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Abstract— As data marketplaces are becoming ubiquitous,
it is also becoming clear that data streams generated from
Internet of Things (IoT) devices hold value for potential third
party consumers. We envision a marketplace for IoT data
streams that can unlock such potential value in a scalable
way, by enabling any pairs of data providers and consumers
to engage in data exchange transactions without any prior
assumption of mutual trust. We present a marketplace model
and architecture to support trading of streaming data, from
the advertising of data assets to the stipulation of legally
binding trading agreements, to their fulfilment and payment
settlement. We show that by using blockchain technology and
Smart Contracts in particular, we can offer participants a trade-
off between the cost of transactional data exchange, and the
risk of data loss when trading with untrusted third parties.
We experimentally assess such trade-offs on a testbed using
Ethereum Smart Contracts.

I. INTRODUCTION

Data streams that originate from Internet of Things (IoT)
devices are increasingly viewed as tradeable assets with value
not only to the device owners, but also with resell value,
i.e., to third party buyers. New forms of dedicated data
marketplaces are emerging to help unlock such value [1],
but these are comparatively less mature than more traditional
data marketplaces for static data, cf. eg [2], [3], [4] for
surveys on these. Unlike static data, IoT data streams tend
to lose their value if they are not consumed in near-real time,
and data transmission and delivery may be unreliable. On the
other hand, data exchange architectures based on message
brokers systems such as MQTT allow a single data stream
to be delivered to multiple parties, potentially enabling large-
scale open marketplaces where data owners may resell their
streams in real-time multiple times. While the IoT network
and message-passing infrastructure can support a scalable
marketplace, this inevitably leads to issues of mutual trust
amongst participants, especially when those have no prior
reputation within the marketplace. Also, the short-lived na-
ture of streams requires efficient, automated mechanisms to
create legally binding trade agreements, including payment
arrangements, and to enforce such agreements throughout
data transmission.

New generation blockchain technology that supports
Smart Contracts is a natural choice to address all of these
requirements, as Smart Contracts can act as a trusted in-
termediary within an untrusted community of marketplace
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participants, by adding transactionality to each of their inter-
actions: before, during, and after data exchange. An example
of such approach is Datum [5] (datum.org), based on
the Ethereum network, which however is designed to let
anyone store structured data on the blockchain. In contrast,
we envision a decentralised marketplace for real-time IoT
data, i.e., without any storage, that is scalable in the number
of participants and does not require prior trust amongst them,
while at the same time providing simple guarantees regarding
data and monetary loss in case of participant’s fraud. The
marketplace should be able to flexibly accept new partici-
pants (either individuals, institutions or business organiza-
tions), be resilient to leaving participants, and accommodate
unanticipated business relationships amongst those partici-
pants. Thus, anyone who controls IoT devices and generates
IoT data streams should be able to monetize it and use it as
tradeable assets in the marketplace. Additionally, in contrast
to existing proposals, e.g. [6], we aim to define a marketplace
that does not require a centralized trust component, such as a
brokerage platform with trusted ownership, but relies instead
on collective verification mechanisms, such as blockchain, to
enforce its own governance rules.

Our approach involves using Ethereum Smart Contracts
to support each phase of the interaction amongst a data
provider and a consumer. It separates the data exchange
interaction, which occurs on the IoT network and core
cloud network, from transaction-based interactions aimed
at enforcing non-repudiability of participant’s actions and
resolving their disputes, which occurs on the blockchain
network.

A. Contributions

This work follows on from our earlier proposal for a
IoT data marketplace, where we suggested that Ethereum
is capable of supporting a fully decentralised marketplace
without any assumption of mutual trust [7]. The approach
suggested in [7] is based on the idea that each participant
would periodically report to a Smart Contract on the data
sent to and received from other participants, and the Contract
would then be able to use such reports to settle any disputes.

In contrast, here we begin by proposing a different and
much simpler protocol involving data providers, consumers,
and a Smart Contract, based on the notion of periodic
checkpoints during data exchange, supported by blockchain
transactions to ensure limited scope for fraud on either side.

We then use our own prototype implementation of the
marketplace model on a private Ethereum network, to exper-
imentally evaluate the cost/risk trade-offs that are available



by setting checkpoint frequency, also taking advantage of
potential external mechanisms for establishing trust amongst
participants, if they are available.

