
D-PROV: Extending the PROV Provenance Model with Workflow Structure

Paolo Missier
Newcastle University, UK

Saumen Dey
UC Davis, CA, USA

Khalid Belhajjame
University of Manchester, UK

Vı́ctor Cuevas-Vicenttı́n
UC Davis, CA, USA

Bertram Ludäscher
UC Davis, CA, USA

Abstract
This paper presents an extension to the W3C PROV1

provenance model, aimed at representing process struc-
ture. Although the modelling of process structure is
out of the scope of the PROV specification, it is bene-
ficial when capturing and analyzing the provenance of
data that is produced by programs or other formally en-
coded processes. In the paper, we motivate the need
for such and extended model in the context of an on-
going large data federation and preservation project,
DataONE2, where provenance traces of scientific work-
flow runs are captured and stored alongside the data
products. We introduce new provenance relations for
modelling process structure along with their usage pat-
terns, and present sample queries that demonstrate their
benefit.

1 Introduction

The Provenance Interchange Working Group has re-
cently released PROV [17], a W3C recommendation.
PROV was developed with the aim of promoting inter-
operable interchange of provenance information in het-
erogeneous environments such as the Web. It is defined
using an abstract relational model as well as an OWL on-
tology, with multiple serializations, including RDF and
XML. PROV is generic and domain-independent, as it
does not cater for the specific requirements of specific
systems or domain applications. Rather, it provides ex-
tension points through which such systems and applica-
tions can extend PROV for their purposes. In this pa-
per we are concerned with the modelling of provenance
traces generated by the execution of scientific workflows.
We begin by motivating the need, in this setting, to ex-
tend and complement the trace of a workflow execu-
tion with a representation of the workflow itself. We

1http://www.w3.org/TR/prov-dm/
2http://www.dataone.org

note that PROV alone does not accommodate such addi-
tional modelling features, present D-PROV, an extension
to PROV, and show that it fulfills these needs.

This work is set in the context of DataONE (Data Ob-
servation Network for Earth – the ’D’ in D-PROV), a
large NSF data federation and preservation project which
provides a large scale data infrastructure where member
nodes host data packages. These are bundles of data arti-
facts of different kinds, annotated using various types of
metadata, which scientists can upload, search through,
and reuse. Scientists who use DataONE can use data
packages as a way to combine datasets, specifications of
the experimental methods used to produce them, specif-
ically workflows, along with provenance traces obtained
as a result of the workflow executions. Scientists can
then discover datasets of interest by exploiting the rich
and structured metadata offered by provenance traces.

To motivate the need for extended provenance traces
in this setting, consider the workflow of Figure 1, imple-
mented using the VisTrails3 workflow system [19] for
re-gridding climate datasets [18]. The workflow pro-
ceeds as follows. First, the ParseData module reads a
benchmark data file, and parses it into a form that can
be consumed by VisTrails modules. A benchmark data
file contains monthly data for 12 months. The data pro-
duced by the ParseData module is filtered to extract
North American climate data using the Subset module.
The Regrid module then modifies the resolution of data
from 0.5-degrees to 1-degree, and the ConvertUnits mod-
ule converts the unit of data values from gC/m2/day to
kgC/m2/month4. The obtained data is visualized using
the VisualizeData module, and stored locally using the
SaveData2Local module.

We are interested in answering queries on a collec-
tion of provenance traces corresponding to executions of
workflows such as the one above. Some of the queries are

3http://www.vistrails.org
4Carbon concentration in grams per square meter per day to carbon

concentration in kilograms per square meter per month.

http://www.w3.org/TR/prov-dm/
http://www.dataone.org
http://www.vistrails.org

Figure 1: VisTrails workflow for re-gridding climate data

not concerned with workflow structure and thus they can
be answered using PROV alone, for instance “track the
lineage of the final outputs of the workflow” (Q1). Oth-
ers, however, require the workflow structure, e.g., “list
the parameter values that were used for a specific task t
in the workflow” (Q2), and “check that the provenance
traces conform to the structure of the workflow” (Q3).

D-PROV, the PROV extension sketched in the rest of
the paper, provides scientists with a vocabulary and rela-
tional structure that makes it possible to answer queries
like Q2 and Q3. A Datalog specification of these queries
over D-PROV traces is provided in Section 4.

