
On the use of machine learning to predict the time and resources consumed by
applications

Andréa Matsunaga and José Fortes
Advanced Computing and Informat ion Systems Laboratory

Department of Electrical and Computer Engineering, University of Florida
PO Box 116200, Gainesville, FL, 32611-6200, USA

e-mail: {ammatsun, fortes}@ufl.edu

Abstract�— Most datacenters, clouds and grids consist of
multiple generations of computing systems, each with different
performance profiles, posing a challenge to job schedulers in
achieving the best usage of the infrastructure. A useful piece of
information for scheduling jobs, typically not available, is the
extent to which applications will use available resources once
they are executed. This paper comparati vely assesses the
suitability of several machine learning techniques for
predicting spatiotemporal utilization of resources by
applications. Modern machine learning techniques able to
handle large number of attributes are used, taking into account
application- and system-specific attributes (e.g., CPU
microarchitecture, size and speed of memory and storage,
input data characteristics and input parameters). The work
also extends an existing classification tree algorithm, called
Predicting Query Runtime (PQR), to the regression problem
by allowing the leaves of the tree to select the best regression
method for each collection of data on leaves. The new method
(PQR2) yields the best average percentage error, predicting
execution time, memory and disk consumption for two
bioinformatics applications, BLAST and RAxML, deployed on
scenarios that differ in system and usage. In specific scenarios
where usage is a non-linear function of system and application
attributes, certain configurations of two other machine
learning algorithms, Support Vector Machine and k-nearest
neighbors, also yield competitive results. In addition,
experiments show that the inclusion of system performance
and application-specific attributes also improves the
performance of machine learning algorithms investigated.

Keywords-application resource usage; machine learning;
regression; classifier tree.

I. INTRODUCTION
Resource consumption by an application in the form of

CPU time, amount of memory, network bandwidth, and disk
space consumed, is a useful piece of information when
available before execution. It can be used by schedulers to
accommodate the most number of applications without
resource contention, it can help estimate the waiting time on
queued systems, it can identify the best resource to run an
application and analyze what-if scenarios, or it can provide
an estimate of the cost of running an application on a pay-
per-use facility (e.g., a cloud). Nonetheless, this information
is often not available to users or computational systems . In
cases where predicted resource consumption is provided, the
prediction rarely takes into consideration both application

characteristics and system performance. The use of Machine
Learning (ML) algorithms to predict application resource
consumption is an appealing approach that has been pursued
by several previous studies [1]-[12]. These studies have
proposed the use of specific ML algorithms applied to
scenarios ranging from generic jobs in batch systems to
specific applications that could be part of a workflow
distributed across a grid. The abundance of solutions and the
diversity of dataset attributes and reported prediction
performance metrics combined with limited comparative
evaluation make it difficult for users and system developers
to choose an appropriate prediction method. To remedy this
situation, this paper makes the following contributions :

 It identifies the best ML algorithm and provides
reasoning for the results, for predicting execution time,
memory and disk requirements for two bioinformat ics
applications, namely BLAST [13] and RAxML [14], on
different types of computer clusters . The regression
algorithms considered in this study include k-nearest
neighbor (k-nn) [3][6], linear regression [10], decision
table [9], Radial Basis Function network (RBFn) [11],
Predicting Query Runtime (PQR) [8], and Support
Vector Machine (SVM) [19][20]. The datasets
comprising more than 2000 cpu-hours of execution are
made publicly available for future research.
 It proposes the Predicting Query Runtime

Regression (PQR2) algorithm, a generalization of the
PQR classification tree approach, to the regression
problem. The extension consists of adding regression
functions at the leaves of the PQR tree in order to
provide fine-grained prediction.
 It investigates the impact of attributes on prediction

accuracy and makes the case for increasing the number
of attributes (data space), in particular taking into
account heterogeneous systems performance and
detailed application-specific characteristics.
Experimental results show that PQR2, when compared to

other algorithms, offers the best accuracy for the scenarios
studied, including cases where the predicted resource usage
presents linear and non-linear dependencies on application
attributes. The diverse characteristics of the studied datasets
suggest that the conclusions of this work may be generally
applicable to many other applications and systems.

!000111000 111000ttthhh IIIEEEEEEEEE///AAACCCMMM IIInnnttteeerrrnnnaaatttiiiooonnnaaalll CCCooonnnfffeeerrreeennnccceee ooonnn CCCllluuusssttteeerrr,,, CCClllooouuuddd aaannnddd GGGrrriiiddd CCCooommmpppuuutttiiinnnggg

!777888---000---777666!555---444000333!---!///111000 $$$222666...000000 ©©© 222000111000 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///CCCCCCGGGRRRIIIDDD...222000111000...!888

444!555

This paper is organized as follows. Section II summarizes
the algorithms investigated in this study and discusses
previous work. Section III explains the extension to PQR for
handling regression problems. Section IV describes the
collected training and testing datasets used in the
experiments. Section V analyzes the experimental results and
Section VI draws the conclusions from this work.

