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Abstract�— Most datacenters, clouds and grids consist of 
multiple generations of computing systems, each with different 
performance profiles, posing a challenge to job schedulers in 
achieving the best usage of the infrastructure. A useful piece of 
information for scheduling jobs, typically not available, is the 
extent to which applications will use available resources once 
they are executed. This paper comparati vely assesses the 
suitability of several machine learning techniques for 
predicting spatiotemporal utilization of resources by 
applications. Modern machine learning techniques able to 
handle large number of attributes are used, taking into account 
application- and system-specific attributes (e.g., CPU 
microarchitecture, size and speed of memory and storage, 
input data characteristics and input parameters). The work 
also extends an existing classification tree algorithm, called 
Predicting Query Runtime (PQR), to the regression problem 
by allowing the leaves of the tree to select the best regression 
method for each collection of data on leaves. The new method 
(PQR2) yields the best average percentage error, predicting 
execution time, memory and disk consumption for two 
bioinformatics applications, BLAST and RAxML, deployed on 
scenarios that differ in system and usage. In specific scenarios 
where usage is a non-linear function of system and application 
attributes, certain configurations of two other machine 
learning algorithms, Support Vector Machine and k-nearest 
neighbors, also yield competitive results. In addition, 
experiments show that the inclusion of system performance 
and application-specific attributes also improves the 
performance of machine learning algorithms investigated. 

Keywords-application resource usage; machine learning; 
regression; classifier tree.  

I. INTRODUCTION 
Resource consumption by an application in the form of 

CPU time, amount of memory, network bandwidth, and disk 
space consumed, is a useful piece of information when 
available before execution. It can be used by schedulers to 
accommodate the most number of applications without 
resource contention, it can help estimate the waiting time on 
queued systems, it can identify the best resource to run an 
application and analyze what-if scenarios, or it can provide 
an estimate of the cost of running an application on a pay-
per-use facility (e.g., a cloud). Nonetheless, this information 
is often not available to users or computational systems . In 
cases where predicted resource consumption is provided, the 
prediction rarely takes into consideration both application 

characteristics and system performance. The use of Machine 
Learning (ML) algorithms to predict application resource 
consumption is an appealing approach that has been pursued 
by several previous studies [1]-[12]. These studies have 
proposed the use of specific ML algorithms applied to 
scenarios ranging from generic jobs in batch systems to 
specific applications that could be part of a workflow 
distributed across a grid. The abundance of solutions and the 
diversity of dataset attributes and reported prediction 
performance metrics combined with limited comparative 
evaluation make it difficult for users and system developers 
to choose an appropriate prediction method. To remedy this 
situation, this paper makes the following contributions : 

 It identifies the best ML algorithm and provides 
reasoning for the results, for predicting execution time, 
memory and disk requirements for two bioinformat ics 
applications, namely BLAST [13] and RAxML [14], on 
different types of computer clusters . The regression 
algorithms considered in this study include k-nearest 
neighbor (k-nn) [3][6], linear regression [10], decision 
table [9], Radial Basis Function network (RBFn) [11], 
Predicting Query Runtime (PQR) [8], and Support 
Vector Machine (SVM) [19][20]. The datasets 
comprising more than 2000 cpu-hours of execution are 
made publicly available for future research.  
 It proposes the Predicting Query Runtime 

Regression (PQR2) algorithm, a generalization of the 
PQR classification tree approach, to the regression 
problem. The extension consists of adding regression 
functions at the leaves of the PQR tree in order to 
provide fine-grained prediction. 
 It investigates the impact of attributes on prediction 

accuracy and makes the case for increasing the number 
of attributes (data space), in particular taking into 
account heterogeneous systems performance and 
detailed application-specific characteristics. 
Experimental results show that PQR2, when compared to 

other algorithms, offers the best accuracy for the scenarios 
studied, including cases where the predicted resource usage 
presents linear and non-linear dependencies on application 
attributes. The diverse characteristics of the studied datasets 
suggest that the conclusions of this work may be generally 
applicable to many other applications and systems. 