We distinguish between three levels of workflow
provenance information, using nomenclature introduced
by Feire et al. [5] and Lim et al. [11]:

1. Retrospective Provenance (r-prov): refers to the
provenance of the data produced by one run of a
process (workflow) P ;

2. Prospective Provenance (p-prov): refers to the rep-
resentation of the process/workflow P itself;

3. Provenance of the Process: refers to an account of
the evolution of P across versions.

D-PROV is designed to capture retrospective and
prospective provenance information, that is (1) and (2).
Part (3) is beyond the scope of this short paper. We
present D-PROV in Section 3. Furthermore, we discuss
several issues that arise when collecting both prospec-
tive and retrospective provenance in Section 4, namely (i)
the conformance of retrospective provenance of a given
workflow run with its corresponding prospective prove-
nance (i.e., process definition), (ii) the similarity between
the retrospective provenance of multiple workflow runs,
and show how they can be answered using D-PROV.

2 Related work

The representation of workflow structure used in D-
PROV is inspired primarily by dataflow models com-
monly found in scientific workflow systems such as Ke-
pler, Taverna, VisTrails, and others [12, 15, 19, 3], and
builds on the earlier experience of the Janus model of
provenance [14]. The latter defines an ontology to model
both retrospective and prospective provenance for the
Taverna workflow system [8]. In a related earlier effort,
Garijo and Gil [6] used the Open Provenance Model [16]
to represent at the same time r-prov as well as p-prov
statements, in the context of Linked Open Data. As
this is done without introducing any extended vocabu-
lary, however, the result is an overloading of some of the
OPM terms (for instance “Process” is used both to rep-
resent execution and process templates). We note that
an earlier version of D-PROV, described using UML and
without making a connection with PROV, appears in [2].

The work by the Wf4Ever team5 around research ob-
jects [1] is perhaps the closest to ours. In essence, a
research object is a bundle that aggregates a number of
resources that are necessary for understanding, reusing
and reproducing the results of research investigations. In
particular, the research object model provides two vocab-
ularies, wfdesc and wfprov, for specifying the prospec-
tive and retrospective provenance of workflows, respec-
tively. wfdesc and wfprov share some similarities with
D-PROV, e.g., they extend the W3C PROV model. How-
ever, they are fundamentally different from D-PROV for
the two following reasons: (i) D-PROV has been de-
signed with the objective to act as a global model that
caters for most of the constructs in major workflow mod-
els. Conversely, the focus in wfdesc and wfprov has been
on capturing the minimal constructs that are common to
data-driven workflows. For example, D-PROV supports
both channel- and port-based workflows, whereas wfdesc
and wfprov are confined to port-based workflows as it
is the model adopted by the majority of scientific work-
flow systems. (ii) D-PROV targets workflows that are
executable, i.e., workflows in which the steps are imple-
mented (at least partly) by software components. wfdesc
and wfprov, on the other hand, are used to model exe-
cutable workflows as well as abstract workflows, which
can be used, for instance, to document the method fol-
lowed by scientists in their investigations.

3 PROV and D-PROV

A dataflow like the one in Figure 1 can be viewed as a di-
rected (sometimes acyclic) graph whose nodes are tasks,
i.e., units of computation, and whose arcs are interpreted

5http://www.wf4ever-project.org

2

http://www.wf4ever-project.org

wf

T1
op1

op2
T2

ip1

ip2

(a)

T1

T2

prov:type= "prov:plan"
prov:type= "D1:task"

op1

ip1

prov:type= "D1:port"

prov:type= "prov:plan"
prov:type= "D1:task"

wfprov:type=
 "D1:workflow"

isTaskOf

isTaskOf

hasOutputPort

dataLink

hasInputPort

(b)

Figure 2: Port-oriented workflow pattern and corre-
sponding D-PROV representation

as data dependencies amongst tasks. Workflow models
that follow this fundamental dataflow structure may dif-
fer in their definition of data dependencies, and on the
specific dataflow semantics. In systems like Kepler, Tav-
erna, VisTrails, and e-Science Central [7] amongst oth-
ers, each task has a set of input and a set of output ports
which define a task’s interface. A data dependency arc
in the dataflow graph connects one output port op of task
T1 to one input port ip of task T2 (Fig. 2(a)).6 Thus, in a
programming sense tasks play the role of functions, and
ports are formal input/output arguments. Tasks consume
values as actual parameters on their input ports, and pro-
duce output values bound to the output ports. The arcs
denote how these values flow from one task to another
in the network. In these systems, provenance is typically
recorded by observing the invocation of tasks, as well as
the data values that appear on their ports. Tasks are mod-
elled as PROV activities, while data values are entities.