B. Related Work

The monetization of the huge amount of available IoT
data is a challenging task with respect to automation and
scalability. Many marketplaces exist that are designed to deal
with IoT data using either centralized or decentralized archi-
tectures, for instance Microsoft Azure, BDEX (bdex . com),
and Big IoT Marketplace (http://big-iot.eu/), a
European project to enable IoT Ecosystems where IoT data
producers can sell their data. These are all examples of
centralised solutions where a central authority controls and
manages the trades between data provider and data buyer.

A number of blockchain networks have been used
to support IoT data exchange. Some, like Hyper-
ledger (hyperledger.org),Quorum (jpmorgan.com/
global/Quorum) and Corda (marketplace.r3.com)
are private or permissioned. Hyperledger shows low latency
requirements for consensus but does not fully satisfy decen-
tralization goals, while both J.P.Morgan’s Quorum and Corda
target the financial sector using different approach, whereby
IoT data are stored off chain and the consensus function
is designed to ensure agreements among trade participants.
The Ethereum blockchain [8], used as a testbed for this work,
provides a public platform and automated agreements among
interacting parties in the form of smart contracts and supports
the development of DApps, making it one of the blockchin-
based platforms of choice.

Some decentralized IoT marketplaces also exist. ID-
MoB [9] is designed to trade non real-time and not critical
IoT data between IoT data producers and consumers. It runs
on Ethereum and uses Smart Contracts to manage and control
the market and to interact with the Raiden micropayment
network.

The same as Databroker DOA (databrokerdao.com)
which is a peer to peer marketplace for local IoT sensor
data. Based on their white paper [10], the sensor owners
place their data generated by their sensors up for sale. They
believe their marketplace will have be the online retailers for
sensor data.

Suliman A. et al [11] propose a marketplace to monetize
IoT data using smart contract in the blockchain. Similar to
our model, their approach involves sending IoT data through
MQTT broker and using smart contracts to manage and settle
payments. The main difference with our approach is that a
deposit is required before subscription to a topic may take
place. This conflicts with our no-trust assumption, as leaving
a deposit ahead of receiving goods is likely to be viewed as
risky by the buyer.

Huang Z. et al’s decentralized platform for IoT data
exchange [12] comes close to addressing issues of mistrust
amongst participants, and similar to our approach, data is
exchanged off-chain and made available to buyers once the
contract is in place. However, the data to be purchased
is stored, making this solution unsuitable for streaming.

Furthermore, no guarantees are offered to ensure that the
data is genuine, so advance payment i.e. to get access to
data download is risky.

Another effort has emerged in IoT marketplace in the area
of data source verification. Datapace (datapace.io) is a
distributed and decentralised system based on blockchain
with technical and policy-based data verification. It is a
marketplace for IoT sensor data where the IoT sensors are
connected the IoT platform Mainflux which is integrated
into Datapace system part called Datapace [oT platform.
The difference between this model and our model that this
model provide data source verification by their own sensing
equipments. While our model assume data source producers’
honesty and no special verification hardware.

Similarly, AnyLedger (anyledger.io) is an embedded
wallet for the IoT devices which connect the physical world
to the blockchain. Each IoT device will be able to execute
transaction to the blockchain. It is the first IoT-Blockchain
application enablement platform starting from hardware de-
vice and the embedded software and finally end with the
remote device management and blockchain nodes. Based
on their white paper [13], AnyLedger blockchain solutions
allow seamless deployment of tamper proof sensors, which is
remotely controlled. It uses IPFS technology as decentralised
storage end point for secure storage for data monetization.

Finally, a recently proposed alternative blockchain
provider, IOTA (iota.org), announced their support for
decentralized marketplaces at the end of 2017, with the goal
of “enabling a truly decentralized data marketplace to open
up the data silos that currently keep data limited to the
control of a few entities”. One distinguishing feature of this
solution is that, unlike others cited above, here the IoT data
is actually stored in the blockchain (or IOTA’s version of it,
called the Tangle [14]. To the best of our knowledge this
solution has not yet been released.

As opposed to IOTA, Streamer (streamr . com) felt that
there is no need to develop a completely new blockchain
and instead, saving resources by using the existing Ethereum
blockchain. It is a real time data streams exchange platform.
It creates an ecosystem for data producers to sell their data to
consumers. As explained in their white paper, a data producer
creates a data streams for their data and push it to brokers
nodes which is responsible to deliver it to its data consumer
who purchase the desired data by the interaction with the
Ethereum smart contract for management, data permission
and payment.