II. MACHINE LEARNING AND RELATED WORK
Predicting application resource consumption, such as the

amounts of CPU, memory, disk and network required by an
application and the lengths of times during which the
resources are occupied, can be viewed as a supervised
machine learning problem. The system needs to learn a
concept based on a collection of historical data of n previous
runs of the application. Each previous observation is used as
training data, providing a set of m attributes and the actual
outcome . Several parametric (e.g.,
linear regression, polynomial regression) and non-parametric
(e.g., k-nn, locally weighted linear regression, decision trees)
solutions exist in the field of machine learning, some of
which are presented in [15][16][17]. Parametric methods
define a hypothesis space and a loss function. The training
data is used to extract the model parameters of the problem
at hand by minimizing the loss function. After the parameters
are extracted there is no need for the system to store the
training data and predictions can frequently be computed
fast, i.e., in O(1) time. On the other hand, non-parametric
methods use the actual data as the model, usually presenting
prediction computation time that linearly grows with the size
of the training data, i.e., takes O(n) time. The advantage in
this case is that adding more training data into the learning
process is trivial since the next estimate calculation simply
takes the new data into account. ML algorithms considered
by previous work and evaluated in this paper, are discussed
next.

k-nearest neighbor (k -nn) algorithm: given a query point,
the k nearest training data points are considered when
computing the prediction. The predicted value can be
calculated as the weighted average of selected points. When
non-identical weights are used, the weight function usually
decreases as the distance from the query point to the training
data increases with the goal of minimizing the influence of
the distant neighbors on the prediction. While the Euclidean
distance is often selected, other distance functions such as
Manhattan or Hamming may better represent the gap
between data points in certain scenarios. One of the
challenges of this algorithm is to find the ideal value for k ,
which is dependent on the distribution of the training data. A
high value for k can reduce the influence of noise, but in
regions scarce in data, the prediction can be highly
influenced by distant points. In [6], the best value for k is
searched applying a genetic algorithm. Locally weighted
polynomial regression (LWPR) is similar to k-nn algorithm,
in that it considers data close to the query point for the
prediction according to a weight function and its kernel
bandwidth. Instead of generating the prediction through
averaging, the algorithm attempts to fit the data with a
polynomial (e.g., a first order polynomial).

The advantage of this method is that predictions can better
track data that is not well represented by a plateau, avoiding
the rough edges of the k-nn algorithm. It has been
demonstrated that the computation demands of both
algorithms grows with the size of the knowledge-base, with
an additional computation demand for LWPR, but methods
combining caching and filtering [3] or kd-trees and
approximate weight functions [2] have shown to reduce the
computation time manyfold. Previous work [3] has shown
that 1-nn and 3-nn with Gaussian weighted averaging can
produce lower error rates when predicting the runtime of a
short-running scientific application than a locally weighted
linear regression; the opposite result applies for a randomly
generated dataset.

Linear Regression (LR) algorithm: simple algorithm that
finds a linear hyperplane

 with minimum error in relation to existing data points,
defined as the sum of Euclidean distance of each data point
to the hyperplane. Once the linear model is defined,
prediction takes O(1) time. Linear regression was applied in
[10] for predicting execution time of an application in a
workflow, and it is used by LWPR and SVM algorithms.

Decision table/tree (DT) algorithm: a divide-and-conquer
strategy that utilizes a tree structure to separate data
according to their characteristics. The nodes of the tree store
rules that determine how their children have been split and
the leaves store either the actual outcome, a function that
determines the outcome, or the actual data from where the
prediction can be made. This method provides good
computational scalability, can handle well data that are
dispersed in input space, and its result is reasonably easy to
interpret. However, correlations between input
characteristics are not well captured since nodes usually split
their children according to a single characteristic. The C4.5
classification tree was applied in [9] for predicting execution
times in a distributed system that has a centralized scheduler
with backfilling, using ranges of execution time as classes.
Although implemented using the so called templates instead
of a tree graph, [1][4][5][6][12] all used job characteristics to
select a subset of the data points on which an statistical
function is applied. The choices for the statistical function
included the mean [5][6][12], the mean plus 1.96 standard
deviations [1], mean plus 1.5 standard deviations [4], linear
regression of a single characteristic x () [1][5],
inverse regression of a single characteristic x (

) [5], and logarithmic regression of a single characteristic
x () [5]. Using the well known space-
shared system workloads from the Parallel Workload
Archive [18] as the dataset, the mean function has been
shown to provide smaller error rates when compared to more
complex regressions for the set of characteristics chosen for
splitting the training data [5]1.

Artificial Neural Network (ANN) : an interconnected
group of functions that emulates a biological neural system
and can collectively perform complex tasks. During the

1 The Parallel Workload Archive is a collection of traces; they were not
used in this study because they lack application and system performance
information needed to evaluate the algorithms under consideration.

444!666

training phase, an ANN changes its structure based on
external or internal information that flows through the
network. Radial Basis Function network (RBFn) is a
feedforward ANN, typically with three layers: input, hidden
and output. A variable number of neurons form the key
hidden layer, where Euclidean distance from the center of
each neuron to the test case is computed and the RBF
function applied. RBFn is very similar to k-nn, except for the
fact that RBFn is a parametric method. The number of
neurons in the hidden layer (number of neighbors in k-nn)
affects the performance and the computational demands of
RBFn. In the extreme case (overfitting), each data point can
be the center of a neuron (single neighbor in k-nn). The use
of RBFn was proposed in [11] combined with a Bayesian
network for eliminating attributes with low correlation with
the outcome.

