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Abstract 
 

Cloud computing has emerged as a new computing 

model that enables scientists to benefit from several 

distributed resources such as hardware and software. 

Clouds are an opportunity for scientists that need high 

performance computing infrastructure to execute their 

scientific experiments. Most of the experiments 

modeled as scientific workflows manage the execution 

of several activities and produce a large amount of 

data. Since scientists work with large amounts of data, 

parallel techniques are often a key factor on the 

experimentation process. However, parallelizing a 

scientific workflow in the cloud environment is far 

from trivial. One of the complex tasks is to define the 

configuration of the environment, i.e. the number and 

types of virtual machines and to design the parallel 

execution strategy. Due to the number of options for 

configuring an environment it is a hard task to be done 

manually and it may produce negative impact on 

performance.  This paper proposes a lightweight cost 

model that is based on concepts of quality of service 

(QoS) in cloud environments to help determining an 

adequate configuration of the environment according 

to restrictions imposed by scientists.  
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1. Introduction 

Over the last years, in the scientific experimentation 

process [1,2], due to the effective need of analyzing an 

increasing amount of information and complex 

scientific data, scientists use several programs and 

toolkits in their experiments. These experiments make 

use of several computing resources and are commonly 

modeled as scientific workflows [1]. In scientific 

workflows, a specific set of programs is organized in a 

coherent flow of activities in which the outcome of an 

activity is transferred to the next activity of the flow as 

an input to be consumed. Scientific workflows are 

normally handled by mechanisms, called Scientific 

Workflow Management Systems (SWfMS) [3]. 

The activities of a scientific workflow can also be 

re-executed many times as needed, varying the input 

data of the workflow or its parameters in order to 

analyze the data products generated by the workflow 

execution. This situation is commonly named 

parameter sweep [4] and it occurs when the same 

workflow is exhaustively executed using different 

input data files and/or different configurations until the 

exploration finishes. In addition, in most scenarios, 

these workflow variations are time-consuming and 

cannot be processed in a feasible time by a single 

computer or a small cluster. Due to this characteristic, 

scientific workflows require some degree of 

parallelism to reduce total execution time. 

Although workflow parallelism is a key issue, it is 

not the only impact factor on total execution time. The 

workflow execution may be unfeasible if scientists do 

not run their experiments in high performance (HPC) 

environments associated to parallel techniques such as 

parameter sweep. Clouds [5] have emerged as an 

alternative HPC environment where Web-based 

services allow for different kinds of users to obtain a 

large variety of resources. Clouds have demonstrated 

applicability to a wide-range of problems in several 

domains, including scientific ones [6]. An important 

advantage provided by clouds is that scientists are not 

required to assemble expensive computational infra-

structure to execute their experiments or even 

configure many pieces of software. Images can be pre-

configured to be instantiated on demand. An average 

scientist is able to run experiments by allocating the 

necessary resources in a cloud [7]. In addition, cloud 

resources are available via Web services, and can be 

dynamically re-configured to fulfill a variable demand 

(i.e. scalability). The use of these services is typically 

operated by a pay-per-use model [5]. 

Although clouds represent a step forward, the 

management of a parallel execution of scientific 

workflows in clouds is an open issue [8]. In addition, 

cloud-based configuration services are not available in 

the existing SWfMS. A specific infrastructure for 

running parallel scientific workflows in clouds is 

necessary. One of the recently proposed solutions to 

provide this infrastructure is named SciCumulus [8]. 



SciCumulus is a middleware designed to distribute, 

manage and monitor parallel execution of scientific 

workflows activities (or even entire scientific 

workflows) using a SWfMS in the cloud, such as 

Amazon EC2 [9]. SciCumulus orchestrates the 

execution of workflow activity in a distributed set of 

Virtual Machines (VM). SciCumulus configures the 

cloud environment for the workflow execution, thus 

creating VMs to execute activities, setting up 

parameters and staging data in and out.  