Trust and reputation management is not directly addressed
in this paper, however a trust management model should
also be established as part of the marketplace. Existing trust
frameworks can be used on top of our infrastructure. Yan et
al. [15], for instance, explore the notion of trust across the
IoT platform layers (physical sensing, network, and appli-
cation layers), with the focus on a wide range of properties
from security to goodness, strength, reliability, availability,
ability of data. However, their survey largely overlooks issues
of trust amongst participants in a data marketplace, i.e., in the
context of data exchange transactions. More directly useful



Fig. 1: Centralized Brokered IoT Data Marketplace Archi-
tecture
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in our setting, is Roman and Gatti’s study of trust in data
marketplaces [16], based on credit scoring, where a direct
connection is made to the use of blockchain technology with
data trading.

II. MARKETPLACE MODEL
A. Brokered IoT Data Exchange

We assume, following standard IoT data streaming prac-
tices, that the exchange of streaming data between any pair
of participants, i.e., a data Provider P and a Consumer
C, is mediated by some transaction-agnostic broker infras-
tructure, such as the one shown in Fig. 1. In this data
transfer model, the stream is broken down into discrete
message batches. Providers tag their messages with fopics
that uniquely identify that Provider’s stream. A Consumer is
allowed to subscribe to a topic subject to the conditions set
in a Trade Agreement, as described below.

In our previous work [7] we assumed initially a network
architecture where the broker is a trusted component that
can be relied upon to generate truthful data exchange re-
ports, which in turn can be used to settle disputes between
producers and consumers (the “cubes” in Fig. 1). In such a
scenario, the Smart Contract is simply in charge of settlement
given the reports. In the same paper, we then proposed a
more ambitious trust-less model where the task of generating
reports is left to each participant. In this case the Smart
Contract has a difficult task because the report themselves
cannot be trusted, and disputes cannot be settled by ascribing
certain responsibility to either participant.

B. Model Elements

In this work we work around these difficulties, as we
do not require the broker or the participants to generate
any report at all. Instead, the broker is simply a network
element. The goal of the marketplace is twofold. Firstly, to
enable trading of streaming data through the broker while
offering guarantees, i.e., regarding the max loss incurred by
either of them in case of adversarial behaviour. And secondly,
to resolve disputes about the amount of data exchanged.
To achieve this, we augment the data exchange with the

exchange of data receipts between C and P, which occurs
at regular intervals and throughout the duration of the data
stream. Such receipts are exchanged as part of transactions
that are mediated by a smart contract, denoted SC, on the
blockchain. The length of the exchange interval, denoted as
Batch Size or BS, is set at the time of trading agreement
negotiation. As we will see, this parameter enables P to
control the level of risk they are prepared to tolerate given
limited trust in C.

The model consists of the following elements:

1) The description of data offered by a Producer;

2) A trade agreement, which includes details of the data
to be exchanged and the exchange protocol, the corre-
sponding market value, and additional parameters such
as BS mentioned above;

3) A protocol for the exchange of data receipts, which

includes both parties in addition to a neutral smart

contract;

A reputation model, which allows a reputation score

to be assigned to every pair P and C' of participants

at the end of each transaction they are involved in.

Participants may use reputation scores to assess the

risk of entering into an agreement with an untrusted

participant.

4)

In this paper we are concerned primarily with (1-3), which
are described in detail below. Regarding (4), we are going
to assume that a reputation model is in place and that a
up-to-date score is associated with each participant, without
concern for how it works. The design of a customised
reputation model is the object of our ongoing work, and it is
beyond the scope of this paper. Proposals on how to achieve
such a model exist, however, see eg. [17].

The smart contract is responsible for each transaction
associated with (1-3), and specifically for recording (i) the
specification of the data offering, (ii) the trade agreement,
and (iii) each data receipt.

C. Data Offering

The first function of the smart contract is to let data
Providers publish their data offerings on the blockchain,
where they can be then discovered by prospective Con-
sumers. As mentioned, a data stream consists of a sequence
of messages uniquely identified by a provider’s topic, and
a data offering describes the type of stream and specifies
how to subscribe to the stream. Specifically, a data offering
DO = (T, TI, MR, UP) includes, in addition to the topic
T, a specification of (i) the time interval 7 during which the
offer is valid, (ii) the expected streaming message rate MR,
eg. in messages/time, (iii) the unit cost UP of each message
in the stream. Note that here we are only concerned with
the overhead cost of trading, while the pricing of the data
itself is not a concern in this work. Interested readers may
find recent proposals on data pricing relevant [18], [19], [20],
[21].



