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Abstract

Dataflow-style workflows offer a simple, high-level programming model for flexible prototyping of scientific applications as

an attractive alternative to low-level scripting. At the same time, workflow management systems (WFMS) may support

data parallelism over big datasets by providing scalable, distributed deployment and execution of the workflow over a

cloud infrastructure. In theory, the combination of these properties makes workflows a natural choice for implementing

Big Data processing pipelines, common for instance in bioinformatics. In practice, however, correct workflow design for

parallel Big Data problems can be complex and very time-consuming.

In this paper we present our experience in porting a genomics data processing pipeline from an existing scripted

implementation deployed on a closed HPC cluster, to a workflow-based design deployed on the Microsoft Azure public

cloud. We draw two contrasting and general conclusions from this project. On the positive side, we show that our

solution based on the e-Science Central WFMS and deployed in the cloud clearly outperforms the original HPC-based

implementation achieving up to 2.3x speed-up. However, in order to deliver such performance we describe the importance

of optimising the workflow deployment model to best suit the characteristics of the cloud computing infrastructure. The

main reason for the performance gains was the availability of fast, node-local SSD disks delivered by D-series Azure VMs

combined with the implicit use of local disk resources by e-Science Central workflow engines. These conclusions suggest

that, on parallel Big Data problems, it is important to couple understanding of the cloud computing architecture and

its software stack with simplicity of design, and that further efforts in automating parallelisation of complex pipelines

are required.
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1. Introduction

In this paper we report on our experience in porting

a complex genome processing pipeline, from a home-made

scripted implementation deployed on a closed department

HPC cluster, to a workflow-based parallel implementation
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deployed on a public cloud. Genomics is only one of several

areas of science where these porting exercises are becoming

commonplace. The growing demand for resource capacity

for Big Data processing combined with its simultaneous

decrease in cost make moving to the cloud increasingly ap-

pealing. Therefore, we believe that the experience gained

from such an exercise has value beyond the particular case

study. Indeed, while the idea of “sequencing as a ser-

vice” is gaining ground, pushing the NGS data processing

pipelines closer to the sequencing facilities, it is important
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for many labs and “analysis-as-a-service” outfits (e.g. the

EBI in the UK) to retain control over the structure and

composition of their pipelines. Engineers and practitioners

who have responsibility for maintenance and evolution of

such home-grown implementations will specifically benefit

from the outcomes of this research.

Our results show that a cloud-based deployment of

a complex Big Data processing pipeline, when properly

tuned for a specific workflow middleware and an underly-

ing cloud infrastructure, provides better scalability prop-

erties than an equivalent HPC-based deployment, at lower

cost and with improved performance. Here we report in

detail on performance results and scalability. Further-

more, we also reflect realistically on the complexities of

undertaking such a project, which we balance against the

expected benefits of the configuration, namely scalability,

understandability, evolvability, and cost efficiency.

Regarding the cost estimation, in particular, we note

that the ability to monetise the resource utilisation associ-

ated with Big Data processing is becoming very important

in settings such as health care. The cost of processing a

single patient’s sample is one of the dominating factors

in the future large-scale deployments of genetic testing

based on the entire genome (Whole-Genome Sequencing;

WGS) and potentially at population scale. In particular,

the creation of cloud commons has recently and authori-

tatively been advocated as a way to address the increasing

requirements for computation resources that follow from

the widespread adoption of genomics techniques for diag-

nostic purposes [1].

1.1. Background

The cost of sequencing human genomes continues to

decrease [2]. With the number of DNA base pairs se-

quenced per $ unit reportedly doubling every five months

[3], genetic testing is poised to become a routine diagnostic

technique that can be deployed on a large scale [4]. At the

same time, allocating the computation resources needed to

process the data is also becoming increasingly affordable.

In the UK, the cost of sequencing a single patient sample

is currently below $1.5K and decreasing. Large initiatives

like the 100,000 Genome Project in the UK1 promise to

deliver genetic testing at population scale within the next

few years.