In scientific workflow systems that are based on Kahn
process networks [9, 10], notably Kepler, we can al-
ternatively think of workflows as bipartite graphs in
which tasks (called actors) communicate with each other
through (unidirectional FIFO) channels. Thus, directed
edges are either from actor to channel (output edge), or

6This core model may include additional elements, such as a vari-
ety of control dependencies amongst tasks (for instance, T2 may only
start after T1 completes) and structural nesting of worfklow structure,
whereby a task may itself be a workflow.

wf

T1 ch1 T2

ch2

(a)

(b)

ch1

T1

T2
isSinkOf

isSourceOf

wf
prov:type= "D1:workflow",

prov:type= "prov:plan"

isTaskOf

isTaskOf

prov:type= "prov:plan"
prov:type= "D1:task"

prov:type= "prov:plan"
prov:type= "D1:task"

ch2
isSourceOf

prov:type= "D1:channel"

Figure 3: Channel-oriented workflow pattern and corre-
sponding D-PROV representation

from channel to actor (input edge). This is illustrated in
Fig. 3(a). In this model, the observable trace events in-
clude actor invocations, and data read-from or written-to
a channel. In the following, we use both these model
variations as reference.

Regarding r-prov, PROV offers core relations to repre-
sent that an entity (a data item) was generated by or was
used by an activity (a task instance, or invocation). Rela-
tions are also available to express additional provenance
semantics, namely: wasInformedBy, to denote that an
activity depended on another through an implicit data
production/usage relationship; wasDerivedFrom, to de-
note that an entity was derived from another through an
implicit activity; wasStartedBy and wasEndedBy, to
indicate that an activity was started (resp., ended) by
another, possibly by means of a trigger. None of these
relations, however, capture the graph structure of the
dataflow itself, i.e., the schema information, as this is out
of the scope of PROV. For that, the one available con-
cept is that of a plan, a generic reference to any entity
that was used by some agent whilst carrying out an ac-
tivity. For instance, a plan can be a software program,
a cooking recipe, on anything else that describes how an
activity was carried out. A plan can be used as part of
ternary relation:

wasAssociatedWith(a, ag, plan)

where a is an activity, and ag is an optional reference

3

Entity types: D1:workflow, D1:port, D1:task, D1:channel
p-prov Relations:
taskOf(t, wf) task t is part of workflow wf
hasOutPort(t,p) task t has output port p
hasInPort(t,p) task t has input port p
dataLink(p1, p2) a data link connects port p1 to p2
sourceOf(t,c) task t is the source of channel c
sinkOf(t,c) task t is the sink of channel c
r-prov Relations:
onInPort(d, p, tInv) data d was observed on input port p
onOutPort(d, p, tInv) data d was observed on output port p
wasWrittenTo(d,c,tInv) data entity d was written to channel c
wasReadFrom(d,c,tInv) data entity d was read from channel c

Table 1: D-PROV extensions for workflow-specific p-
provenance and r-provenance

d T2Inv
usedT1Inv

wasGeneratedBy

p-prov

wasAssociatedWith

T1

wasAssociatedWith

T2prov:type= "prov:plan"

r-prov

rectangles: activities
ovals: entities
grey: p-prov
blue: r-prov

Figure 4: Minimal representation of retrospective provenance gener-
ated from program execution, expressed using the core PROV vocabu-
lary

to an agent who has been responsible for carrying out a.
PROV also provides the built-in entity type prov:plan
to qualify entities that can play the role of plans in such
relations.