D. Trade Agreement

The trade agreement is a legally binding contract (we
use the term ‘“agreement” to avoid confusion with smart
contracts) between a producer and a consumer, which defines
the terms of the data exchange. An agreement comes into
force when (i) it is signed by both parties using their
blockchain account keys (Ethereum in our implementation),
and (ii) a smart contract transaction containing the agreement
is committed to the blockchain, at which point it can no
longer be amended. The agreement contains (i) a specific
data offering DO and (ii) a time interval TATI, contained
within the time interval 717, during which the agreement
is in force. For instance, C' may want to subscribe to a
portion of an event that is offered over a long period of
time. We denote the total price as TP = UP - TATI and
the estimated total number of messages in the agreement as
ETM = MR- TATI. The latter is an estimate, rather than a
set value, because the total number of messages that can be
sent within interval TATI is affected by the time required
to carry out the Data Receipt protocol, as explained next.

E. Data Receipt protocol

Once the trade agreement is in force, C' is allowed to
subscribe to P’s stream. Under normal circumstances and
when both parties comply with the agreement, and data
transfer takes place as expected, at the end of the TATI
interval C' informs SC' that the agreement has been fulfilled,
and SC proceeds to settle the payment as per the agreement.
Suppose however that C' fails to inform SC. This may
happen because C' actually failed to receive some of the
data in the stream, or because it fraudulently claims not to
have received the data. In our model we assume that SC' is
unable to distinguish between these two events, because there
is no requirement for the data broker to keep a (verifiably
truthful) log of its message delivery. In this situation, the only
possible course of action for SC' is to believe C’s claim, and
to withhold P’s payment as a consequence. Thus, assuming
minimal accountability on the broker and no trust amongst
participants, P may become the victim of C’s fraud.

Our approach to mitigate this circumstance is to introduce
checkpoints throughout the duration of data delivery. The
number of messages between two checkpoints is the batch
size BS, which P can configure as part of the agreement
negotiation with C. At each checkpoint, C' is expected to
send a data receipt to SC' as part of a blockchain transaction,
which acknowledges receipt of one batch of data from P.
When the transaction is confirmed, SC records the receipt
and then informs P. Meanwhile, at the end of each batch P
will have suspended its streaming to C' until it receives the
acknowledgment from SC. If P does not receive a message
within a certain time limit, it times out and terminates the
trade agreement in order to cut its losses (in practice, C’s
subscription to the stream is cancelled). Thus, the data ex-
change protocol and data receipt protocols are interconnected
as shown in Fig. 2.

The timeout is a configurable parameter that reflects the
expected time required for a receipt transaction to be con-

firmed on the blockchain. In our experiments we model this
time as a random variable, denoted RT' (for Receipt Time),
with an experimentally determined distribution (see Sec. IV).
P may configure the timeout RT,,,, to be more or less
tolerant of the variance in confirmation times, however longer
RT,,q, intervals translate into fewer effective messages
delivered to C, as in our model the latency RT,,, counts
as part of the total agreement interval, TATI, as explained
next.

FE. Cost / risk / time trade-offs

In the model just illustrated, P and C' agree on a total
duration for the data streaming, TATI, and a streaming rate,
MR. We have also assumed that P has a way to assess
the risk of data loss when C' is not trustworthy, i.e., by
accessing C’s reputation score (the details of which we have
omitted). In this setting, the term data loss refers to the
number of messages that P will have sent to C, that C' will
not acknowledge and therefore will not pay for.

In order to minimise its risk, P is motivated to choose
frequent checkpoints, that is, by setting BS to a small value.
This, however, has a cost impact, because checkpoints are
smart contract transactions and as such, in blockchain models
like Ethereum, each of them incurs a fee. There is therefore
a trade-off between the risk of losing data and the cost of
engaging in a long-running trade with many checkpoints
along the way.

Now suppose that (i) the transaction fees for data receipts
are charged to C, and (ii) the latency R7T due to each data
receipt transaction is detracted from the total contract time,
TATI.

These conditions potentially create a tension between P
and C, as P is interested in low risk, while C is interested
in low transaction cost and minimal reduction in effective
contract time. Such tension is embodied by C’s reputation
score, Crep € [0,1]. The ideal win-win scenario occurs when
C is fully trusted, that is, C'., = 1, as in this case there is no
need for checkpoints, i.e., BS = TATI - MR. When Cl), <
1, P will set BS < TATI-MR, and C' will experience higher
cost and fewer total messages delivered within TATI.