!000111000      111000ttthhh      IIIEEEEEEEEE///AAACCCMMM      IIInnnttteeerrrnnnaaatttiiiooonnnaaalll      CCCooonnnfffeeerrreeennnccceee      ooonnn      CCCllluuusssttteeerrr,,,      CCClllooouuuddd      aaannnddd      GGGrrriiiddd      CCCooommmpppuuutttiiinnnggg

!777888---000---777666!555---444000333!---!///111000      $$$222666...000000      ©©©      222000111000      IIIEEEEEEEEE

DDDOOOIII      111000...111111000!///CCCCCCGGGRRRIIIDDD...222000111000...!888

444!555



This paper is organized as follows. Section II summarizes 
the algorithms investigated in this study and discusses 
previous work. Section III explains the extension to PQR for 
handling regression problems. Section IV describes the 
collected training and testing datasets  used in the 
experiments. Section V analyzes the experimental results and 
Section VI draws the conclusions from this work. 

II. MACHINE LEARNING AND RELATED WORK  
Predicting application resource consumption, such as the 

amounts of CPU, memory, disk and network required by an 
application and the lengths of times during which the 
resources are occupied, can be viewed as a supervised 
machine learning problem. The system needs to learn a 
concept based on a collection of historical data of n previous 
runs of the application. Each previous observation is used as 
training data, providing a set of m attributes and the actual 
outcome . Several parametric (e.g., 
linear regression, polynomial regression) and non-parametric 
(e.g., k-nn, locally weighted linear regression, decision trees) 
solutions exist in the field of machine learning, some of 
which are presented in [15][16][17]. Parametric methods 
define a hypothesis space and a loss function. The training 
data is used to extract the model parameters of the problem 
at hand by minimizing the loss function. After the parameters 
are extracted there is no need for the system to store the 
training data and predictions can frequently be computed 
fast, i.e., in O(1) time. On the other hand, non-parametric 
methods use the actual data as the model, usually presenting 
prediction computation time that linearly grows with the size 
of the training data, i.e., takes O(n) time. The advantage in 
this case is that adding more training data into the learning 
process is trivial since the next estimate calculation simply 
takes the new data into account. ML algorithms considered 
by previous work and evaluated in this paper, are discussed 
next. 

k-nearest neighbor (k -nn) algorithm: given a query point, 
the k nearest training data points are considered when 
computing the prediction. The predicted value can be 
calculated as the weighted average of selected points. When 
non-identical weights are used, the weight function usually 
decreases as the distance from the query point to the training 
data increases with the goal of minimizing the influence of 
the distant neighbors on the prediction. While the Euclidean 
distance is often selected, other distance functions such as 
Manhattan or Hamming may better represent the gap 
between data points  in certain scenarios. One of the 
challenges of this algorithm is to find the ideal value for k , 
which is dependent on the distribution of the training data. A 
high value for k can reduce the influence of noise, but in 
regions scarce in data, the prediction can be highly 
influenced by distant points. In [6], the best value for k is 
searched applying a genetic algorithm. Locally weighted 
polynomial regression (LWPR) is similar to k-nn algorithm, 
in that it considers data close to the query point for the 
prediction according to a weight function and its kernel 
bandwidth. Instead of generating the prediction through 
averaging, the algorithm attempts to fit the data with a 
polynomial (e.g., a  first order polynomial ). 

The advantage of this method is that predictions can better 
track data that is not well represented by a plateau, avoiding 
the rough edges of the k-nn algorithm. It has been 
demonstrated that the computation demands of both 
algorithms grows with the size of the knowledge-base, with 
an additional computation demand for LWPR, but methods 
combining caching and filtering [3] or kd-trees and 
approximate weight functions [2] have shown to reduce the 
computation time manyfold. Previous work [3] has shown 
that 1-nn and 3-nn with Gaussian weighted averaging can 
produce lower error rates when predicting the runtime of a 
short-running scientific application than a locally weighted 
linear regression; the opposite result applies for a randomly 
generated dataset. 

Linear Regression (LR) algorithm: simple algorithm that 
finds a linear hyperplane 

 with minimum error in relation to existing data points, 
defined as the sum of Euclidean distance of each data point 
to the hyperplane. Once the linear model is defined, 
prediction takes O(1) time. Linear regression was applied in 
[10] for predicting execution time of an application in a 
workflow, and it is used by LWPR and SVM algorithms.  