Support Vector Machine (SVM) algorithm: a kernel
method for solving classification [19] and regression [20]
problems, especially for scenarios with non-linear learning
pattern. The attribute space is transformed by the kernel
function into possibly a high-dimension feature space where
an optimal linear hyperplane is found by maximizing the
margin between the so called support vectors. The
advantages of this method include the limited number of
parameters to choose, and the ability to handle large numbers
of attributes and non-linear scenarios without local minima
problems. A comparison of radial basis function neural
networks with SVM has been presented in [11], with lower
errors for SVM in some scenarios at the cost of higher
computational demand.

Time series methods: in scenarios where the data points
of the attribute to be predicted exhibit temporal patterns,
algorithms that consider only the order of data points have
been proposed. The prediction could be as simple as
predicting the future value to be the same as the last
observed value, to as complex as considering multiple
algorithms in parallel, as proposed by the Network Weather
Service (NWS) [22] or a probabilistic approach as a Markov-
chain. Triple-C [10] presents a scenario where jobs in a
workflow present time dependencies, making Markov-chains
appropriate for predicting execution time. In this study, the
attributes to be predicted are assumed to have low or no
ordering dependency and thus this class of solutions is not
considered. However, the idea of choosing between several
learners as in NWS is at the core of the PQR algorithm
discussed in the next section.

III. PREDICTING QUERY RUNTIME REGRESSION
PQR [8] is an algorithm that generates a binary tree that

can combine a variety of classifiers. Each node of the tree is
represented by a 2-class classifier that is chosen from a pool
of classification algorithms according to its accuracy, and the
leaves of the tree correspond to ranges of the attribute to be
predicted and thus present a coarse granularity of output.
PQR has been proposed in the context of predicting
execution time of database management systems queries,
where cost models are often not good predictors and
analytical models are complex and difficult to create [8], yet
only coarse classification of queries are necessary.

The algorithm to discretize the numerical attribute into
two classes for creating a node consists of ordering all m
training attribute values () and finding the k
largest gaps defined by that

can become potential split locations. The best combination of
classifier and split location determines the two attribute
ranges.

The growth and quality of the tree can be controlled by
tuning several parameters of the PQR algorithm that dictate
the minimum number of train ing data in a node, the
minimum accuracy required by a classifier, the minimum
attribute interval covered by a node, and the percentage of
data points from the extremes of prediction attribute that
should not be considered for split. Although many
combinations are possible, in practice, the use of default
parameters suffices to achieve good accuracy.

In this work we generalize PQR to the regression
problem by training regression algorithms from a pool of
known methods with the data on PQR leaves and choosing
the best algorithm. Any regression algorithm can be placed
on the pool, including different configurations of the same
algorithm, but preference for parametric methods should be
given when fast predictions are required. Figure 1 highlights
through an example the differences between a PQR and a
PQR2 tree. The nodes of the tree, shown as circles with the
name of selected classifier, are produced using the algorithm
described in [8]. Each node is responsible for classifying data
into two classes, defined by a threshold that is chosen as to
maximize the accuracy of the predictor. The values between
brackets show the range of attribute values that were
observed by each node or leaf during training, followed by
the amount of historical information. The only difference is
found at the leaves: instead of outputting classes (a broad
range) or a static value (e.g., range median), PQR2 selects
the best regression model for the availab le data (LR and
SVM in the case of the leaves shown in the figure). The
percentage error (displayed in normal face for PQR and in
bold for PQR2) in each subspace is lower with PQR2. PQR2
offers fine-grained prediction through models that adapt
better to the characteristics of the data in each leaf.

IV. EXPERIMENTAL SETUP
To generate data for this study, a heterogeneous

environment consisting of four different hardware resources
specified in TABLE I were used to run two popular
bioinformatics applications, namely Basic Local Alignment
Search Tool (BLAST) [1] and Randomized Axelerated
Maximum Likelihood (RAxML) [14].

BLAST version 2.2.18 (either 32-bit or 64-bit depending
on the resource) was executed against the non-redundant
(NR) protein sequence database from NCBI split into 1
fragment (total of 3.5 GB of data). Given an input sequence,
BLAST searches a database for similar sequences and
calculates the best alignment of the matched sequences.
Single nucleotide sequences of varying lengths served as
input (see sequence length distribution in Figure 2) in this
study.

444!777

Figure 1. Tree generated by PQR and PQR2 algorithms. The nodes of the tree (circles) are common to both methods, while leaves (squares) of
PQR2 (boldface) yield lower errors than PQR (normal face). The improvement comes from the ability of selecting the best regression method

from a pool, whereas leaf range median is used in PQR. The number between square brackets represent the range of values of the attribute to be
predicted, which is followed by the number of historical data points in each node/leaf. The percentage value indicates the accuracy of each

classifier (nodes) or the percentage error of each regressior (leaves). The last value indicates the name of each classification (PQR and PQR2) or
regression (PQR2) algorithm selected.