However, in its current version, SciCumulus creates 

the VMs according to the scientist definition. This 

way, scientists have to inform the number of necessary 

VMs and its configuration. However, there may be 

several combinations to choose when configuring an 

environment and it can be tedious and error-prone 

according to Juve and Deelman [8]. 

This way, given a set of types of VMs, the decision 

of which one will perform an activity is not a simple 

task to accomplish. This paper aims at developing a 

lightweight cost model to help determining an adequate 

environment configuration before scheduling workflow 

activities in cloud environments. The main idea is to 

determine an effective configuration of the 

environment according to some restrictions informed 

by scientists (total workflow execution time and 

monetary cost). This configuration is produced based 

on information collected from the cloud environments 

and the types of VMs available.  

By using this lightweight model and some 

important information provided by scientists we are 

able to develop a new component to couple to 

SciCumulus scheduler – the optimizer. With this 

component we can determine the best possible 

configuration of the environment that can be used in 

the workflow scheduling. By setting up the 

environment with the best possible configuration, the 

responsibility of the scheduler is focused on selecting 

the specific VM that will perform a certain activity in a 

given time. The cost model presented in this paper 

aims at being QoS-oriented, meaning that it is targeted 

on improving the satisfaction of scientists, maintaining 

a good Quality of Service (QoS). Restrictions are 

commonly specified by scientists and used in the 

approach proposed in this paper to provide some 

differentiation between the VMs to be used. The 

approach proposed in this paper is based on two 

criteria (total execution time and monetary cost), with 

the priority ordering chosen by the scientist, initially 

optimizing the first criterion and based on the 

optimization tries to optimize the next criterion. 

This paper is organized as follows. Section 2 

discusses related work and background. Section 3 

briefly describes the SciCumulus architecture. Section 

4 introduces the proposed cost model for supporting 

dynamic resource scheduling in the cloud. Section 5 

presents some experimental results. Finally, Section 6 

concludes and presents future work. 

 

2. Related Work and Background 

The term “Quality of Service” (QoS) [10] refers to 

all non-functional features of a service (in our case the 

parallel workflow execution in a cloud) that can be 

used by a client (or a scientist in the context of this 

paper) to evaluate the quality of service. Important 

features related to QoS are: (i) Performance; (ii) 

Reliability; (iii) Capacity and; (iv) Cost. However, in 

this paper we focus only on Performance and Cost. 

Initially, the term "Quality of Service" refers to some 

performance aspects of a network, not including any 

control or interference by the end user. However, 

nowadays the specification of quality criteria is widely 

used and currently covers various domains of computer 

science such as distributed and parallel computing, and 

in the context of this paper allowing the definition of 

quality criteria by scientists, to specify the level of 

quality you want in running scientific workflows. 

Following we provide a brief description of some 

existing work in the literature that relate in some way 

to the issue that we are dealing in this paper. Furtado et 

al. [11], presents a comparison between scheduling in 

distributed databases. The authors analyze the 

centralized and hierarchical architecture according to 

the throughput and QoS constraints for distributed 

services, similarly to this paper. About the QoS 

constraints, the authors state that the time constraints 

(e.g. deadlines) are among the mostly used QoS 

criteria. Although the authors use QoS constraints in a 

cost-model, their objective is different from the ones 

presented in this paper because they do not intend to 

configure the environment. Furtado et al. intend to 

schedule distributed queries in a pre-configured 

environment (distributed database).  
Dias et al. [12] proposes Heracles, an approach that 

uses Peer-to-Peer (P2P) techniques to manage 

distributed scientific workflows on huge clusters based 

on QoS criteria such as deadlines. However, different 

from the approach proposed in this paper, Heracles is 

focused on clusters and does not address cloud 

configuration issues.  

According to Juve and Deelman [8] Amazon cloud 

provides several good alternatives to HPC systems for 

workflow computation such as communication and 

storage services, yet they discuss on the virtualization 

overhead as one of challenges to overcome. We did not 

find any proposal to address the issue of cloud 

configuration for scientific workflows. 
 