Decision table/tree (DT) algorithm: a divide-and-conquer 
strategy that utilizes a tree structure to separate data 
according to their characteristics. The nodes of the tree store 
rules that determine how their children have been split and 
the leaves store either the actual outcome, a function that 
determines the outcome, or the actual data from where the 
prediction can be made. This method provides good 
computational scalability, can handle well data that are 
dispersed in input space, and its result is reasonably easy to 
interpret. However, correlations between input 
characteristics are not well captured since nodes usually split 
their children according to a single characteristic. The C4.5 
classification tree was applied in [9] for predicting execution 
times in a distributed system that has a centralized scheduler 
with backfilling, using ranges of execution time as classes. 
Although implemented using the so called templates instead 
of a tree graph, [1][4][5][6][12] all used job characteristics to 
select a subset of the data points on which an statistical 
function is applied. The choices for the statistical function 
included the mean [5][6][12], the mean plus 1.96 standard 
deviations [1], mean plus 1.5 standard deviations [4], linear 
regression of a single characteristic x ( ) [1][5], 
inverse regression of a single characteristic x (

) [5], and logarithmic regression of a single characteristic 
x ( ) [5]. Using the well known space-
shared system workloads from the Parallel Workload 
Archive [18] as the dataset, the mean function has been 
shown to provide smaller error rates when compared to more 
complex regressions for the set of characteristics chosen for 
splitting the training data [5]1. 

Artificial Neural Network (ANN) : an interconnected 
group of functions that emulates a biological neural system 
and can collectively perform complex tasks. During the 

                                                                 
1 The Parallel Workload Archive is a collection of traces; they were not 
used in this study because they lack application and system performance 
information needed to evaluate the algorithms under consideration. 
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training phase, an ANN changes its structure based on 
external or internal information that flows through the 
network. Radial Basis Function network  (RBFn) is a 
feedforward ANN, typically with three layers: input, hidden 
and output. A variable number of neurons form the key 
hidden layer, where Euclidean distance from the center of 
each neuron to the test case is computed and the RBF 
function applied. RBFn is very similar to k-nn, except for the 
fact that RBFn is a parametric method. The number of 
neurons in the hidden layer (number of neighbors in k-nn) 
affects the performance and the computational demands of 
RBFn. In the extreme case (overfitting), each data point can 
be the center of a neuron (single neighbor in k-nn). The use 
of RBFn was proposed in [11] combined with a Bayesian 
network for eliminating attributes with low correlation with 
the outcome. 

Support Vector Machine (SVM) algorithm: a kernel 
method for solving classification [19] and regression [20] 
problems, especially for scenarios with non-linear learning 
pattern. The attribute space is transformed by the kernel 
function into possibly a high-dimension feature space where 
an optimal linear hyperplane is found by maximizing the 
margin between the so called support vectors. The 
advantages of this method include the limited number of 
parameters to choose, and the ability to handle large numbers 
of attributes and non-linear scenarios without local minima 
problems. A comparison of radial basis function neural 
networks with SVM has been presented in [11], with lower 
errors for SVM in some scenarios at the cost of higher 
computational demand. 

Time series methods: in scenarios where the data points 
of the attribute to be predicted exhibit temporal patterns, 
algorithms that consider only the order of data points have 
been proposed. The prediction could be as simple as 
predicting the future value to be the same as the last 
observed value, to as complex as considering multiple 
algorithms in parallel, as proposed by the Network Weather 
Service (NWS) [22] or a probabilistic approach as a Markov-
chain. Triple-C [10] presents a scenario where jobs in a 
workflow present time dependencies, making Markov-chains 
appropriate for predicting execution time. In this study, the 
attributes to be predicted are assumed to have low or no 
ordering dependency and thus this class of solutions is not 
considered. However, the idea of choosing between several 
learners as in NWS is at the core of the PQR algorithm 
discussed in the next section. 

III. PREDICTING QUERY RUNTIME REGRESSION 
PQR [8] is an algorithm that generates a binary tree that 

can combine a variety of classifiers. Each node of the tree is 
represented by a 2-class classifier that is chosen from a pool 
of classification algorithms according to its accuracy, and the 
leaves of the tree correspond to ranges of the attribute to be 
predicted and thus present a coarse granularity of output. 
PQR has been proposed in the context of predicting 
execution time of database management systems queries, 
where cost models are often not good predictors and 
analytical models are complex and difficult to create [8], yet 
only coarse classification of queries are necessary.  

The algorithm to discretize the numerical attribute into 
two classes for creating a node consists  of ordering all m 
training attribute values ( ) and finding the k 
largest gaps  defined by  that 

can become potential split locations. The best combination of 
classifier and split location determines the two attribute 
ranges. 