In addition to running BLAST on all different
resources on local disk, BLAST was also run placing the
database on two Network File System (NFS) servers
with different hardware (the * on TABLE I indicates the
physical resources used as NFS servers ; the disk
performance, according to the number of clients, has
been used to model the load on the server). The purpose
of including runs with the database placed on remote
servers is to include scenarios where applications space-
share local resources, but time -share other resources
such as network or a file system, a typical scenario on
clouds that serve virtual machine images or user�’s data
from a shared server. BLAST runs resulted in a
collection of 6592 data points. In order to provide
insight about the characteristics of this dataset, partial
data is plotted on Figure 3 (top) to show the existence of
a linear relationship between BLAST execution time
and input sequence length that is different for each of
the cluster resources used. This linearity is affected
when the database is placed on a file server that is

concurrently accessed by different number of clients,
especially for shorter input sequences (Figure 3 bottom).

RAxML version 7.0.4, a software application for
constructing phylogenetic trees using maximum
likelihood analysis, was executed for 35 nucleotide
datasets combining five different taxa sizes (50, 100,
150, 200 and 250), and seven different sequence lengths
(5000, 10000, 15000, 20000, 25000, 40000, and 50000).
Runs for different numbers of threads, up to the number
of cores in each resource, were also performed, resulting
in a dataset with 487 data points.

RAxML is not only computationally intensive, but
also memory intensive. Non-linearity of execution time
with respect to resources and application characteristics
occur in two situations in this dataset: as number of
threads increase and as dataset increase. For inputs
with250 taxa, Figure 4 shows that single-threaded runs
on c3 are faster than on c4 (which has slower memory).
This fact slowly changes as the number of threads is
increased. Similar trends are observed for other datasets

TABLE I. CHARACTERISTICS OF RESOURCES UTILIZED.

Cluster c1 c2_512M c2_3.5G* c3* c4
CPU 2-way Pentium

III (2 Tualatin
cores)

2-way Xeon
(2 Prestonia
cores)

2-way Xeon
(2 Prestonia
cores)

2-way Quad Core
Xeon (8
Clovertown cores)

16-way Quad Core
Xeon (64 Tigerton
cores)

CPU clock 1.4 GHz 2.4 GHz 2.4 GHz 2.33 GHz 2.93 GHz
CPU cache 512 KiB/core 512 KiB/core 512 KiB/core 4 MiB/2-cores 4 MiB/2-cores
CPU speed 659 MFlops 879 MFlops 879 MFlops 1436 MFlops 1798 MFlops
Kernel 2.6.23.8-i686 2.6.18-i686 2.6.18-i686 2.6.22.2-x86_64 2.6.18-x86_64
Xen VMM - 3.1.0 3.1.0 - -
Memory 2 GiB 512 MiB 3.5 GiB 3.9 GiB 503 GiB
Memory speed 437 MiB/s 1932 MiB/s 1932 MiB/s 3468 MiB/s 1257 MiB/s
Disk read speed 65.5 MB/s 37.8 MB/s 37.8 MB/s 60.2 MB/s 240.9 MB/s

Following the IEC 80000-13:2008 standard, the prefixes KiB (kilobinary bytes), MiB (Megabinary bytes) and GiB (Gigabinary bytes) are used
to represent multiples of respectively.

 i686 suffix indicates a 32-bit kernel while x86_64 suffix indicates a 64-bit kernel

444!888

Figure 2. Histogram of input sequence length for BLAST .

Figure 3. Execution Time of BLAST . A linear relationship between

time and input sequence length that is distinct for each different
resource can be observed (top). When data is placed on a NFS server,
varying the number of concurrent clients on a particular resource (c2)

affects the linearity, especially for short sequences (bottom).

and resources (not shown due to space limitations; can
be found in [21]). Furthermore, although larger inputs
are expected to require more execution time, in some
cases, larger inputs have shorter execution time. For the
experiments shown in the next section, attributes of
applications (sequence length, taxa size, taxa size
multiplied by sequence length) and resources (cluster
name, CPU clock, amount of cache, amount of memory)
were selected. However, as informat ion such as CPU
clock does not reflect well the processing capability of
each resource, the following benchmarks were used to
better characterize the performance of each resource
(included in TABLE I):

 A simple matrix multiplication application was
used to extract the number of floating point
operations performed in a fixed amount of time
(CPU speed).

 A cache benchmark application was used to
collect the performance of a read-modify-write
operation (memory speed).

 The Linux dd command was used to read a 1
GiB file from different sources (disk read
speed).

The overall average and standard deviation of
BLAST and RAxML datasets used in the experiments
evaluated in the next section are shown in TABLE II.

TABLE II. OVERALL CHARACTERISTICS OF LEARNING DATASETS.

Dataset Mean Standard Deviation
BLAST output 50025 bytes 129743 bytes
BLAST time 208.4 secs 97.7 secs
RAxML RSS 110442 bytes 96077 bytes
RAxML time 5720 secs 10702 secs

Figure 4. Execution time of RAxML on c3 and c4 resources for
input datasets with 250 taxa, lengths varying from 5,000 to 50,000

and different number of threads. The numbers next to extreme points
indicate the minimum and maximum execution time (hh:mm:ss).

V. EXPERIMENTAL RESULTS AND EVALUATION
Application resource usage prediction is evaluated in

this section for 9 different configurations of machine
learning algorithms (see TABLE III), including the new
PQR2. All experiments were performed using Weka
version 3.0.7, a Java-based open source collection of
ML algorithms and statistical tools with graphical user
interface for visualizing data, processing information,
and carrying data mining experiments. PQR and PQR2
were newly implemented in Weka, extending defined
interfaces, making use of data manipulation utilities, and
reusing existing ML algorithms such as Naïve Bayes,
C4.5, SVM and LR.