Thus, it makes sense to assume that BS is a function of
Crep: BS = f(Chrep), where f() is a parameter in the model
and can be chosen to either amplify or reduce the effect of
reputation. In our experiments we have used a logarithmic
function: f(Clrep) = In(Crep +1)/k. The analysis in Sec. IV
shows that by choosing a suitable value for the constant k, we
can control the min number of receipts required. For instance,
setting k = 2.77 has the effect to produce a minimum of 4
data receipts. Many other functions can be chosen to map
the reputation score to the batch size, and thus indirectly to
the number of receipts.

It is straightforward to see that, in this model, P’s
maximum data loss is simply one batch of messages. As
mentioned, RT,,,, denotes P’s estimate of R, which
will be used as timeout. RT,,,, is determined from RT’s
empirical distribution, observed from the network behaviour.
In practice, the expected confirmation time for a Smart



Fig. 2: Data receipt protocol Interactions between C, P and SC
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Contract transaction on Ethereum is largely determined by
the user’s choice of gas price.

While this setting has no direct effect on data loss, it does
affect C’s cost and the actual number of messages received.
Because of our assumption (ii), a large value for RT,,qx
results in fewer messages sent to C'. To make this observation
precise, consider TATI, MR and BS as constants from the
agreement. The time required to send a batch of data is

BS
BT = —
MR
and the number of batches sent during TATI is
TATI
BN = ———1—
BT 4 RT a4
because of assumption (ii) above. Equivalently,
TATI - MR
BN =
BS + RT a2 - MR

Assuming the Ethereum cost model with gas unit price GUP
and gas consumption per transaction GT', the total cost RC'
due to the receipt transactions is:

RC =BN - GT - GUP

As expected, the cost is inversely proportional to BS.
The actual number of messages ATM delivered at the end
of TATI is

ATM = (TATI — BN - RT yaz) - MR

which decreases as BS and RT,,, increase, as expected.

As assumed above (i), cost RC' is charged to C'. The total
cost associated with a trade agreement also includes one-
off transaction fees, which are split between P and C, as
follows. Firstly, in order to participate in the marketplace
each participant, in either a consumer or producer role,
must register itself with the network. This incurs a one-
off registration cost to execute the smart contract user
registration function. Secondly, the deployment of a trade
offer to the network is also implemented as a smart contract
function, which again incurs a fee. This is a provider-only
cost. Thirdly, a smart contract fee is paid when a new trade
agreement is recorded on the blockchain. This cost is split
between P and C.

G. End of trade

Marketplace practice suggests that C' should pay a deposit
at the start of the trade, as a guarantee that sufficient funds
are available to settle the agreement at the end of it. The
funds are held by the SC' and used against the final payment,
or they are returned to C' in case the trade is terminated
early, i.e., if P times out on a data receipt. Importantly,
however, this deposit cannot be used as leverage to ensure
C’s honesty, because we have assumed that SC' cannot
distinguish between fraud and genuine data loss, i.e., in the
brokered network. Thus, deposit details do not add to the
specific model we are proposing, and we are not going to
elaborate further.

Finally, we have overlooked details of the reputation
model, as it is beyond our current scope. It is important
to note, however, that the reputation manager should be
able to update participants’ reputations at the end of each
trade, i.e., based on the outcome of the trade. This is not
straightforward, because a trade terminating early does not
automatically apportion blame to either C' or P. The design
of a dynamic reputation model that can deal with this
situation is the focus of our current research.

III. SYSTEM VIEW AND MARKETPLACE INTERACTIONS

The system consists of a data transfer layer, where IoT
data transfer is mediated by brokers, and a blockchain layer,
where all trade-related transactions occur.

In data transfer layer, the actual data is transferring from
producers to consumers off-chain (in broker level) in differ-
ent batch sizes as stated in the trade agreement in blockchain
layer.

The blockchain layer consists of a collection of smart
contracts SC written in Solidity, Ethereum’s smart contract
language, and executed on the Ethereum Virtual Machine,
EVM).