Using these built-in facilities, one can only go as far as
modelling tasks as plans and using the association rela-
tion to link tasks to their invocation. The dataflow frag-
ments of Fig. 2(a) and Fig. 3(a) and their corresponding
run can both be expressed as follows:

% p−prov: tasks , but no data or activities
entity (t1 , [prov: type = ’prov:plan’])
entity (t2 , [prov: type = ’prov:plan’])
% r−prov − task invocation and data
activity (t1inv)
activity (t2inv)
entity (d) % data flowing between two task instances
wasGeneratedBy(d, t1inv)
used(t2inv , d)
%% connecting r−prov and p−prov
wasAssociatedWith(t1inv , , t1) % t1 is the plan for t1inv
wasAssociatedWith(t2inv , , t2) % t1 is the plan for t2inv

This of course assumes that data generation and usage
relations correctly represent the semantics of data ma-
nipulation by task invocations. The corresponding graph
is shown in Fig. 4.

D-PROV extends this baseline provenance pattern.

The extensions, listed in Table 1, consist of new entity
types that qualify PROV entities, as well as new rela-
tions. Note that we use the new DataONE D1 names-
pace to identify the new vocabulary. These extensions
accommodate both port-oriented and channel-oriented
workflow models, with distinct usage patterns for each
of them. The following statements capture p-prov and
r-prov for port-oriented workflows.

% port−oriented workflow provenance
bundle wfDesc % p−prov model
entity (t1 , [prov: type = ’D1:task’, prov:type = ’prov:plan’])
entity (t2 , [prov: type = ’D1:task’, prov:type = ’prov:plan’])
entity (op1, [prov: type = ’D1:port’,

D1:datatype=’D1:data:climate’])
entity (ip1 , [prov: type = ’D1:port’,

D1:datatype=’D1:data:climate’])
entity (wf, [prov: type = ’D1:workflow’,

prov: type = ’prov:plan’])

hasOutPort(t1 , op1)
hasInPort (t2 , ip1)
dataLink(op1, ip1)
isTaskOf(wf, t1)
isTaskOf(wf, t2)
endbundle

bundle wfRunTrace %% r−prov model
activity (wfRun)
activity (t1inv)
activity (t2inv)

wasStartedBy(t1Inv , wfRun)
wasStartedBy(t2Inv , wfRun)
entity (d)
onOutPort(d, op1, t1Inv)
onInPort (d, ip1 , t2Inv)

%% connecting r−prov and p−prov
wasAssociatedWith(wfRun, , wf) % wf is the plan for wfRun
wasAssociatedWith(t1inv , , t1) % t1 is the plan for t1inv
wasAssociatedWith(t2inv , , t2) % t1 is the plan for t2inv
endbundle

The p-prov portion of these statements is depicted in
the graph of Fig. 2(b), while the p-prov and r-prov state-
ments are combined in the graph of Fig. 5. PROV-aware
systems that are not D-PROV aware can use the corre-
sponding, less informative plain PROV statements in-
volving generation/usage relations, obtained by means of
two simple inference rules for port elimination, written
in Datalog style:

wasGeneratedBy(D, tInv) :− onOutPort(D, , tInv).
used(tInv , D) :− onInPort (D, , tInv)

Regarding channel-oriented workflows, the following
statements capture the corresponding provenance frag-
ment. The p-prov portion appears in Fig. 3(b), while the
combined p-prov, r-prov statements are in Fig. 6:

% channel−oriented workflow provenance
bundle wfDesc % p−prov model
entity (t1 , [prov: type = ’D1:task’, prov:type = ’prov:plan’])
entity (t2 , [prov: type = ’D1:task’, prov:type = ’prov:plan’])

4

onOutPort

T1Inv

d

onInPort

T2Inv

wasAssociatedWith

T1

wasAssociatedWith

T2

op1

ip1

wf

isTaskOf

isTaskOf

hasInputPort

hasOutputPort

wfInv
wasAssociatedWith

wasStartedBy

wasStartedBy

dataLink

boldface relations: D-PROV extensions
rectangles: activities
ovals: entities
grey: p-prov
blue: r-prov

Figure 5: Graph representation of p- and r-provenance
for port-oriented workflow

entity (ch, [prov: type = "D1:channel",
D1:datatype=’D1:data:climate’])

entity (wf, [prov: type = ’D1:workflow’,
prov: type = ’prov:plan’])

sourceOf(t1 ,ch)
sinkOf(t2 ,ch)
isTaskOf(t1 , wf)
isTaskOf(t2 , wf)
endbundle

bundle wfRunTrace %% r−prov model
activity (wfRun)
activity (t1inv)
activity (t2inv)
entity (d)
wasWrittenTo(d,ch, t1Inv)
wasReadFrom(d,ch, t2Inv)