3. SciCumulus Architecture 

SciCumulus is a cloud middleware designed and 

implemented to manage the parallel execution of 

scientific workflow activities (or even entire scientific 

workflows) from a SWfMS into a cloud environment, 

such as Amazon EC2. SciCumulus architecture is 

composed by three layers that are also distributed: (i) 

Desktop - dispatches workflow activities to be 

executed in the cloud environment using a local 

SWfMS such as VisTrails [13], (ii) Distribution - 

manages the execution of activities in cloud 

environments, and (iii) Execution - executes programs 

from workflows. The conceptual architecture was 

proposed in details by Oliveira et al. [14] in a previous 

paper. 

The Desktop layer is responsible for starting 

parallel execution of workflow activities in the cloud. 

The components of the Desktop layer are deployed in 

an existing Scientific Workflow Management Systems 

(SWfMS) such as VisTrails [13]. The local 

components installed in the local SWfMS starts the 

parallel execution in the cloud. There are three main 

components: Uploader, Dispatcher, and Downloader. 

The Uploader moves data to the cloud while 

Downloader gathers the final results from cloud VMs. 

The Dispatcher launches the execution process of 

cloud activities [14] in the cloud and communicates 

directly to the execution broker in the distribution 

layer. 

The Distribution layer manages the execution of 

parallel activities in cloud environments by creating 

cloud activities that contain the program to be 

executed, its parallelism strategy, parameters values 

and input data to be consumed. The layer has six 

components: Execution Broker, Parameter Sweeper, 

Encapsulator, Scheduler, Data Summarizer and 

Distribution Controller. The Execution Broker makes 

the connection between the desktop layer and the 

distribution layer. The Parameter Sweeper handles the 

combinations of parameters received by the desktop 

layer for a specific workflow activity that is being 

parallelized. The Encapsulator generates all cloud 

activities to be transferred to the virtualized instances. 

The Scheduler defines which VMs receive a specific 

cloud activity to execute. The Distribution Controller 

transfers cloud activities to the available virtual 

machines and monitors its execution. The Data 

Summarizer is combines the final results to organize 

the final results to be transferred to the client layer 

(SWfMS). 

Finally, the Execution layer is responsible for 

invoking executable codes in many VMs available for 

use. It has three main components: instance controller, 

configurator and executor. The Instance Controller 

makes the connection between the distribution layer 

and the execution layer. It is also responsible for 

controlling the execution flow in the instance when the 

cloud activity is associated to two or more applications 

to be executed. The Configurator sets up the entire 

environment. The Configurator unpacks the cloud 

activity, creates replicas of the program to a specific 

location; create workspaces to store parameter files, if 

needed, and stores data to be consumed. Finally, the 

Executor invokes the specific application and stores 

provenance data to a repository also stored in the 

cloud.  

This way, SciCumulus provides a computational 

infrastructure to support workflow parallelism with 

provenance gathering of the cloud environment. 

SciCumulus architecture is simple and may be 

deployed and linked to any existing SWfMS, 

diminishing effort from scientists.  

Although SciCumulus has three layers with several 

complex components, the approach proposed in this 

paper is in the scope of the distribution layer. The 

proposed cost model and the component that 

determines the best cloud configuration based on this 

cost model can be coupled to SciCumulus scheduler. 

 

4. Dynamic Selection of Resources in Cloud 

Environments 

With the evolution of cloud computing, several 

computing resources are already available for use. For 

example, Amazon EC2 [9] provides more than 10 

different types of VMs. Each one of them has a 

different memory capacity and CPU power. Choosing 

the type of VM to be used in the parallel execution of a 

scientific workflow is not a trivial task and can impact 

directly in the performance of the experiment. In 

addition, given this wide range of available resources, 

we can commonly find services offered by different 

cloud providers such as Amazon EC2
1
, IBM

2
 and 

GoGrid
3
, but with equivalent functionality. Moreover, 

in the same cloud environment, we can have multiple 

VM instantiated.  