The growth and quality of the tree can be controlled by 
tuning several parameters of the PQR algorithm that dictate 
the minimum number of train ing data in a node, the 
minimum accuracy required by a classifier, the minimum 
attribute interval covered by a node, and the percentage of 
data points from the extremes of prediction attribute that 
should not be considered for split. Although many 
combinations are possible, in practice, the use of default 
parameters suffices to achieve good accuracy. 

In this work we generalize PQR to the regression 
problem by training regression algorithms from a pool of 
known methods with the data on PQR leaves and choosing 
the best algorithm. Any regression algorithm can be placed 
on the pool, including different configurations of the same 
algorithm, but preference for parametric methods should be 
given when fast predictions are required. Figure 1 highlights 
through an example the differences between a PQR and a 
PQR2 tree. The nodes of the tree, shown as circles  with the 
name of selected classifier, are produced using the algorithm 
described in [8]. Each node is responsible for classifying data 
into two classes, defined by a threshold that is chosen as to 
maximize the accuracy of the predictor. The values between 
brackets show the range of attribute values that were 
observed by each node or leaf during training, followed by 
the amount of historical information. The only difference is 
found at the leaves: instead of outputting classes (a broad 
range) or a static value (e.g., range median), PQR2 selects 
the best regression model for the availab le data (LR and 
SVM in the case of the leaves shown in the figure). The 
percentage error (displayed in normal face for PQR and in 
bold for PQR2) in each subspace is lower with PQR2. PQR2 
offers fine-grained prediction through models that adapt 
better to the characteristics of the data in each leaf. 

IV. EXPERIMENTAL SETUP 
To generate data for this study, a heterogeneous 

environment consisting of four different hardware resources 
specified in TABLE I were used to run two popular 
bioinformatics applications, namely Basic Local Alignment 
Search Tool (BLAST) [1] and Randomized Axelerated 
Maximum Likelihood (RAxML) [14]. 

BLAST version 2.2.18 (either 32-bit or 64-bit depending 
on the resource) was executed against the non-redundant 
(NR) protein sequence database from NCBI split into 1 
fragment (total of 3.5 GB of data). Given an input sequence, 
BLAST searches a database for similar sequences and 
calculates the best alignment of the matched sequences. 
Single nucleotide sequences of varying lengths served as 
input (see sequence length distribution in Figure 2) in this 
study. 
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Figure 1. Tree generated by PQR and PQR2 algorithms. The nodes of the tree (circles) are common to both methods, while leaves (squares)  of 
PQR2 (boldface) yield lower errors than PQR (normal face). The improvement comes from the ability of selecting the best regression method 

from a pool, whereas leaf range median is used in PQR. The number between square brackets represent the range of values of the attribute to be 
predicted, which is followed by the number of historical data points in each node/leaf. The percentage value indicates the accuracy of each 

classifier (nodes) or the percentage error of each regressior (leaves). The last value indicates the name of each classification (PQR and PQR2) or 
regression (PQR2) algorithm selected. 

In addition to running BLAST on all different 
resources on local disk, BLAST was also run placing the 
database on two Network File System (NFS) servers 
with different hardware (the * on TABLE I indicates the 
physical resources used as NFS servers ; the disk 
performance, according to the number of clients, has 
been used to model the load on the server). The purpose 
of including runs with the database placed on remote 
servers is to include scenarios where applications space-
share local resources, but time -share other resources 
such as network or a file system, a typical scenario on 
clouds that serve virtual machine images or user�’s data 
from a shared server. BLAST runs resulted in a 
collection of 6592 data points. In order to provide 
insight about the characteristics of this dataset, partial 
data is plotted on Figure 3 (top) to show the existence of 
a linear relationship between BLAST execution time 
and input sequence length that is different for each of 
the cluster resources used. This linearity is affected 
when the database is placed on a file server that is 

concurrently accessed by different number of clients, 
especially for shorter input sequences (Figure 3 bottom). 

RAxML version 7.0.4, a software application for 
constructing phylogenetic trees using maximum 
likelihood analysis, was executed for 35 nucleotide 
datasets combining five different taxa sizes (50, 100, 
150, 200 and 250), and seven different sequence lengths 
(5000, 10000, 15000, 20000, 25000, 40000, and 50000). 
Runs for different numbers of threads, up to the number 
of cores in each resource, were also performed, resulting 
in a dataset with 487 data points. 