%% connecting r−prov and p−prov
wasAssociatedWith(wfRun, , wf) % wf is the plan for wfRun
wasAssociatedWith(t1inv , , t1) % t1 is the plan for t1inv
wasAssociatedWith(t2inv , , t2) % t1 is the plan for t2inv
endbundle

Again, one can remove the extensions from r-prov by
means of simple rules:

wasGeneratedBy(d, tInv) :− wasWrittenTo(d,ch, t1Inv).
used(tInv , D) :− wasReadFrom(d,ch, t2Inv)

Bundles and the provenance traces of sub-workflows.
In the listings above, note the use of bundles as a way
to group provenance statements. Bundles are introduced
in the PROV specifications to support expressing prove-
nance of provenance, that is, for expressing the prove-

wasWrittenTo

wasReadFrom

ch1

T1

T2

isSinkOf

isSourceOf

wf

isTaskOf

isTaskOf

d

T1Inv

wasAssociatedWith

T2Inv

wasAssociatedWith

wfInv

wasStartedBy

wasStartedBy

wasAssociatedWith

Figure 6: Graph representation of p- and r-provenance
for channel-oriented workflow

nance of a set of provenance statements. In this set-
ting, we use them instead to group together provenance
statements that pertain to p-prov, or to the r-prov for a
single workflow run, as in bundle wfRunTrace above.
Furthermore, in PROV a named bundle of provenance
statements is itself an entity, of type prov:bundle. This
makes it possible to establish an explicit association be-
tween a workflow execution and the provenance it gen-
erates, by stating that a workflow run generated an entire
provenance trace, as follows:

entity (wfRunTrace, [prov: type=’prov:Bundle’])
wasGeneratedBy(wfRunTrace, wfRun,)

We leverage this bundle naming and referencing fa-
cility to model the provenance of hierarchically struc-
tured workflows, in a recursive fashion. Suppose for in-
stance that task t2 is itself a workflow, i.e., it is of type
D1:workflow as well as D1:task:

entity (t2 , [prov: type = "D1:task", prov:type = "D1:workflow"])

Then, one execution of t2inv, an invocation of t2,
may generate a provenance trace within a bundle, say
t2invTrace. Such a bundle may now be referenced as
part of a larger bundle that represents the entire workflow
execution, i.e.:

bundle wfRunTrace
activity (wfRun)
activity (t1inv)
activity (t2inv)
...
entity (t2invTrace , [prov: type=’prov:Bundle’])
wasGeneratedBy(t2invTrace, t2inv ,)
...

endbundle

5

This shows how one can at the same time repre-
sent structural containment within a workflow, i.e.,
by using prov:type = "D1:task", prov:type =
"D1:workflow", and associate whole traces to each sub-
workflow.

4 Query Answering

Having introduced the necessary relations, we now de-
scribe the answers of the queries presented in Section 1.
Following [4], we use Datalog to express provenance
queries (the PROV-N syntax used in this paper has been
shown [13] to map easily to Datalog).

Query 1: The ConvertUnits process generated the cli-
mate data in kgC/m2/month, resulting in the following
output:

entity (op, [prov: typ=’D1:port’,
D1:datatype=’D1:data:climate:kgC/m2/month’]).

As this entity relation has an optional list of attributes,
we normalize this entity relation using Datalog as fol-
lows, as shown in [13]:

entity (EntityID , AttrListID).
attr (AttrListID , AttrName, AttrValue).

In a port-oriented workflow, the lineage of this final
output can be obtained using the following query, which
predicates on the values of the attributes associated to the
entity of interest:

dep(D,I) :− onInPort (D, , I).
dep(I ,D) :− onOutPort(D, , I).
lineage (X,Y) :−

dep(X,Y), onOutPort(Y,P,), entity (P,A),
attr (A,’D1:datatype’,’D1:data:climate:kgC/m2/month’).

lineage (X,Y) :−
dep(X,Y), lineage (Y,Z).

The lineage relation produces a subgraph in which the
final data product is dependent on all nodes except the
leaves.