Three attributes often considered for prediction are
the application execution time, the amount of resident
memory (Resident Set Size or RSS) required, and the
size of output produced. Evaluating these attributes for
BLAST and RAxML datasets described in the previous

0

200

400

600

800

1000

1200

1
0
0

3
2
5
.8

5
5
1
.6

7
7
7
.4

1
0
0
3
.2

1
2
2
9

1
4
5
4
.8

1
6
8
0
.6

1
9
0
6
.4

2
1
3
2
.2

2
3
5
8

2
5
8
3
.8

2
8
0
9
.6

3
0
3
5
.4

3
2
6
1
.2

3
4
8
7

3
7
1
2
.8

3
9
3
8
.6

4
1
6
4
.4

4
3
9
0
.2

4
6
1
6

Fr
eq

ue
nc

y
(s

eq
ue

nc
es

)

Sequence Length (bases)

BLAST Input Sequence Length Histogram

0

100

200

300

400

500

600

700

800

0 1000 2000 3000 4000

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Sequence Length (bases)

BLAST Time with Local Disk

c1_local

c2_512M_local

c2_3.5G_local

c3_local

c4_local

0

100

200

300

400

500

600

700

800

0 1000 2000 3000

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Sequence Length (bases)

BLAST Time on c2 with NFS
c2_512M_local
c2_512M_1nfsclient
c2_512M_4nfsclients
c2_512M_8nfsclients
c2_512M_16nfsclients

100

1000

10000

100000

5000 15000 25000 35000 45000

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

RAxML input length for 250 taxa

Threaded RAxML time on c3 and c4
c3_1thread c3_8threads
c4_1thread c4_8threads
c4_16threads c4_32threads
c4_64threads

9:25:13

0:02:36

444!!

section, produces six scenarios. However, due to the
constant nature of BLAST memory usage (defined by
the NR database size) and RAxML output for the runs
performed, evaluations presented in this section did not
include these two scenarios. For the remain ing four
scenarios, 10 iterations of 10-fold cross-validation were
performed for each algorithm and scenario to obtain
results that are statistically relevant, resulting in 100
evaluations of each experiment.

TABLE III. ML ALGORITHMS INVESTIGATED.

Abbreviation ML Configuration
Knn1nInv k-nn Single neighbor
Knn30nInv k-nn 30 neighbors with weight

inversely proportional to the
distance

Knn30nNow k-nn 30 neighbors without
distance weight

LinearGdy LR Greedy selection of
attributes

Dectable DT Best first attribute selection
RBFn50c01s RBFn 50 clusters (neurons), 0.1

minimum standard deviation
RBFn200c01s RBFn 200 clusters, 0.1 minimum

standard deviation
Pqr1_75 PQR 0.75 minimum accuracy

threshold, considering Naïve
Bayes, C4.5 and SVM as
node classifiers

Pqr2_75 PQR2 Same as Pqr1_75, with
range median, average, LR
and SVM as leaf regressors

SmoPoly1 SVM linear kernel
SmoPoly2 SVM polynomial kernel of degree

2

The Receiver Operating Characteristic (ROC) curve
is a method for visually comparing accuracy of
classification algorithms - it was generalized for
regression algorithms as Regression Error Characteristic
Curves (REC) [23]. The REC curve displays the error
tolerance in the horizontal axis and the accuracy of an
algorithm in the vertical axis, with accuracy defined as
the percentage of predictions below the error tolerance
threshold. The area over the curve represents the
expected error for a regression model. When the curve
of a certain algorithm A always appears above the curve
of another algorithm B, A is the preferred algorithm and
A is said to dominate B. In this study, the percentage
error (, where is the predicted value and is

the actual value for a test case) was chosen as the error
metric displayed in the REC curves. Thus, the area over
the REC curve is close to the mean percentage error
(MPE).

Evaluation of ML algorithms is performed by
answering four questions.

Question 1: Which ML algorithm offers the best
accuracy?

To evaluate accuracy, REC curve for each ML
algorithm was generated for all four scenarios, when all
system and application attributes are included in the
training dataset (Figure 5). The fact that PQR2
dominates other studied algorithms in all scenarios (top
left most curve in all graphs), shows that it can adapt
better to different scenarios, where the predicted
resource usage presents linear (RAxML RSS in the
presence of input size information) and non-linear
behavior (other scenarios) as a function of system and
application characteristics . This adaptation is due to the
fact that different classification and regression models
are created for different regions of the data, at the cost of
additional computation during training phase.

SVM and k-nn algorithms are in general the next
best algorithms. In particular, since the BLAST dataset
contains a large number of data points, the REC curves
show that increasing the number of neighbors to 30,
increases the accuracy of k-nn, but this effect is opposite
for the RAxML dataset. In fact, due to the limited
number of data points , increasing the number of
neighbors in the RAxML scenario is extremely harmful,
even more so when no weight is used. This result
indicates the difficulty in finding an ideal number of
neighbors, especially when the training information
presents varying density of points across the data space.
With respect to SVM, the graphs show that the
polynomial kernel of degree 2 can adapt better to the
non-linearity of data than the linear kernel, especially in
the RAxML scenarios, without requiring ideal algorithm
parameters to be found.

