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Abstract. We consider the problem of incrementally learning models
from relational data. Most existing learning methods for statistical re-
lational models use batch learning, which becomes computationally ex-
pensive and eventually infeasible for large datasets. The majority of the
previous work in relational incremental learning assumes the model’s
structure is given and only the model’s parameters needed to be learned.
In this paper, we propose algorithms that can incrementally learn the
model’s parameters and structure simultaneously. These algorithms are
based on the successful formalisation of the relational functional gradient
boosting system (RFGB), and extend the classical propositional ensem-
ble methods to relational learning for handling evolving data streams.
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1 Introduction

Statistical Relational Learning (SRL) combines statistical methods with rela-
tional or logical models to address the challenge of applying statistical learning
and inference approaches to problems which involve rich collections of objects
linked together in a complex, stochastic and relational world. While these models
are highly compact and expressive, the problem of learning them is computation-
ally intensive. The learning includes two components as with standard graphi-
cal models, the structure that encodes the dependency between attributes and
the parameters that quantify the uncertainty. Even in batch learning, structure
learning is significantly difficult. Most existing incremental learning methods for
SRL models assume the structure is given and only learn the model’s parameters,
which makes these learning methods less applicable to real-world problems.

A recent algorithm called Relational Functional Gradient Boosting (RFGB)
[1], based on Friedman’s functional gradient boosting [2], addressed the prob-
lem by learning structure and parameters simultaneously. This was achieved by
learning a set of relational regression trees (RRT) for modelling the distribution



2

of each variable given all the other variables. The key insight is to view the
problem of learning relational probabilistic functions as a sequence of relational
regression problems.

As the RFGB system has reduced the complex learning problem to a rela-
tional regression problem, the potential to extend this system with relational-
enabled propositional solutions can be exploited. There have already been ex-
tensions that enable the RFGB system to handle imbalanced data with Soft
Margin [3] and incomplete data with Structural EM [4]. In this paper, inspired
by HTILDE-RT [5] and DWM [6], we have further developed the RFGB sys-
tem for incremental learning by upgrading the RRT used in the RFGB system
with the use of Hoeffding bound and the concept adaptation strategy that is
successfully employed in the CVFDT [7], and incorporating the upgraded RRT
with ensemble methods through a Hoeffding-based stability metric to cope with
concept drift.

In this work, Hoeffding Relational Regression Tree (HRRT), Relational In-
cremental Boosting (RIB) and Relational Boosted Forest (RBF) are introduced
for adaptive incremental learning in SRL setting. This paper is organized as fol-
lows: in Section 2, the background including RFGB and CVFDT are reviewed;
in Section 3, the rule stability, HRRT, RIB, and RBF are explained; in Section
4, conclusions and future work are provided.

2 Background

2.1 Relational Functional Gradient Boosting

Friedman [2] proposed a boosting approach where functional gradients are com-
puted for each example over the objective function. The RFGB [1] considers the
objective function as a sigmoid function (Equation 2). These gradients corre-
spond to the difference between the true label and predicted probability for an
example and are then used to generate a regression dataset. In each iteration, a
RRT ∆i is learned to fit to these gradients and added into the potential function
ψm:

ψm = ψ0 +∆1 + ...+∆m−1 (1)

This approach learns a boosted probabilistic model that corresponds to the
local conditional probability distribution in some SRL models.

P (yi|Pa(yi);ψ) =
eψ(yi;xi)∑

y′∈Y
eψ(y′;xi)

(2)

We will upgrade the RRT learner used by the RFGB system to enable incre-
mental learning by incorporating CVFDT.
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2.2 CVFDT

The propositional incremental dceision tree learner VFDT [8] uses Hoeffding
bounds to guarantee that its output is asymptotically nearly identical to that of a
batch learner. CVFDT [7] introduces a concept adaptation strategy to VFDT for
handling concept drift. CVFDT keeps the incrementally learned tree consistent
with a sliding window of examples. In this paper, we call the contents of a sliding
window the window data. The concept adaptation strategy is implemented as
follows: The statistics of the window data is encoded into the sufficient statistics
for nodes in the tree. These sufficient statistics are then used to periodically
check if the Hoeffding bound holds at each node , and if not, the algorithm
will create an alternate sub-tree for the node to compete with the failed sub-
tree in terms of prediction accuracy. In the case where the alternate sub-tree
beats the failed one, the failed sub-tree and the old conflicting rules encoded in
it will be discarded and replaced by the alternate sub-tree. The disadvantage
of eliminating old conflicting rules entirely is that the model will only support
current window data and usually result in larger prediction variance.