Genetic testing based on Next-Generation Sequencing

(NGS) aims at enumerating the mutations that are present

in a human patient’s genome2 and identifying those muta-

tions that are known, from research literature, to be dele-

terious. This process involves three distinct phases: DNA

sequencing which produces raw genome data; variant call-

ing, i.e. the identification of the variants within the genome

(mutations); and analysis of these variants. The process-

ing pipeline described in this paper is concerned with the

second phase, namely variant calling.

Ideally, DNA sequencing includes the entire genome

(WGS). While WGS technology is rapidly coming on the

market at affordable prices, in the last few years most re-

search labs have adopted Whole-Exome Sequencing (WES)

as interim technology. WES is limited to the exome infor-

mation, that is to the regions of DNA that are responsible

for protein expression by way of RNA translation. These

are the priority areas of the genome, where mutations can

be more easily identified as deleterious, as they have a

higher chance of directly compromising protein synthesis.

WES-based diagnosis provides a good trade-off between

diagnostic power and the cost of data processing, as ex-

omes only account for about 1.5% of the entire genome

and can, therefore, be processed using in-house computa-

tional resources.

1.2. Requirements for NGS data processing

Genetic research facilities around the world have adopted

in-house solutions to implementing WES data processing

1http://www.genomicsengland.co.uk/
2And, increasingly, in mitochondrial DNA as well as non-human

genomes.
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pipelines for variant calling, e.g. [5, 6, 7, 8]. A pipeline

generally consists of a composition of configurable library

packages and tools that implement genome analysis algo-

rithms, and which are freely available to the community.

Many of these, including GATK3, Picard4, those found

in the Bioconductor repository5 and others, have been re-

cently surveyed [9]. These pipelines are deployed either

on HPC clusters, or on a cloud infrastructure. Yet, both

Next-Generation Sequencing and analysis of NGS data are

still challenging [10].

A first requirement in the data processing architecture

for NGS is scalability. As NGS technology progresses and

NGS-based genetic diagnostics moves into population-wide

deployment, e.g. with publicly-funded initiatives such as

the 100K Genome Project in the UK, genome data pro-

cessing must be able to scale simultaneously in the size of

the input datasets (from about 15 GB of compressed WES

data for one sample to 1 TB for WGS), and in the number

of genomes processed over time.

Flexibility in pipeline design and evolution is a

second requirement. Ongoing progress in the third party,

community tools that compose the pipelines promises in-

creases in variant detection coverage and accuracy, which

may translate into improved diagnostic power. It ought to

be relatively simple for non-expert programmers to track

this evolution, by making incremental changes to an exist-

ing pipeline solution.

Finally, with broad clinical deployment of these tech-

niques in mind, it is important to provide traceability

and, therefore, accountability for the outcomes of a di-

agnostic process, from the raw data to variant calling, to

selection of the variants implicated in a disease.

1.3. The Cloud-e-Genome project

The Cloud-e-Genome project, started in late 2013, aims

to address the three requirements above. For the NGS

3https://www.broadinstitute.org/gatk/
4http://broadinstitute.github.io/picard/
5http://www.bioconductor.org/

data processing pipeline design it employs a high-level,

workflow programming model based on the e-Science Cen-

tral scientific workflow manager [11]. e-Science Central

workflows can be deployed on a cluster of cloud nodes, and

can be designed to exploit the parallelism that is implicit in

the data processing logic, leading to efficient usage of cloud

resources. The workflow engine, which orchestrates the ex-

ecution of the pipeline steps, also captures the provenance

of the execution, making it possible to trace its details post

hoc and thus providing both accountability of the variant

selection process, and its reproducibility.

To demonstrate our solution, we have used the pipeline

implementation currently in use at the Institute of Ge-

netic Medicine (IGM) at Newcastle University as a start-

ing point. This version of the pipeline is implemented as

a complex collection of shell scripts, which invoke third

party tools as described in more detail below, and coor-

dinates their execution on the departmental HPC cluster.

Such a solution does not meet any of the three require-

ments above: it cannot scale beyond the limits of the lo-

cal cluster, it requires expert knowledge of the scripts for

maintenance and evolution, and does not provide prove-

nance collection for post hoc accountability.