RAxML is not only computationally intensive, but 
also memory intensive. Non-linearity of execution time 
with respect to resources and application characteristics 
occur in two situations in this dataset: as number of 
threads increase and as dataset increase. For inputs 
with250 taxa, Figure 4 shows that single-threaded runs 
on c3 are faster than on c4 (which has slower memory).  
This fact slowly changes as the number of threads is 
increased. Similar trends are observed for other datasets 

TABLE I. CHARACTERISTICS OF RESOURCES UTILIZED.  

Cluster c1 c2_512M c2_3.5G*  c3* c4 
CPU 2-way Pentium 

III (2 Tualatin  
cores) 

2-way Xeon  
(2 Prestonia 
cores) 

2-way Xeon  
(2 Prestonia 
cores) 

2-way Quad Core 
Xeon (8 
Clovertown cores) 

16-way Quad Core 
Xeon (64 Tigerton 
cores) 

CPU clock 1.4 GHz 2.4 GHz 2.4 GHz 2.33 GHz 2.93 GHz 
CPU cache  512 KiB/core 512 KiB/core 512 KiB/core 4 MiB/2-cores 4 MiB/2-cores 
CPU speed 659 MFlops 879 MFlops 879 MFlops 1436 MFlops 1798 MFlops 
Kernel  2.6.23.8-i686 2.6.18-i686 2.6.18-i686 2.6.22.2-x86_64 2.6.18-x86_64 
Xen VMM - 3.1.0 3.1.0 - - 
Memory  2 GiB 512 MiB 3.5 GiB 3.9 GiB 503 GiB 
Memory speed  437 MiB/s 1932 MiB/s 1932 MiB/s 3468 MiB/s 1257 MiB/s 
Disk read speed 65.5 MB/s 37.8 MB/s 37.8 MB/s 60.2 MB/s 240.9 MB/s 

Following the IEC 80000-13:2008 standard, the prefixes KiB (kilobinary bytes), MiB (Megabinary bytes) and GiB (Gigabinary bytes) are used 
to represent multiples of  respectively. 

 i686 suffix indicates a 32-bit kernel while x86_64 suffix indicates a 64-bit kernel 
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Figure 2. Histogram of input sequence length for BLAST . 

 
Figure 3. Execution Time of BLAST . A linear relationship between 

time and input sequence length that is distinct for each different 
resource can be observed (top). When data is placed on a NFS server, 
varying the number of concurrent clients on a particular resource (c2) 

affects the linearity, especially for short sequences (bottom). 

and resources (not shown due to space limitations; can 
be found in [21]). Furthermore, although larger inputs 
are expected to require more execution time, in some 
cases, larger inputs have shorter execution time. For the 
experiments shown in the next section, attributes of 
applications (sequence length, taxa size, taxa size 
multiplied by sequence length) and resources (cluster 
name, CPU clock, amount of cache, amount of memory) 
were selected. However, as informat ion such as CPU 
clock does not reflect well the processing capability of 
each resource, the following benchmarks were used to 
better characterize the performance of each resource 
(included in TABLE I):  

 A simple matrix multiplication application was 
used to extract the number of floating point 
operations performed in a fixed amount of time 
(CPU speed).  

 A cache benchmark application was used to 
collect the performance of a read-modify-write 
operation (memory speed).  

 The Linux dd  command was used to read a 1 
GiB file from different sources (disk read 
speed). 

The overall average and standard deviation of 
BLAST and RAxML datasets used in the experiments 
evaluated in the next section are shown in TABLE II. 

TABLE II. OVERALL CHARACTERISTICS OF LEARNING DATASETS.  

Dataset Mean Standard Deviation 
BLAST output 50025 bytes 129743 bytes 
BLAST time 208.4 secs 97.7 secs 
RAxML RSS 110442 bytes 96077 bytes 
RAxML time 5720 secs 10702 secs 

 

 
Figure 4. Execution time of RAxML on c3 and c4 resources for 
input datasets with 250 taxa, lengths varying from 5,000 to 50,000 

and different number of threads. The numbers next to extreme points 
indicate the minimum and maximum execution time (hh:mm:ss). 

V. EXPERIMENTAL RESULTS AND EVALUATION 
Application resource usage prediction is evaluated in 

this section for 9 different configurations of machine 
learning algorithms (see TABLE III), including the new 
PQR2. All experiments were performed using Weka 
version 3.0.7, a  Java-based open source collection of 
ML algorithms and statistical tools with graphical user 
interface for visualizing data, processing information, 
and carrying data mining experiments. PQR and PQR2 
were newly implemented in Weka, extending defined 
interfaces, making use of data manipulation utilities, and 
reusing existing ML algorithms such as Naïve Bayes, 
C4.5, SVM and LR. 