As shown in Figure 3, initially a new participant must
register itself in the blockchain, by calling the register
function of SC'. Data providers P publish their data offers ,
or post updates to current offers, again using SC so that the
offers are stored in the blockchain and are publicly visible.
At the same time, consumers C' can inspect offers, and then
make a request to the SC' including the reference to and the
required time interval. This causes a new Trade Agreement



to be created on the blockchain, possibly encrypted by the
consumer for privacy purposes.

The offer’s provider is then involved in the definition of
the agreement, which includes setting parameters BS and
RT 4. based on the consumer’s current reputation score.
The negotiation phase occurs out of band and is not part of
our implementation. Once C' and P sign the agreement, this
is posted on the blockchain through a SC' call.

IV. IMPLEMENTATION AND EVALUATION

Our testbed consists of a set of smart contracts for trade
management and monetary settlement, deployed on a private
Ethereum test network. We used Ethereum’s web-based
IDE Remix (remix.ethereum. org) to write, deploy and
connect to the private chain through Remote Producer Calls.
We used fake accounts with balances provided by Remix as
trades participants.

Here we experimentally determine the costs associated
with each phase of the P — C interaction through SC'. To
recall, SC and thus gas fees are involved in registering new
participants, to deploy new offers, and to create a new trade
agreement. Once the agreement is in place, C' provides a
deposit TP based on ETM, as suggested earlier (Sec. II-G).
Importantly, we assess the cost RC' due to the data receipt
protocol.

Table I shows the costs broken down per phase, incurred
by P, C, or both. We have measured the gas consumption
using the Remix debugger, which provides consumed gas for
every transaction. This can also be obtained by monitoring
the balances of participants and check the differences before
and after invoking the smart contract method.

TABLE I: shows transactions cost in each cost category (in
Gas)

Producer Consumer
Cost Operation G G
Category as as
Consumption || Consumption
Registration - Register in e e
Cost the network 204739 gas 199093 gas
Offering
Cost - Deploy an offer || 491862 gas -
Setu - Make an order
CosF and create - 620865 gas
a new TA
- Set Batch size
and sign off 82063 gas -
the TA
Receipt .
Cost - Send a receipt - 144367 gas

The settlement is done by the settlement smart contract
when the trade ends.

For evaluation purposes, we have defined a family of
functions BS = f(Chep) = In(Chep + 1)/k where parameter
k is set by constraining the minimum number of receipts
when TATI is set to one day (24 hours) and MR =
100msgs/s. The three columns in Table II show the effect of
setting k = 1.38,2.10, 2.77, with corresponding min receipts
2,3, and 4, across the range of reputation scores.

TABLE II: Minimum number of receipts with three different
constant values in f(Cl.p)

Reputation Number of Receipt
In(Crep +1)/1.38 || 1n(Crep +1)/2.10 || In(Crep + 1)/2.77

0.1 15 20 29

02 8 11 16

03 6 7 T

04 3 6 9

05 7 3 7

0.6 3 7 6

0.7 3 3 6

03 3 3 5

09 3 3 5

T 2 3 4
Setting £ = 1.38 produces the minimum number of

receipts, 2, for Cr, = 1 and increases to 3 for 0.5 <
Crep £ 0.9 In contrast, k = 2.10 produces the min number
of receipts within reputation range C,,, > 0.7, and for
k = 2.77, the min occurs for Cy., = 1, while the number
of receipts are fairly evenly distributed in the range 0.6 <
Crep < 0.7 with 6 receipts and for 0.8 < Cpp < 0.9 with 5
receipts.

Because the focus of our experiment is the trade-off
between the cost and the consumer reputation, based on these
experiments we settled for k = 2.77 for our cost evaluation,
as this provides as good segregation of cost relative to
reputation while limiting producer loss.

The increase in a number of batches received means that a
consumer will incur more gas. If we assume that a producer
has no incentive not to send the data as agreed in the
agreement, a trade fails when the consumer fails to send
a receipt or was not honest in reporting the exact number of
messages received. The data receipt protocol is designed to
make the marketplace sustainable by providing incentives to
parties to increase their reputation.

Because the unit gas price GUP largely determines the
duration of the transactions in the blockchain to be confirmed
by miners, a consumer has the option to increase the GUP
in order to process their transaction faster and therefore he
will have more timem out of the total TATI, to receive more
batches. To clarify, in the Ethereum cost and POW model,
higher GUP gives the SC' transaction priority, as miners who
will validate the transactions usually follow the strategy of
picking the transactions with higher GUP to be included in
the next block. Thus, the increase in GUP contributes to
decreasing RT and therefore provides a larger ATM (actual
total messages) within the TATI interval.