This way, it is necessary to have cloud services able 

to determine which of these computing resources to 

instantiate and use by following a specific criterion 

such as total workflow execution time or overall 

monetary cost. To make this type of choice possible, 

functionally equivalent resources should be searched, 

cataloged and a cost model has to be applied in order to 

                                                 
1 aws.amazon.com/ec2/ 
2 www.ibm.com/ibm/cloud/ 
3 www.gogrid.com/ 

 



determine the best possible environment configuration 

to use.  

The proposed model aims at presenting a two 

criteria cost model with QoS support for clouds, 

enabling better resources usage and compliance with 

the requirements of the workflow (informed by 

scientists). Before starting the execution of a 

distributed workflow the scientist has to inform the 

restrictions for the execution as a simplified Service 

Level Agreement (SLA). This way, scientists describe 

important (and commonly found) requirements for the 

experiment execution (total execution time and 

execution cost). These criteria are based on those 

described in the papers presented in the related work 

presented in section 2.  

Thus, it would be under the responsibility of an 

optimizer component (coupled to SciCumulus 

scheduler) to determine which cloud resource should 

be instantiated in a given time. In other words, this 

optimization component would be in charge of 

optimizing the dynamic selection of VMs before 

scheduling cloud activities. For an optimizer be able to 

make the selection of an appropriate form, two 

requirements must be met. First, cost parameters 

applicable to scalable and distributed resources and its 

operations should be established; and second, a cost 

model that takes into account these parameters should 

be developed so that resources can be chosen based on 

these parameters.  

The next sub-sections present the parameters 

considered in the development of the cost model and 

the cost model itself. This cost model is a basis of the 

optimizer in order to simulate and achieve the best 

possible configuration of the environment according to 

the number and type of VMs. 

 
4.1 Formalization of the Parameters 

In this sub-section, we present the parameters 

related to the cloud environment and used to create a 

lightweight cost model for determining the best 

possible configuration of the environment. Let us 

consider VM = {VM0, VM1, VM2, … , VMn-1} as the set 

of n available types of VMs identified by an agent Ag. 

For each machine VMi, also consider the set Pi = {P0, 

P1, P2, ... , Pm-1}, set of m programs installed and 

configured by each machine VMi. 

This way, we are able to define CTi,j as the total 

monetary cost of running a particular program Pj in a 

virtual machine VMi in time Ti,j. In a simplified way, 

we can define CTi,j as the sum of the average cost of 

initializing the virtual machine VMi, the average cost 

of executing the program Pj in VMi for a specific time 

Ti,j and the average cost of data stage in and out 

involved in executing the program Pj in VMi. The CTi,j 

is defined as the longest initialization time of the VMs 

(since all VMs initialize in parallel) plus the time 

required for a particular program to run in a VM plus 

data transfer. Following in this sub-section we explain 

each one of the considered parameters and its 

formalization:  

 

(i) Availability: The availability of a VM, 

denoted by D(VMi) in the proposed cost 

model, corresponds to the percentage of 

time that a type of VM is available for use, 

considering a time interval T. It is a 

fundamental criterion; however, the 

responsible for guaranteeing the 

availability is the service provider. For 

example, Amazon EC2 guarantees an 

availability of 99%.  

(ii) Reliability: A VM may be available but 

may not be able to address a specific 

request by several problems in a network, 

such as network congestion or problems in 

implementation. We define reliability of a 

VM as R(VMi) as the ratio between the 

number of requests serviced by this VM 

and the number of requests made.  

(iii) Initialization Cost: Cost for a given VM to 

initialize. The initialization cost is 

estimated by analyzing the historical 

initialization times of each type of VM and 

using the VM configuration, e.g., its 

capacity, the operating system, and so on.  