Query 2: The set of parameter values that were used
for a specific task in the workflow, is defined by the fol-
lowing Datalog program:

parameter(T,D) :−
onInPort (D,P,I), entity (P,A),
attr (A,’D1:input:type’,’parameter’),
wasAssociatedWith(I , ,T).

Here, the parameter relation associates data identifiers
to tasks. Data values are obtained simply by dereferenc-
ing these identifiers.

Query 3 is about verifying that the structure of a trace
conforms to the structure of its specification. This in-
volves two steps: firstly, to add rules that entail p-prov
relations from r-prov relations, and secondly, to check
that those new p-prov relations are consistent with any

constraints defined on the workflow structure. The fol-
lowing is an example of the first step:

t dataLink (OP, IP) :− onOutPort(D,OP,I1), onInPort (D,IP,I2),
wasAssociatedWith(I1, ,T1), wasAssociatedWith(I2, ,T2),
isTaskOf(T1, Wf), isTaskOf(T2, Wf).

The rule states that if the same data item D is observed
on an output and on an input port in a context where the
corresponding tasks are part of the same workflow, then
there must be a data link between the two ports. Using an
open world assumption, a p-prov specification in which
such data link is missing can be considered incomplete,
and thus the new relation can be added to the specifica-
tion, whilst in a closed world, one would conclude that
the trace does not conform to the specification.

Similarly, one may entail a dependency amongst tasks,
from r-prov observations rule (1), below, and check those
against statically determined dependencies (rule (2)):

% (1)
t taskDep (T2,T1) :− onOutPort(D,P1,I1), onInPort (D,P2,I2),

wasAssociatedWith(I1, ,T1), wasAssociatedWith(I2, ,T2).
% (2)
s taskDep(T2,T1) :− hasOutPort(T1,P1), hasInPort (T2,P2),

dataLink(P1,P2).

5 Conclusions

We have presented D-PROV, an extension to the W3C
PROV specification, which accounts for structural fea-
tures of typical dataflow models, namely those where
inter-task communication is either port-based or channel-
based. Following [5], we have referred to them as
prospective provenance. D-PROV has been defined in
the context of the DataONE Provenance Working Group.
The intent of D-PROV is to enable queries that blend
together prospective and retrospective provenance. We
have motivated such need and shown some of the bene-
fits of D-PROV, by means of example queries, which we
situated in the context of scientific workflows defined by
DataONE scientists.

Acknowledgments. Work supported in part by NSF-
OCI DataONE #0830944 (for Vı́ctor Cuevas-Vicenttı́n)
and made possible by the voluntary work of members
of the DataONE Provenance Working Group. Special
thanks to Yaxing Wei from ORNL for the design and im-
plementation of the VisTrails climate workflows. Khalid
Belhajjame was supported by the myGrid platform grant.

References
[1] BELHAJJAME, K., CORCHO, O., GARIJO, D., ZHAO, J.,

MISSIER, P., NEWMAN, D., PALMA, R., BECHHOFER, S.,
GARCÍA CUESTA, E., GÓMEZ-PÉREZ, J. M., KLYNE, G.,
PAGE, K., ROOS, M., RUIZ, J. E., SOILAND-REYES, S.,

6

VERDES-MONTENEGRO, L., DE ROURE, D., AND GOBLE,
C. A. Workflow-Centric Research Objects: First Class Citi-
zens in Scholarly Discourse. In SePublica2012 workshop at
ESWC2012 (2012).

[2] CUEVAS, V., DEY, S., AND LUDÄSCHER, B. Modeling
and Querying Scientific Workflow Provenance in the D-OPM.
In Workshop on Workflows in Support of Large-Scale Science
(WORKS) (2012).

[3] DEELMAN, E., GANNON, D., SHIELDS, M., AND TAYLOR, I.
Workflows and e-Science: An overview of workflow system fea-
tures and capabilities. Future Generation Computer Systems 25,
5 (2009), 528–540.

[4] DEY, S., KÖHLER, S., BOWERS, S., AND LUDÄSCHER, B. Dat-
alog as a lingua franca for provenance querying and reasoning.
In Workshop on the Theory and Practice of Provenance (TaPP)
(2012).

[5] FREIRE, J., KOOP, D., SANTOS, E., AND SILVA, C. T. Prove-
nance for Computational Tasks: A Survey. Computing in Science
and Engineering 10, 3 (2008), 11–21.