Three attributes often considered for prediction are 
the application execution time, the amount of resident 
memory (Resident Set Size or RSS) required, and the 
size of output produced. Evaluating these attributes for 
BLAST and RAxML datasets described in the previous 
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section, produces six scenarios. However, due to the 
constant nature of BLAST memory usage (defined by 
the NR database size) and RAxML output for the runs 
performed, evaluations presented in this section did not 
include these two scenarios. For the remain ing four 
scenarios, 10 iterations of 10-fold cross-validation were 
performed for each algorithm and scenario to obtain 
results that are statistically relevant, resulting in 100 
evaluations of each experiment.  

TABLE III. ML ALGORITHMS INVESTIGATED.  

Abbreviation ML Configuration 
Knn1nInv k-nn Single neighbor 
Knn30nInv k-nn 30 neighbors with weight 

inversely proportional to the 
distance 

Knn30nNow k-nn 30 neighbors without 
distance weight 

LinearGdy LR Greedy selection of 
attributes 

Dectable DT Best first attribute selection 
RBFn50c01s RBFn  50 clusters (neurons), 0.1 

minimum standard deviation 
RBFn200c01s  RBFn  200 clusters, 0.1 minimum 

standard deviation 
Pqr1_75 PQR 0.75 minimum accuracy 

threshold, considering Naïve 
Bayes, C4.5 and SVM as 
node classifiers 

Pqr2_75 PQR2 Same as Pqr1_75, with  
range median, average, LR 
and SVM as leaf regressors 

SmoPoly1 SVM linear kernel 
SmoPoly2 SVM polynomial kernel of degree 

2 
 

The Receiver Operating Characteristic (ROC) curve 
is a method for visually comparing accuracy of 
classification algorithms - it was generalized for 
regression algorithms as Regression Error Characteristic 
Curves (REC) [23]. The REC curve displays the error 
tolerance in the horizontal axis and the accuracy of an 
algorithm in the vertical axis, with accuracy defined as 
the percentage of predictions below the error tolerance 
threshold. The area over the curve represents the 
expected error for a regression model. When the curve 
of a certain algorithm A always appears above the curve 
of another algorithm B, A is the preferred algorithm and 
A is said to dominate B. In this study, the percentage 
error ( , where  is the predicted value and  is 

the actual value for a test case ) was chosen as the error 
metric displayed in the REC curves. Thus, the area over 
the REC curve is close to the mean percentage error 
(MPE). 

Evaluation of ML algorithms is performed by 
answering four questions. 

Question 1: Which ML algorithm offers the best 
accuracy? 

To evaluate accuracy, REC curve for each ML 
algorithm was generated for all four scenarios, when all 
system and application attributes are included in the 
training dataset (Figure 5). The fact that PQR2 
dominates other studied algorithms in all scenarios (top 
left most curve in all graphs), shows that it can adapt 
better to different scenarios, where the predicted 
resource usage presents linear (RAxML RSS in the 
presence of input size information) and non-linear 
behavior (other scenarios) as a function of system and 
application characteristics . This adaptation is due to the 
fact that different classification and regression models 
are created for different regions of the data, at the cost of 
additional computation during training phase. 

SVM and k-nn algorithms are in general the next  
best algorithms. In particular, since the BLAST dataset 
contains a large number of data points, the REC curves 
show that increasing the number of neighbors to 30, 
increases the accuracy of k-nn, but this effect is opposite 
for the RAxML dataset. In fact, due to the limited 
number of data points , increasing the number of 
neighbors in the RAxML scenario is extremely harmful, 
even more so when no weight is used. This result 
indicates the difficulty in finding an ideal number of 
neighbors, especially when the training information 
presents varying density of points across the data space. 
With respect to SVM, the graphs show that the 
polynomial kernel of degree 2 can adapt better to the 
non-linearity of data than the linear kernel, especially in 
the RAxML scenarios, without requiring ideal algorithm 
parameters to be found. 

Similar to k-nn, RBFn requires the number of 
neurons to be specified, a configuration that 
dramatically impacts the prediction accuracy. Empirical 
tests showed that the ideal number of neurons for 
BLAST scenarios was 200, while 50 neurons were the 
best configuration for RAxML. These configurations 
were used in the comparative graphs. 