(iv) Transfer Cost: Cost needed to stage in and 

stage out a certain amount of data from the 

client machine to the provider.  

(v) Storage Cost: Cost based on space needed 

for storage of information in the cloud.  

(vi) Runtime Cost: Cost of execution of a 

program P,j of a virtual machine VMi  

includes the cost / time spent since the 

beginning of the program execution until 

its end, ignoring the costs of startup and 

transfer involved. 

 
4.2 The Proposed Cost Model 

Cost models have been used successfully to 

estimate the costs involved in diverse areas of 

computing, as in database systems [10], among others. 

A cost model consists of a set of formulas that 

estimates the costs involved in a particular computing 

environment [15], in our case the cloud environment. It 

can be used for a quantitative simulation of each 

possible configuration of the environment, thereby 

allowing that the best possible choice that can be 

identified objectively, avoiding the actual 



implementation of all possible combinations present in 

the model, which can be costly.  

A cost model is usually implemented in a system 

that performs several simulations. This system is 

usually called optimizer. In the context of this paper, 

the optimizer initially receives the activities of the 

workflow to execute and the combination of data and 

parameters to be explored. It identifies the set of cloud 

activities [14,17] produced from the execution of these 

explorations of parameters and input data. It separates 

these cloud activities into several subsets to be 

executed in several VMs. After identifying each cloud 

activity involved in the execution, the optimizer uses 

the cost model to simulate several executions and to 

decide whether to choose a type and number of VM 

based on one of these two criteria. The approach 

proposed in this paper is based on a two criteria 

(performance – overall execution time and monetary 

cost), with the priority ordering chosen by the scientist, 

initially optimizing the first criterion and based on the 

optimization tries to optimize the next criterion: (i) 

Execution Time: In this case, the choice of VMs will 

follow the combination of VMs that produce the 

smallest execution time. However, we also try to 

optimize the monetary cost, since it cannot exceed the 

limit previously set by scientists. (ii) Monetary Cost: 

Here, the situation is the opposite one; the choice of 

VMs to instantiate to perform a set of cloud activities 

is prioritized by the monetary cost involved. However, 

we also try to optimize the overall execution time of 

the cloud activities that shall not exceed the 

predetermined limit of total execution time.  

The performance cost involved on using a cost 

model for an optimizer may not be high, because 

although negligible in most of the published literature, 

it can have an important role in distributed 

environments where high communication costs may be 

involved in obtaining information about the 

environment. Therefore, we need a model that takes 

into account the characteristics of VMs, the cloud 

environment and their programs, and that is able to be 

simulated several times under different conditions 

without impacting on the performance of workflow 

that is being executed by SciCumulus. 

Given the configuration of the machines offered by 

the cloud provider, we developed a cost model that 

aims at determining which configuration and 

combinations of VMs to use to execute a particular 

workflow following some restrictions and taking into 

account the parameters discussed in the previous sub-

section. Thus, we propose a dynamic model to estimate 

the costs involved in the execution of a workflow in a 

cloud environment and based on this estimative 

determine the best environment configuration to be 

used by an orchestrator such as SciCumulus. Following 

we detail each one of the parameters involved in the 

cost model. 

 

4.2.1 Total Execution Cost 

 

The total cost of running a program Pj of a virtual 

machine VMi, denoted by CT is defined in Equation 1, 

 

              ( Eq. 1) 

 

where CI is the cost of initializing the virtual machines, 

CE is the cost of executing the programs P
j
 in the 

virtual machines and CR is the transfer cost involved in 

executing the programs P
j 
in the virtual machines. 

We can extend Equation 1 so that it encompasses 

also the quality criteria of "availability" and 

"Reliability" as defined in the previous section. Thus, 

we are ensuring that the cost model is not static, 

because, after repeated executions of scientific 

workflows, the parameters "Availability" and 

"Reliability" can vary, making instances constantly 

unavailable or unreliable. Thus, Equation 2 defines the 

total cost of implementation.  