Similar to k-nn, RBFn requires the number of
neurons to be specified, a configuration that
dramatically impacts the prediction accuracy. Empirical
tests showed that the ideal number of neurons for
BLAST scenarios was 200, while 50 neurons were the
best configuration for RAxML. These configurations
were used in the comparative graphs.

Question 2: Which attributes should be included in
the training dataset?

Previous works [1][5][11][12][24] have proposed
and studied methods for systematically selecting
attributes independently from the learning algorithm. In
this work, the impact of different sets of attributes on the
accuracy of prediction is evaluated. Figure 6 and Figure
7 show the MPE for BLAST and RAxML respectively,
for different sets of attributes. The number that appears
above each group of vertical bars is the MPE of the case
including all attributes (leftmost bar).

In the BLAST scenario, the attributes included are:
cluster name, CPU clock, amount of memory, location
of data (nominal value indicating the name of the
resource hosting the data), CPU speed (Flops), memory
speed, disk speed (different from TABLE I in
configurations with NFS to account for different number
of clients) and number of bases in a sequence. Since the

555000000

Figure 5. REC curves predicting disk space (top left) and execution time (top right) required by BLAST, and resident memory (bottom left) and
execution time (bottom right) required by RAxML when taking all attributes into consideration for various machine learning algorithms. The area

over the curve represents the mean percentage error, which is presented in Figure 6 and Figure 7.

output size is not dependent on any of the system
attributes, the selection of attributes has almost no
impact on the accuracy of BLAST output prediction
(Figure 6 left). Thus, maintaining them in the dataset is
not detrimental to the performance of ML algorithms .
On the other hand, the addition of attributes, by
collecting either more detailed informat ion about the
application being executed or more system benchmark
and monitoring data, can highly impact the prediction
accuracy. From the fact that for k-nn, decision table and
PQR2 results, the system performance attributes offer
better prediction (Fmdb and Cfmd cases) than simply
using system specification attributes (Cmdb and
Ccmdb), this make the case for clusters, grids and
clouds middleware to provide this information to users
and learning systems.
In the RAxML case, cluster name, number of threads,
CPU clock, amount of cache, amount of memory, CPU
speed (Flops), memory speed, disk speed, taxa size,
number of bases in a sequence, and input size (taxa size
multiplied by number of bases), were considered. The
graphs with MPE, displayed in logarithmic scale (Figure

7), show PQR2 as the best algorithm for predicting
memory and execution time requirements. Due to the
linear relationship between the input size and RSS
required by RAxML (,
where t is the taxa size, and b is the number of bases),
the input size is the attribute with the most impact on
RSS prediction (cases ending with �“t�”), especially for
the linear models (LR and SVM with linear kernel). As
seen in the previous section, the execution time of
RAxML is non-linear with respect to input size, number
of threads and resources, leading in general to a high
MPE. Still, PQR2 can adapt better to this situation,
followed by decision table, k-nn, and SVM with
polynomial kernel of degree 2. The decision table yields
good prediction in this case due to the clusterized
distribution of data points. The input size attribute
continues to impact accuracy of time prediction more
than the other attributes, including system performance
attributes, making the case for Software-as-a-Service
providers and job management systems to automatically
collect more detailed application-specific information.

555000111

Figure 6. Average percentage errors in predicting disk space and execution time required by BLAST for various machine learning algorithms.

Figure 7. Average percentage errors in predicting resident memory and execution time required by RAxML for various machine learning

algorithms (error axis in logarithmic scale).

Figure 8. Average percentage errors in predicting resident memory (RSS) and execution time required by RAxML for all cases with 40,000-

long sequences for various machine learning algorithms, using other data points as training data.

1,214 1,099 1,100 1,204 1,134 1,129

171 157 283

0

200

400

600

800

1000

1200

1400

Pe
rc

en
ta

ge
 E

rr
or

ML algorithms

BLAST Output Mean Percentage Error

10.17
9.44 10.91

22.98

18.03 15.95

8.76

19.33

11.84

0

5

10

15

20

25

30

Pe
rc

en
ta

ge
 E

rr
or

ML algorithms

BLAST Time Mean Percentage Error

050 Ccmdfmdb Cmdb Ccmdb Fmdb Cfmdb

5.92

25.98
43.15

3.14

1.73

30.29

1.29

2.63

2.01

1

10

100

Pe
rc

en
ta

ge
 E

rr
or

ML algorithms

RAxML RSS Mean Percentage Error

94
148 193

1,379

85 164

35

344

135

1

10

100

1000

10000

Pe
rc

en
ta

ge
 E

rr
or

ML algorithms

RAxML Time Mean Percentage Error

Ctccmfmdtbt Ctccmtb Ctccmtbt Ctfmdtb Ctfmdtbt Tccmtb Tccmtbt Tfmdtb Tfmdtbt

23.2 21.6 26.1

2.3

63.8

65.5

17.4

1.7

1.7

0
10
20
30
40
50
60
70
80
90

Pe
rc

en
ta

ge
 E

rr
or

ML algorithms

40,000 Length RAxML RSS Mean Percentage Error

25.8

93.5 97.8

409.3
73.8

227.8

25.6

153.6
52.5

0

100

200

300

400

500

Pe
rc

en
ta

ge
 E

rr
or

ML algorithms

40,000 Length RAxML Time Mean Percentage Error

0500Ctccmfmdtbt Ctccmtb Ctccmtbt Ctfmdtb Ctfmdtbt Tccmtb Tccmtbt Tfmdtb Tfmdtbt

555000222

Figure 9. REC curves comparing accuracy of PQR and PQR2 for predicting BLAST output and execution time (2 graphs on the left) as well as
RAxML memory consumption and execution time (graphs on the right).