The minimum and the maximum G UP in the network can
be found using the ETH Gas Station (ethgasstation.
info). This is a tool to understand the conditions of the
current gas market and current policies of network miners.
Based on the current condition of the network at the moment
of writing, the recommended gas prices from Gas Station is
shown in Table IIl. The Table shows the maximum time
taken by miners to confirm the transaction for each GUP.
In addition, the Gas Station provides the median time of
transaction confirmation for each GUP.

For the purpose of evaluation, we have used the three dif-
ferent GU P for different consumer reputations to calculate
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TABLE III: Gas Prices and Speeds

G(aévlv’g)c € Speed Median Speed
1.6 SafeLow (<30m) 4.3m
4.2 Standard (<5m) 2.5m
7.2 Fast (<2m) 0.8m

the RC, as explained in Sec. II-F.

TABLE IV: Shows the RC in USD and Data Percentage
Delivered for consumer reputations for 1 day trade with three
GUP values, MR=100 msg/sec. (1 Eth ~ 202.70 USD)

Consumer GUP= 1.6 Gwei GUP= 4.2 Gwei GUP= 7.2 Gwei
Reputation . Cost Data . Cost Data . Cost Data
in USD Percentage in USD Percentage in USD Percentage
0.1 1.465% 92.236% 3.9708 95.313% 7.016% 98.444%
0.2 0.903% 95.81% 2.3728 97.57T% 4.277% 99.17%
0.3 0.716% 97.01% 1.881% 98.26% 3.224% 99.44%
0.4 0.623% 97.61% 1.6358 98.61% 2.802$ 99.55%
0.5 0.529% 98.20% 1.389% 98.95% 2.381% 99.66%
0.6 0.482% 98.51% 1.2663 99.13% 2.1708 99.72%
0.7 0.482% 98.51% 1.266% 99.13% 2.1708 99.72%
0.8 0.435% 98.81% 1.1438 99.30% 1.960% 99.78%
0.9 0.435% 98.81% 1.143% 99.31% 1.960% 99.78%
1.0 0.388% 99.10% 1.0208 99.48% 1.749% 99.83%

Fig. 4(a) shows the number of smart contract invocations,
that is, the number of receipts, vs consumer reputation. The
cost of these invocations is depicted in Fig. 4 (b).

Note that the maximum data delivery when C,., = 1 for
GUP = 1.6 Gwei, 4.2Gwei and 7.2 Gwei are 99.10%,
99.48%, and 99.83%, respectively. If we assume that the
minimum time for a transaction to be confirmed is about
1 second, the maximum number of messages could be
delivered to a consumer is < (ETM — MR * BN). Recall
that the overhead due to processing the receipts, represented
as RT, is included in TATI, which reduces ETM by
RT - BN.

Although the number of receipts as shown in Fig. 4 (a)
are nearly the same, which lead to similar costs for receipts
as shown in Fig. 4 (b), the fraction of data received, ATM,

is higher for a higher reputation consumer as expected, as
shown in Fig. 4 (c).

V. CONCLUSIONS

In this paper we have proposed a decentralized market-
place for trading brokered IoT data under assumptions of
limited trust amongst participants. Smart Contracts on the
Ethereum public network are used to mediate all interactions
amongst data producers and consumers, in order to achieve
non-repudiability and transparency. The model separates the
exchange of streaming data, which is supported by message
brokers off-blockchain, from transactions that occur at regu-
lar checkpoints during data transfer.

The model makes the trade-offs between risk of data
loss, cost, and total number of messages exchanged explicit,
empowering the participants to negotiate a balance between
those elements, based on their current reputation. We have
shown experimentally that, if a reputation score can be
obtained, i.e., from a third party service that is currently
beyond the scope of this paper, then the trade-offs can be
easily quantified, making trading risk becomes manageable.

This work is still in progress and, in the long run, aims
to deliver a customised reputation model where reputation
changes dynamically as a function of the history of past
trades in the marketplace. Our challenge is then to show
that (i) the marketplace encourages honest behaviour, i.e.,
participants have an incentive to increase their reputation
over time, and (ii) it is economically viable, vis a vis the
trading costs.

Also, we work - as an future work and work in progress
- on the marketplace scalability with the growth in par-
ticipants number and the transaction confirmation time in
the blockchain network, and how well-designed reputation
model guarantee less time for higher reputation participants.
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