Question 2: Which attributes should be included in 
the training dataset? 

Previous works [1][5][11][12][24] have proposed 
and studied methods for systematically selecting 
attributes independently from the learning algorithm. In 
this work, the impact of different sets of attributes on the 
accuracy of prediction is evaluated. Figure 6 and Figure 
7 show the MPE for BLAST and RAxML respectively, 
for different sets of attributes. The number that appears 
above each group of vertical bars is the MPE of the case 
including all attributes (leftmost bar). 

In the BLAST scenario, the attributes included are: 
cluster name, CPU clock, amount of memory, location 
of data (nominal value indicating the name of the 
resource hosting the data), CPU speed (Flops), memory 
speed, disk speed (different from TABLE I in 
configurations with NFS to account for different number 
of clients) and number of bases in a sequence. Since the 
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Figure 5. REC curves predicting disk space (top left) and execution time (top right) required by BLAST, and resident memory (bottom left) and 
execution time (bottom right) required by RAxML when taking all attributes into consideration for various machine learning algorithms. The area 

over the curve represents the mean percentage error, which is presented in Figure 6 and Figure 7. 
 

output size is not dependent on any of the system 
attributes, the selection of attributes has almost no 
impact on the accuracy of BLAST output prediction 
(Figure 6 left). Thus, maintaining them in the dataset is 
not detrimental to the performance of ML algorithms . 
On the other hand, the addition of attributes, by 
collecting either more detailed informat ion about the 
application being executed or more system benchmark 
and monitoring data, can highly impact the prediction 
accuracy. From the fact that for k-nn, decision table and 
PQR2 results, the system performance attributes  offer 
better prediction (Fmdb and Cfmd cases) than simply 
using system specification attributes (Cmdb and 
Ccmdb), this make the case for clusters, grids and 
clouds middleware to provide this information to users 
and learning systems.  
In the RAxML case, cluster name, number of threads, 
CPU clock, amount of cache, amount of memory, CPU 
speed (Flops), memory speed, disk speed, taxa size, 
number of bases in a sequence, and input size (taxa size 
multiplied by number of bases), were considered. The 
graphs with MPE, displayed in logarithmic scale (Figure 

7), show PQR2 as the best algorithm for predicting 
memory and execution time requirements. Due to the 
linear relationship between the input size and RSS 
required by RAxML ( , 
where t is the taxa size, and b is the number of bases), 
the input size is the attribute with the most impact on 
RSS prediction (cases ending with �“t�”), especially for 
the linear models (LR and SVM with linear kernel). As 
seen in the previous section, the execution time of 
RAxML is non-linear with respect to input size, number 
of threads and resources, leading in general to a high 
MPE. Still, PQR2 can adapt better to this situation, 
followed by decision table, k-nn, and SVM with 
polynomial kernel of degree 2. The decision table yields 
good prediction in this case due to the clusterized 
distribution of data points. The input size attribute 
continues to impact accuracy of time prediction more 
than the other attributes, including system performance 
attributes, making the case for Software-as-a-Service 
providers and job management systems to automatically 
collect more detailed application-specific information. 
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Figure 6. Average percentage errors in predicting disk space and execution time required by BLAST for various machine learning algorithms. 

 

 
Figure 7. Average percentage errors in predicting resident memory and execution time required by RAxML for various machine learning 

algorithms (error axis in logarithmic scale). 

 

 

 
Figure 8. Average percentage errors in predicting resident memory (RSS) and execution time required by RAxML for all cases with 40,000-

long sequences for various machine learning algorithms, using other data points as training data. 
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Figure 9. REC curves comparing accuracy of PQR and PQR2 for predicting BLAST output and execution time (2 graphs on the left) as well as 
RAxML memory consumption and execution time (graphs on the right). 

Question 3: Which ML algorithm provides better 
accuracy when dealing with training datasets with low 
coverage? 

To evaluate this situation, instead of separating 
training and test data in a random fashion, all data 
points of RAxML executions with 40,000 bases long 
input are used as test data and omitted from the training 
set. The MPE obtained for each combination of ML 
algorithm and attribute set show that for RSS 
prediction, the linear models can capture very well the 
overall model when the input size attribute is present, as 
expected (Figure 8 left). However, in general this 
outcome does not outweigh the benefits of other 
solutions in the more general scenario. The split of data 
in PQR2 diminishes the performance in this condition 
when compared to methods that produce a global 
model, but PQR2 still models better the general trend 
than the decision table and the k-nn, which always 
select the 50,000 data points as the closest neighbors. It 
can also be observed that the clustered nature of this 
dataset makes RBFn perform poorly since regions 
without data points are not included in the model. 