In the following section, we will introduce our algorithms using ensemble
methods to handle concept drift by allowing the coexistence of conflicting rules
in relational setting.

3 Incremental Learning Algorithms

3.1 Rule Stability and Hoeffding-Based Stability Metric

In this paper, we qualify a tree as stable with the following considerations. The
tree is highly consistent with the window data, and the rules encoded in the
tree are real rules that can, with high confidence, interpret the distribution
associated with the data generator. We will boost a tree when it is stable so that
the objective function (equation 2) is best optimized for the current window
data and the newly found stable rules can be solidified and transformed into
established rules. On the other hand, a stable tree is highly resistant to concept
drift, as the newly found stable rules will require many counter-examples to be
invalidated. Inspired by DWM [6] in which the ensemble methods are proven
efficient by extensive experiments for adapting drifting concepts, we propose to
employ ensemble methods to tackle the concept drift problem in the relational
setting.

In the presence of concept drift, we want to learn how stable the rules that
the tree has learned so far are, as an indicator of the stability of a tree. We
introduce a metric that measures the stability of a tree as follows.

Definition 1. Define the Rule Stability of a model as the size of the small-
est change in sample D that may cause rule r′ to become superior to r. This is
as shown in equation 3, where D′ is D after change.

Learner : (Diff(D,D′) = n, r)→ r′ (3)
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According to CVFDT [7], to guarantee that the rule learned from a data
sample is the real rule r from the corresponding population with desired con-
fidence 1 − δ, the condition ∆ḠXa,Xb

> ε must be met, where ∆ḠXa,Xb
=

Ḡ(Xa) − Ḡ(Xb), Ḡ(Xi) is the average of results from splitting function G(Xi),
Xa and Xb is the working and second best test respectively at a node, and ε is a
boundary calculated based on the size of sample, and choice of splitting criterion
and δ. As the streaming process continues, a conflicting rule r′ of rule r might
be introduced. To adapt r′, the condition ∆ḠXa,Xb

< ε must be met to trigger
the concept adaptation strategy. Therefore, with confidence 1 − δ, the size of
the smallest change that may cause r′ to become superior to r in the CVFDT
context is Tolerance = ∆ḠXa,Xb

− ε. According to Definition 1, the Tolerence
measures the rule stability of an inner node. The TreeTol which is the sum of
the Tolerance of every inner node in a tree denotes the stability of the tree.

3.2 Hoeffding Relational Regression Tree

Our HRRT algorithm upgrades the RRT learner used in RFGB by incorporating
methods from CVFDT [7]. It has a test search space including conjunctions
of recursive and aggregated predicates by using refinement operator with θ-
subsumption and aggregate condition [1]. Most of the algorithm is similar to
CVFDT except that HRRT is using learning from interpertation setting, for
detailed explanation please refer to CVFDT and HTILDE-RT [5]. We implement
the TreeTol in StabilityCheck function with a threshold defined by user to
periodically check whether the tree qualifies as stable in the sense that the tree
is stable when TreeTol is greater than the threshold. HRRT and StabilityCheck
are the building blocks for the following algorithms.

3.3 Relational Incremental Boosting

As shown in Algorithm 1, the initial tree ψ is incrementally learned by HRRT
and will be boosted when it has satisfied the StabilityCheck (line 9). The empty
tree η will then be trained to fit on the functional gradients of the boosted tree ψ
(lines 5-7) for example in the window data. In the presence of concept drift, the
error introduced by the old conflicting rules in ψ will be corrected by η. When
η has also met the StabilityCheck and the execution signal S is true (line 6),
the algorithm adds η to ψ, and then boosts their sum in that η itself is just a
functional gradient tree (FGT) of ψ, only the composite of them can represent
the newly found stable rules.