  

   
        

             
   ( Eq. 2) 

 

The values of D(VMi) and R(VMi) are integer 

numbers varying between 0 and 1, to divide the total 

execution time for these quality criteria, we will be 

increasing the execution time of VMs less reliable or 

constantly unavailable.  

Ideally, each provider should provide this 

information to client applications that wish to use their 

resources. Thus, we can define initialization cost as in 

Equation 3. 

 

   ∑       
   
     (Eq. 3) 

 

The execution cost is the sum of the costs of 

executing the programs Pj of a particular virtual 

machine VMj (    
  .  

 

   ∑ ∑     
    

   
   
      ( Eq. 4) 

 

The transfer cost is calculated based on the volume 

of data that we stage in and stage out to and from the 

cloud environment and the price charged by the service 

provider. We define it as Equation5, 

 

              ( Eq. 5) 

 



where CU is the cost of uploading, the CD is the cost of 

downloading and CS is the cost of storing data in the 

provider. 

 

4.2.2 Total Execution Time 

 

The total execution time of running all programs Pj 

in VMi, denoted by TT is defined in Equation 6, 

 

             ( Eq. 6) 

 

where TI is the higher startup time of the virtual 

machines, TE is the cost of implementing the programs 

P
j
 in the virtual machines and TR is the transfer time 

involved in executing the programs Pj in the virtual 

machines. 

The initialization time should be calculated 

beforehand by analyzing initialization times   
  of each 

VMi and taking the highest one because all VMs 

instantiate in parallel, as defined by Equation 7. 

 

               
   ( Eq. 7) 

 

The runtime is the sum of execution times of 

programs Pj in a given virtual machine VMi varying 

with the number of parameters of the activity. Equation 

8 defines execution time. 

 
   ∑ ∑     

    
   

   
     (Eq. 8) 

 

The transfer time is calculated based on the volume 

of data that we capture and send the server and 

available bandwidth. We define it as follows: 

 
   ∑   

    
    ∑   

    
     (Eq. 9) 

 

Where   
  is the time to upload and   

  is the time to 

download from and to a specific VMi. 
 

4.3 Using the Model in SciCumulus  

In order to evaluate the model in a real scientific 

workflow cloud environment we introduce an 

optimization component in SciCumulus architecture. 

The optimization component is a simulator 

implemented in Java that simulates several 

combinations of types of VMs, transferring data and so 

on to produce the best possible environment 

configuration for SciCumulus. 

The optimizer simulates the execution of 

SciCumulus components with several environment 

configurations according the criteria informed by 

scientists. To simulate the execution and the 

environment, the optimizer uses several information 

captured from the cloud environment by an 

autonomous agent. This agent is independent from 

SciCumulus and crawlers the several cloud providers 

capturing information about types of VMs, pricing, 

VM capacity, and transferring rates. All of this 

information is stored in a specific DB schema of 

SciCumulus and can be considered important 

provenance data [9,17]. The information about the 

experiment and environment definition is fundamental 

to scientific experimentation process. This data is 

called Provenance Data [18].   

 

 
Figure 1 an excerpt of the additional components for 

the SciCumulus architecture 

 

5. Experimental Results 

We performed several tests to validate our cost 

model in defining the environment for SciCumulus. In 

this Section we present the most relevant experimental 

simulated results achieved by the optimizer component 

and the real results to evaluate if the environment setup 

proposed is indeed the best possible choice for the 

experiment being executed. For the simulation, we 

used an extended version of CloudSim [18]. Scientists 

have to inform the primary and secondary criteria to 

optimize (performance or cost in order).  According to 

the QoS data provided by scientists the cost model was 

then calibrated taking into account the cloud activities 

to be executed, the size of input data and the size of 

output data. 