For time prediction, the algorithms that can deal 
with non-linear execution times, PQR2 and k-nn, 
provide the best models even though no data points for 
40,000-long inputs are included in the training set. 

TABLE IV. MPE COMPARING PQR AND PQR2.  

Dataset Pqr1_75 Pqr2_75 Leaves 
BLAST output 962% 171% 15 
BLAST time 8.81% 8.76% 37 
RAxML RSS 4.54% 1.29% 24 
RAxML time 40.82% 35.30% 24 

 
Question 4: Does PQR2 offer better accuracy than 

PQR? 
REC curves (Figure 9) and the MPE (TABLE IV) 

show that PQR2 offers considerable improvement for 
predicting BLAST output, small benefits for predicting 
RAxML memory and time consumption, and 
essentially no difference predicting BLAST execution 
time, when compared to PQR. This is exp lained by the 
average number of leaves produced by PQR/PQR2 
(TABLE IV). When the tree has a large number of 

leaves (37 for BLAST time model), the amount of data 
and range in each leaf, on which PQR2 can work to 
improve its accuracy, are small. 

PQR2 models created with the entire dataset 
selected either the linear regression or SVM regression 
for modeling the data on the leaves, with a clear 
tendency to select SVM. This confirms that adding 
regression algorithms to the leaves is beneficial (PQR2) 
when compared to simply using the range mean or 
median (PQR). Considering the selection of classifiers, 
common to both PQR and PQR2, the resulting models 
included all classifiers, with strong tendency towards 
selecting C4.5. 

VI. CONCLUSIONS AND DISCUSSIONS 
The research reported in this paper considered the 

problem of accurately predicting application resource 
usage, reviewed and discussed several noteworthy 
machine learning algorithms considered by previous 
work, proposed and implemented PQR2, an extension 
of an existing classification tree algorithm, and 
compared all solutions (including the new PQR2 
algorithm) under several conditions. Experiments 
predicting execution time, memory and disk 
requirements for two popular bioinformatics 
applications, BLAST and RAxML, were performed  on 
a heterogeneous environment. Overall, PQR2 exhib ited 
better accuracy when compared to other algorithms, due 
to its ability to better adapt to scenarios with different 
characteristics (linear and non-linear relationships, high 
and low density of training data points) by choosing 
different models for its nodes and leaves.  

At a more general level, the two main conclusions 
from the work reported in this paper are as follows: 

1. The scenarios requiring application resource 
prediction present a diverse behavior, making different  
algorithms perform better in different situations. The 
use of methods that can adapt to these situations by 
considering different configurations and algorithms is 
key for improving the quality of the prediction without 
requiring manual tuning. The resulting algorithms may  
be computationally more demanding during training, 
but this is usually not a concern as there is no need to 
generate a new model very often. Nevertheless, the 
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time and memory consumed by the prediction 
procedure for all ML algorithms is the subject of future 
work, with room for optimizations . Roughly, using the 
largest dataset (BLAST), PQR2 required a few minutes 
to create the model and a few milliseconds to produce 
a single prediction, indicat ing practicality of PQR2 for 
production deployments . PQR2 proved to be the best 
solution for BLAST and RAxML and should be 
considered as candidate solution for other applications. 

2. Attributes can have high impact on the 
performance of the learning algorithms. The use of 
system performance attributes showed to be relevant 
for execution time prediction whereas application 
specific attributes were pertinent for all scenarios. This 
work makes the case for including as many attributes 
as available, while letting the algorithms analyze the 
relevance of the attributes when necessary. For cloud 
and grid computing scenarios, where resources are 
outsourced, the provision of this informat ion to its 
users (or services acting on behalf of the users) through 
the use of benchmarks and runtime monitoring, 
especially of shared resources, can bring several 
benefits. Although this informat ion is not readily  
available on a per application run basis , especially for 
shared resources, we expect it to become available in  
the near future (Amazon CloudWatch is one such 
example limited to a virtual machine instance). 
Improved prediction can result in better system 
utilizat ion [1], can avoid application abortion in system 
that enforce accurate resource reservation, as well as 
significant savings when choosing the appropriate pay-
as-you-go resource. 
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