The execution signal S is set by the EvalCentre (line 4) that handles two
crucial issues with RIB and the following RBF. One issue is that the complexity
of the resulting model grows with the increasing size of learned data. Inspired
by DWM [6], we introduce an evaluation centre that periodically evaluates the
contribution to error of each FGT in the resulting model, and discards the FGTs
that perform poorly over time. In such a way, the model’s complexity decreases
at the expense of its integrity. Another issue is that if the concept never drifts,
new boosted trees will be added to the model constantly but provide trivial
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Algorithm 1 Relational Incremental Boosting

1: procedure RIB(DataStream, p)
2: Initialize empty tree ψ and η
3: for each d in DataStream do
4: After every p examples do {ψ, S} ← EvalCentre(ψ, d)
5: if ψ.boosted then η ← HRRT (η,GradExpGen(ψ, d))
6: if StabilityCheck(η) and S then ψ ← Boosting(η + ψ) and reset η
7: end if
8: else ψ ← HRRT (ψ, d)
9: if StabilityCheck(ψ) then ψ ← Boosting(ψ), ψ.boosted← True

10: end if
11: end if
12: end for
13: return (ψ + η)
14: end procedure

improvement in performance. In this case, the EvalCentre evaluates the global
performance of the model and stops executing boosting by setting the signal S
to false when the performance reaches a pre-defined threshold, indicating that
strong consistency of the model to the window data is achieved.

3.4 Relational Boosted Forest

In this RBF explanation, the model makes predictions based on the weighted
average of regression values of trees in the forest with normalized weights. Other
prediction models can be applied depending on the scenario. As shown in Algo-
rithm 2, the forest and weights are initialized along with an empty tree ψ and
its associated weight w set to 1 (line 2). When ψ has passed the StabilityCheck
and the execution signal S is true, the boosted ψ and its weight w will be added
to the forest and weights respectively (lines 7-8). When a boosted tree makes a
mistake in a predictive attempt, the EvalCentre in RBF will decrease its weight.
The forest is in such a way recursively populated. Each boosted tree contains
established rules that co-exist in the forest, and the weights are dynamically
tuned to adapt the window data. In response to the complexity problem, the
poorly performing trees with a weight less than a pre-defined threshold will be
removed from the forest. The signal S is set in the same way as RIB to handle
the no drifting concept issue.

4 Conclusions and Future Work

In this paper, we have introduced three adaptive incremental learning algo-
rithms: the HRRT, RIB and RBF. All these algorithms can incrementally and
adaptively learn the parameters and structure simultaneously for SRL models
such as the Relational Dependency Network (RDNs) and the Markov Logic Net-
work (MLNs). The RIB and RBF extend the classical ensemble methods for
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Algorithm 2 Relational Boosted Forest

1: procedure RBF(DataStream, p)
2: Initialize empty Forest & Weights, empty tree ψ and w ← 1
3: for each d in DataStream do
4: After every p examples do
5: {Forest,Weights, S} ← EvalCentre(Forest,Weights, d)
6: ψ ← HRRT (ψ, d)
7: if StabilityCheck(ψ) and S then ψ ← Boosting(ψ)
8: Add ψ to Forest, w to Weights and reset ψ, w ← 1
9: end if

10: end for
11: return {Forest,Weigths}
12: end procedure

the first time to relational scenarios for handling drifting concepts. As they are
developed in the RFGB system, RIB and RBF can be naturally integrated with
algorithms designed for RFGB system such as the Soft Margin [3] and the Struc-
tural EM [4] for modelling imbalanced and incomplete data in an incremental
fashion.

In future work, we will evaluate these algorithms on some of the standard
SRL benchmark datasets, and compare their performance against each other
and with other state-of-the-art online structure learning algorithms.
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