We used the X-ray crystallography scientific 

workflow [19] results to calibrate the cost model with 

real information about program execution time. This 

workflow is a very representative one and due to this 

characteristic, it was chosen as use case for the next 

Provenance Challenge
4
. X-ray crystallography 

experiments concern on determining the three-

dimensional structure of the molecules by analyzing 

                                                 
4 twiki.ipaw.info/bin/view/Challenge/FourthProvenanceChallenge 
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the diffractions patterns obtained from X-ray scattering 

experiments. The X-ray crystallography scientific 

workflow is composed by several programs and 

toolkits such as CCP4. The information about the 

cloud environment was captured from Amazon EC2 

environment using Amazon API tools encapsulated in 

the agent. The workflow used to test the cost model 

and the optimizer processes 2,000 images in groups of 

3 and it is composed by 667 cloud activities to be 

distributed among the VMs in the cloud environment. 

This workflow executes in approximately 45,876 

seconds in a single machine. 

The optimizer first simulates the instantiation of 

one VM for each cloud activity. Intuitively we can 

visualize that this is not an appropriate policy to 

follow. This way, the optimizer starts to reduce the 

number of VMs and analyzes if the total execution 

time reduces proportionally until we reach the 

restriction values for performance or cost (depending 

on the priority choice of the scientist). This process is 

executed for each one of VM types analyzing 

performance and monetary cost. The restrictions 

imposed in this simulation were total execution time of 

1 hour and 10 dollars of cost maximum. 

Since we are executing embarrassingly parallel 

experiments, the performance varied the type of VM 

was not significant when the number of VMs involved 

in the execution increases. This behavior can be 

explained since embarrassingly parallel experiments 

are the most scalable patterns for clouds [20,21]. In our 

simulation, the execution time restriction (1 hour = 

3,600 seconds) was reached using from 16 up to 256 

virtual cores as presented in Figure 2. 

Although the performance is quite similar using 

different configurations, the monetary cost was 

significantly different. For example, the price paid 

varies from US$ 2,448 (16 cores) to US$ 39,168 (256 

cores). In this simulation we defined as the primary 

priority the monetary cost instead of execution time. 

This way, the optimizer fixed the number of VMs in 16 

(because the restriction of total execution time was 

fully satisfied) and started to vary the type of VM in 

order to reduce cost. As result, the high CPU extra-

large instance was considered the suitable one from the 

monetary point of view. 

 

 
Figure 2 Simulated results for the execution of the 

workflow 
 

Since we have chosen the high CPU extra-large 

instances in Amazon EC2 to use, we simulated the 

monetary cost of running the experiment using from 2 

cores up to 16 cores to evaluate the cost model and the 

optimizer. All simulations produced a monetary 

prediction lower than the real cost, the results were 

only up to 8% lower. It indicates that a fine tuning in 

the optimizer is indeed needed. However, the behavior 

of the simulator follows the real execution. 

 

 
Figure 3 Comparison between the simulated monetary 

cost and the real cost. 

 

6. Conclusion 

Large scale scientific workflows usually present 

several executions using different parameters and input 

data. In order to produce results in a feasible time, 

scientists use parallel techniques to improve 

performance. For running these experiments in cloud 

environments, specific infrastructure such as 

SciCumulus is used. However, in its first version, 

SciCumulus creates the VMs following the decisions 
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of the scientist. Scientists have to inform the total 

number and type of necessary VMs which is not 

appropriate. There may be several combinations of 

types of VM to choose depending on the provider and 

this choice can be error-prone. 

This work presents a cloud-based cost model used 

to help determining the best possible configuration of 

the cloud environment before scheduling cloud 

activities into those environments. This lightweight 

cost model aims at optimizing two criteria: total 

execution time of the workflow and monetary cost. The 

simulated results show that it is possible to use this 

model for determining an effective configuration 

following some QoS restrictions imposed by scientists. 

By optimizing the environment configuration we 

showed a reduction on the monetary cost up to 94% 

(using 16 VMs instead of 256) just reducing the 

number of VMs and satisfying the total execution time 

restriction. 
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