Question 3: Which ML algorithm provides better
accuracy when dealing with training datasets with low
coverage?

To evaluate this situation, instead of separating
training and test data in a random fashion, all data
points of RAxML executions with 40,000 bases long
input are used as test data and omitted from the training
set. The MPE obtained for each combination of ML
algorithm and attribute set show that for RSS
prediction, the linear models can capture very well the
overall model when the input size attribute is present, as
expected (Figure 8 left). However, in general this
outcome does not outweigh the benefits of other
solutions in the more general scenario. The split of data
in PQR2 diminishes the performance in this condition
when compared to methods that produce a global
model, but PQR2 still models better the general trend
than the decision table and the k-nn, which always
select the 50,000 data points as the closest neighbors. It
can also be observed that the clustered nature of this
dataset makes RBFn perform poorly since regions
without data points are not included in the model.

For time prediction, the algorithms that can deal
with non-linear execution times, PQR2 and k-nn,
provide the best models even though no data points for
40,000-long inputs are included in the training set.

TABLE IV. MPE COMPARING PQR AND PQR2.

Dataset Pqr1_75 Pqr2_75 Leaves
BLAST output 962% 171% 15
BLAST time 8.81% 8.76% 37
RAxML RSS 4.54% 1.29% 24
RAxML time 40.82% 35.30% 24

Question 4: Does PQR2 offer better accuracy than

PQR?
REC curves (Figure 9) and the MPE (TABLE IV)

show that PQR2 offers considerable improvement for
predicting BLAST output, small benefits for predicting
RAxML memory and time consumption, and
essentially no difference predicting BLAST execution
time, when compared to PQR. This is exp lained by the
average number of leaves produced by PQR/PQR2
(TABLE IV). When the tree has a large number of

leaves (37 for BLAST time model), the amount of data
and range in each leaf, on which PQR2 can work to
improve its accuracy, are small.

PQR2 models created with the entire dataset
selected either the linear regression or SVM regression
for modeling the data on the leaves, with a clear
tendency to select SVM. This confirms that adding
regression algorithms to the leaves is beneficial (PQR2)
when compared to simply using the range mean or
median (PQR). Considering the selection of classifiers,
common to both PQR and PQR2, the resulting models
included all classifiers, with strong tendency towards
selecting C4.5.

VI. CONCLUSIONS AND DISCUSSIONS
The research reported in this paper considered the

problem of accurately predicting application resource
usage, reviewed and discussed several noteworthy
machine learning algorithms considered by previous
work, proposed and implemented PQR2, an extension
of an existing classification tree algorithm, and
compared all solutions (including the new PQR2
algorithm) under several conditions. Experiments
predicting execution time, memory and disk
requirements for two popular bioinformatics
applications, BLAST and RAxML, were performed on
a heterogeneous environment. Overall, PQR2 exhib ited
better accuracy when compared to other algorithms, due
to its ability to better adapt to scenarios with different
characteristics (linear and non-linear relationships, high
and low density of training data points) by choosing
different models for its nodes and leaves.

At a more general level, the two main conclusions
from the work reported in this paper are as follows:

1. The scenarios requiring application resource
prediction present a diverse behavior, making different
algorithms perform better in different situations. The
use of methods that can adapt to these situations by
considering different configurations and algorithms is
key for improving the quality of the prediction without
requiring manual tuning. The resulting algorithms may
be computationally more demanding during training,
but this is usually not a concern as there is no need to
generate a new model very often. Nevertheless, the

555000333

time and memory consumed by the prediction
procedure for all ML algorithms is the subject of future
work, with room for optimizations . Roughly, using the
largest dataset (BLAST), PQR2 required a few minutes
to create the model and a few milliseconds to produce
a single prediction, indicat ing practicality of PQR2 for
production deployments . PQR2 proved to be the best
solution for BLAST and RAxML and should be
considered as candidate solution for other applications.

2. Attributes can have high impact on the
performance of the learning algorithms. The use of
system performance attributes showed to be relevant
for execution time prediction whereas application
specific attributes were pertinent for all scenarios. This
work makes the case for including as many attributes
as available, while letting the algorithms analyze the
relevance of the attributes when necessary. For cloud
and grid computing scenarios, where resources are
outsourced, the provision of this informat ion to its
users (or services acting on behalf of the users) through
the use of benchmarks and runtime monitoring,
especially of shared resources, can bring several
benefits. Although this informat ion is not readily
available on a per application run basis , especially for
shared resources, we expect it to become available in
the near future (Amazon CloudWatch is one such
example limited to a virtual machine instance).
Improved prediction can result in better system
utilizat ion [1], can avoid application abortion in system
that enforce accurate resource reservation, as well as
significant savings when choosing the appropriate pay-
as-you-go resource.

