

Figure 3 Comparison between the simulated monetary

cost and the real cost.

6. Conclusion

Large scale scientific workflows usually present

several executions using different parameters and input

data. In order to produce results in a feasible time,

scientists use parallel techniques to improve

performance. For running these experiments in cloud

environments, specific infrastructure such as

SciCumulus is used. However, in its first version,

SciCumulus creates the VMs following the decisions

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 4 8 16 32 64 128 256

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Number of virtualized cores

Large

Xlarge

Quad CPU XLarge

High CPU XLarge

0

0,5

1

1,5

2

2,5

3

2 4 8 16

p
ri

ce
 (

in
 U

$
 d

o
lla

rs
)

number of cores

Real

Simulated

of the scientist. Scientists have to inform the total

number and type of necessary VMs which is not

appropriate. There may be several combinations of

types of VM to choose depending on the provider and

this choice can be error-prone.

This work presents a cloud-based cost model used

to help determining the best possible configuration of

the cloud environment before scheduling cloud

activities into those environments. This lightweight

cost model aims at optimizing two criteria: total

execution time of the workflow and monetary cost. The

simulated results show that it is possible to use this

model for determining an effective configuration

following some QoS restrictions imposed by scientists.

By optimizing the environment configuration we

showed a reduction on the monetary cost up to 94%

(using 16 VMs instead of 256) just reducing the

number of VMs and satisfying the total execution time

restriction.

Acknowledgements

The authors thank CNPq and CAPES for partially

sponsoring our research.

7. References

[1] M. Mattoso, C. Werner, G.H. Travassos, V. Braganholo, L.
Murta, E. Ogasawara, D. Oliveira, S.M.S.D. Cruz, and W.

Martinho, 2010, Towards Supporting the Life Cycle of

Large Scale Scientific Experiments, International Journal
of Business Process Integration and Management, v. 5, n.

1, p. 79–92.

[2] R.D. Jarrard, 2001, Scientific Methods. Online book, Url.:
http://emotionalcompetency.com/sci/booktoc.html.

[3] I.J. Taylor, E. Deelman, D.B. Gannon, M. Shields, and (Eds.),
2007, Workflows for e-Science: Scientific Workflows for

Grids. 1 ed. Springer.

[4] E. Walker and C. Guiang, 2007, Challenges in executing large
parameter sweep studies across widely distributed

computing environments, In: Workshop on Challenges of

large applications in distributed environments, p. 11-18,
Monterey, California, USA.

[5] D. Oliveira, F. Baião, and M. Mattoso, 2010, "Towards a

Taxonomy for Cloud Computing from an e-Science
Perspective", Cloud Computing: Principles, Systems and

Applications (to be published), Heidelberg: Springer-

Verlag
[6] T. Hey, S. Tansley, and K. Tolle, 2009, The Fourth Paradigm:

Data-Intensive Scientific Discovery. Online book, Url.:

http://emotionalcompetency.com/sci/booktoc.html.
[7] L. Wang, J. Tao, M. Kunze, A.C. Castellanos, D. Kramer, and W.

Karl, 2008, Scientific Cloud Computing: Early Definition

and Experience, In: 10th IEEE HPCC, p. 825-830, Los
Alamitos, CA, USA.

[8] G. Juve and E. Deelman, 2010, Scientific workflows and clouds,

Crossroads, v. 16 (Mar.), p. 14–18.
[9] Amazon EC2, 2010. Amazon Elastic Compute Cloud (Amazon

EC2). Amazon Elastic Compute Cloud (Amazon EC2).

URL: http://aws.amazon.com/ec2/. Access: 5 Mar 2010.
[10] A. Campbell, G. Coulson, and D. Hutchison, 1994, A quality of

service architecture, ACM SIGCOMM Computer

Communication Review, v. 24 (Apr.), p. 6–27.

[11] R.L.D.C. Costa and P. Furtado, 2008, Scheduling in Grid
Databases, In: Advanced Information Networking and

Applications Workshops, International Conference on, p.

696-701, Los Alamitos, CA, USA.
[12] J. Dias, E. Ogasawara, D. Oliveira, E. Pacitti, and M. Mattoso,

2010, Improving Many-Task Computing in Scientific

Workflows Using P2P Techniques, In: MTAGS 2010, p.
31-40, New Orleans, LA, USA.

[13] S.P. Callahan, J. Freire, E. Santos, C.E. Scheidegger, C.T. Silva,

and H.T. Vo, 2006, VisTrails: visualization meets data
management, In: Proc. SIGMOD 2006, p. 745-747,

Chicago, Illinois, USA.

[14] D. Oliveira, E. Ogasawara, F. Baião, and M. Mattoso, 2010,
SciCumulus: A Lightweigth Cloud Middleware to

Explore Many Task Computing Paradigm in Scientific

Workflows, In: Proc. 3rd IEEE International Conference
on Cloud Computing, Miami, FL.

[15] M.T. Ozsu and P. Valduriez, 1999, Principles of Distributed

Database Systems. 2 ed. Prentice Hall.

[16] R. Elmasri and S.B. Navathe, 2006, Fundamentals of Database

Systems. 5 ed. Addison Wesley.

[17] D. Oliveira, E. Ogasawara, F. Baiao, and M. Mattoso, 2010, An
Adaptive Approach for Workflow Activity Execution in

Clouds, In: International Workshop on Challenges in e-

Science - SBAC, p. 9-16, Petrópolis, RJ - Brazil.
[18] J. Freire, D. Koop, E. Santos, and C.T. Silva, 2008, Provenance

for Computational Tasks: A Survey, Computing in
Science and Engineering, v.10, n. 3, p. 11-21.

[19] R. Buyya, R. Ranjan, and R. Calheiros, 2009, Modeling and

Simulation of Scalable Cloud Computing Environments
and the CloudSim Toolkit: Challenges, In: Proc. of HPCS

2009HPCS 2009, Leipzig, Germany.

[20] G.C. Terstappen and A. Reggiani, 2001, In silico research in
drug discovery, Trends in Pharmacological Sciences, v.

22, n. 1 (Jan.), p. 23-26.

[21] M. Duke, M. Day, R. Heery, L.A. Carr, and S.J. Coles, 2005,
Enhancing access to research data: the challenge of

crystallography, In: Proceedings of the 5th ACM/IEEE-

CS joint conference on Digital libraries, p. 46–55, New
York, NY, USA.

[22] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn, 2010,

Case study for running HPC applications in public clouds,
In: Proceedings of the 19th ACM International

Symposium on High Performance Distributed Computing,

p. 395–401, New York, NY, USA.