[6] GARIJO, D., AND GIL, Y. A New Approach for Publishing
Workflows: Abstractions, Standards, and Linked Data. In Pro-
ceedings of the Sixth Workshop on Workflows in Support of Large-
Scale Science (WORKS’11), held in conjunction with SC 2011
(Seattle, Washington, 2011).

[7] HIDEN, H., WOODMAN, S., WATSON, P., AND CALA, J. De-
veloping Cloud Applications using the e-Science Central Plat-
form. Proceedings of Royal Society in press (2012).

[8] HULL WOLSTENCROFT, K., STEVENS, R., GOBLE, C.,
POCOCK, M.R., LI, P., AND OINN, T., D. Taverna: a tool
for building and running workflows of services. Nucleic Acids
Research, 34(Web Server issue) (2006), W729—-W732.

[9] KAHN, G. The semantics of a simple language for parallel pro-
gramming. In Information Processing (Stockholm, Sweden, Aug
1974), J. L. Rosenfeld, Ed., North Holland, Amsterdam, pp. 471–
475.

[10] LEE, E. A., AND PARKS, T. M. Dataflow process networks.
Proceedings of the IEEE 83, 5 (1995), 773–801.

[11] LIM, C., LU, S., CHEBOTKO, A., AND FOTOUHI, F. Prospec-
tive and Retrospective Provenance Collection in Scientific Work-
flow Environments. In Services Computing (SCC), 2010 IEEE
International Conference on (July 2010), pp. 449–456.

[12] LUDÄSCHER, B., ALTINTAS, I., BERKLEY, C., HIGGINS, D.,
JAEGER, E., JONES, M., LEE, E. A., TAO, J., AND ZHAO, Y.
Scientific workflow management and the kepler system. Concur-
rency and Computation: Practice and Experience 18, 10 (2006),
1039–1065.

[13] MISSIER, P., AND BELHAJJAME, K. A PROV encoding for
provenance analysis using deductive rules. In Procs. IPAW’12
(Santa Barbara, California, 2012), Springer-Verlag, Lecture
Notes in Computer Science.

[14] MISSIER, P., SAHOO, S. S., ZHAO, J., SHETH, A., AND
GOBLE, C. Janus: from Workflows to Semantic Provenance and
Linked Open Data. In Procs. IPAW 2010 (Troy, NY, 2010).

[15] MISSIER, P., SOILAND-REYES, S., OWEN, S., TAN, W., NE-
NADIC, A., DUNLOP, I., WILLIAMS, A., OINN, T., AND
GOBLE, C. Taverna, reloaded. In Procs. SSDBM 2010 (Hei-
delberg, Germany, 2010), M. Gertz, T. Hey, and B. Ludäscher,
Eds.

[16] MOREAU, L., CLIFFORD, B., FREIRE, J., FUTRELLE, J., GIL,
Y., GROTH, P., KWASNIKOWSKA, N., MILES, S., MISSIER,
P., MYERS, J., PLALE, B., SIMMHAN, Y., STEPHAN, E., AND
VAN DEN BUSSCHE, J. The Open Provenance Model — Core
Specification (v1.1). Future Generation Computer Systems 7, 21
(2011), 743–756.

[17] MOREAU, L., MISSIER, P., BELHAJJAME, K., B’FAR, R., CH-
ENEY, J., COPPENS, S., CRESSWELL, S., GIL, Y., GROTH, P.,
KLYNE, G., LEBO, T., MCCUSKER, J., MILES, S., MYERS,
J., SAHOO, S., AND TILMES, C. PROV-DM: The PROV Data
Model. Tech. rep., World Wide Web Consortium, 2012.

[18] SANTOS, E., POCO, J., WEI, Y., LIU, S., COOK, R.,
WILLIAMS, D., AND SILVA, C. T. UV-CDAT: Analyzing Cli-
mate Data sets from a Users Perspective. Computing in Science
and Engineering 15 (2013), 94–103.

[19] SCHEIDEGGER, C. E., VO, H. T., KOOP, D., FREIRE, J., AND
SILVA, C. T. Querying and re-using workflows with vistrails. In
SIGMOD (2008), ACM, pp. 1251–1254.

7