ACKNOWLEDGMENTS
This work is supported in part by NSF grants No.

OCI-0721867, CNS-0821622, IIP-0758596 and the
BellSouth Foundation. BLAST input sequences used in
the experiments were provided by Dr. Leonid Moroz
and RAxML alignments were provided by Mr. Michael
Ott. Any opinions, findings and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of
the NSF or BellSouth Foundation.

REFERENCES

[1] R. Gibbons, �“A Historical Application Profiler for Use by

Parallel Schedulers,�” in Proc. Workshop Job Scheduling
Strategies Parallel Process., 1997, pp. 58-77.

[2] A. W. Moore, J. Schneider, and K. Deng, �“Efficient Locally
Weighted Polynomial Regression Predictions,�” in Proc. 14th
Int. Conf. Machine Learning, 1997, pp. 236-244.

[3] N. H. Kapadia, �“On the Design of a Demand-Based Network-
Computing System: The Purdue University Network-
Computing Hubs,�” Purdue University, 1999.

[4] A. W. Mu'alem, and D. G. Feitelson, �“Utilization,
Predictability, Workloads, and User Runtime Estimates in

Scheduling the IBM SP2 with Backfilling,�” IEEE Trans.
Parallel Distrib. Syst., vol. 12, no. 6, pp. 529-543, 2001.

[5] W. Smith, I. Foster, and V. Taylor, �“Predicting application run
times with historical information,�” J. Parallel Distrib. Comput.,
vol. 64, no. 9, pp. 1007-1016, 2004.

[6] W. Smith, �“Prediction Services for Distributed Computing,�” in
Proc. 21st Int. Parallel Distributed Processing Symp., 2007.

[7] D. Tsafrir, Y. Etsion, and D. G. Feitelson, �“Backfilling Using
System-Generated Predictions Rather than User Runtime
Estimates,�” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 6,
pp. 789-803, 2007.

[8] C. Gupta, A. Mehta, and U. Dayal, �“PQR: Predicting Query
Execution Times for Autonomous Workload Management,�” in
Proc. 2008 Int. Conf. Autonomic Computing, 2008, pp. 13-22.

[9] I. Rodero, F. Guim, J. Corbalan et al., "The Grid Backfilling: a
Multi-Site Scheduling Architecture with Data Mining
Prediction Techniques," Grid Middleware and Services, pp.
137-152, 2008.

[10] R. Albers, E. Suijs, and P. H. N. de With, �“Triple-C: Resource-
usage prediction for semi-automatic parallelization of groups of
dynamic image-processing tasks,�” in Proc. 23rd Int. Parallel
Distributed Processing Symp., 2009.

[11] R. Duan, F. Nadeem, J. Wang et al., �“A Hybrid Intelligent
Method for Performance Modeling and Prediction of Workflow
Activities in Grids,�” in Proc. 2009 9th IEEE/ACM Intl. Symp.
Cluster Computing and the Grid, 2009, pp. 339-347.

[12] F. Nadeem, and T . Fahringer, �“Using Templates to Predict
Execution T ime of Scientific Workflow Applications in the
Grid,�” in Proc. 2009 9th IEEE/ACM Intl. Symp. Cluster
Computing and the Grid, 2009, pp. 316-323.

[13] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J.
Lipman., �“Basic Local Alignment Search Tool�”, Journal of
Molecular Biology, 1990, v. 215(3), pp.403-410,
doi:10.1006/jmbi.1990.9999.

[14] A. Stamakis, �“RAxML-VI-HPC: Maximum Likelihood-based
Phylogenetic Analyses with Thousands of Taxa and Mixed
Models,�” Bioinformatics 22(21):2688�–2690, 2006.

[15] E. Alpaydin, Introduction to machine learning, MIT Press,
2004.

[16] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification,
2 ed., Wiley, 2001.

[17] I. H. Witten, and E. Frank, Data mining: practical machine
learning tools and techniques, 2 ed., Morgan Kaufmann, 2005.

[18] D. Feitelson. Parallel Workloads Archive. [Online]. Available:
http://www.cs.huji.ac.il/labs/parallel/workload.

[19] B. E. Boser, I. M. Guyon, and V. N. Vapnik, �“A training
algorithm for optimal margin classifiers,�” in Proc. fifth annual
workshop on Computational learning theory, Pittsburgh,
Pennsylvania, United States, 1992, pp. 144-152.

[20] H. Drucker, C. J. C. Burges, L. Kaufman et al., �“Support
Vector Regression Machines,�” in Advances in Neural
Information Processing Systems 9, 1997, pp. 155�—161.

[21] BLAST and RAxML execution traces.
http://www.acis.ufl.edu/prediction

[22] R. Wolski, �“Dynamically forecasting network performance
using the Network Weather Service,�” Cluster Computing, vol.
1, no. 1, pp. 119-132, 1998.

[23] J. Bi, and K. P. Bennek, �“Regression error characteristic
curves,�” in Proc. 20th Int. Conf. Machine Learning,
Washington DC, 2003, pp. 43-50.

[24] S. Krishnaswamy, S. W. Loke, and A. Zaslavsky, �“Estimating
computation times of data-intensive applications,�” IEEE
Distributed Systems Online, vol. 5, no. 4, 2004.

555000444