One notable example of an integrated solution that at-

tempts to fulfill the same goals as ours is the Globus Ge-

nomics6 system [12] that integrates the well-known Galaxy7

workflow model for genetics applications with the Globus

toolkit. Globus Genomics aims at improving Galaxy’s na-

tive data management capabilities, and allowing workflows

to scale across cloud resources. We discuss differences be-

tween this system and our architecture in Sec. 5 (Related

Work).

6https://www.globus.org/genomics
7galaxyproject.org

3

https://www.broadinstitute.org/gatk/
http://broadinstitute.github.io/picard/
http://www.bioconductor.org/
https://www.globus.org/genomics
galaxyproject.org


1.4. Contributions and relevance to this Journal special

issue

This paper extends our preliminary workshop publica-

tion [13] which reported on initial progress on the Cloud-

e-Genome project, a collaboration between the School of

Computing Science and Institute of Genetic Medicine at

Newcastle University. This extended version offers the fol-

lowing new contributions:

• A detailed description of the porting of the original

genomics pipeline implementation to the e-Science

Central system. We discuss migration challenges

(Sec. 2) and then describe three designs (Sec. 3)

which we call synchronous, asynchronous and chained.

They provide different options for exploiting data

parallelism. Our main result here, somewhat surpris-

ingly, is that the simplest amongst the approaches

to parallel processing we have experimented with

showed better performance than the more sophisti-

cated ones;

• A full evaluation of the implementation on the Mi-

crosoft Azure cloud infrastructure, where we present

performance results that demonstrate pipeline scal-

ability as we increase the number of input samples

and processing cores (Sec. 4). Our results achieve

up to 2.3x speed-up over the scripted pipeline run-

ning on our HPC cluster, when the latter is allocated

exclusively to our workflow (i.e. with no other jobs

contending for resources);

• A thorough cost analysis that illustrates the trade-

off between response time and cost (£/exome) with

changing number of input samples and processing

cores (Sec. 4.4). At current commercial rates for our

Azure-based configuration, the cost per 150 Gbases

whole-exome sample is around £5 (about $8).

These contributions directly address some of the specific

topics that informed this special issue, as our work is set

in the context of scientific workflows for Big Data in the

Cloud, and in this setting, we propose innovative meth-

ods of processing Big Data in the Cloud and demonstrate

performance and low costs.

1.5. The e-Science Central workflow manager

e-Science Central (e-SC) is a workflow manager de-

signed for scientific data management, analysis and collab-

oration. It has been used in a number of scientific projects

such as spectral data visualisation, medical data capture

and analysis, and chemical property prediction. Yet its

prior use in bioinformatics was to run only simple NGS

analyses in the Cloud4Science project [14].

e-SC realises a classic dataflow programming model [15].

A dataflow consists of workflow blocks, connected through

data dependency links. A block may either implement

a function locally, or it may invoke remote service op-

erations; Fig 3 shows an example of this simple model.

The dataflow model has no control primitives (condition-

als, loops) and besides passing data along the links, blocks

can only share data through explicit file system operations.

Importantly, a block may also represent a sub-workflow.

This adds hierarchical structure to a workflow design, but

it also provides a simple mechanism for parallel execution

because sub-workflows are scheduled independently from

each other and can be executed concurrently on a clus-

ter of compute nodes. An example of such hierarchical

arrangement is shown in Fig. 6, where the red boxes indi-

cate sub-workflow blocks.

The simple dataflow model translates into the ease

of programming and flexibility, one of our requirements

stated above. Given a palette of pre-defined workflow

blocks, geneticists may create their data processing pipelines

simply by assembling pre-defined components visually, us-

ing a web-based workflow editor provided by the system.

The interface allows scientists to upload data, edit and run

workflows, experiment with parameter changes, and share

results in the cloud. More advanced users with software
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development skills may build and upload their own anal-

ysis services into the system and share them with others

as ready-to-use workflow blocks. A REST-based API is

also provided so that external applications can leverage

the platform’s functionality, making it easier to build scal-

able and secure cloud-based applications.

e-SC can be deployed on private and public clouds,

and has been tested on Eucalyptus, Amazon AWS and Mi-

crosoft Azure. The system architecture follows the master-

worker pattern, with the e-SC server connected via a mes-

saging queue to one or more workflow engines each allo-

cated on a different processing node [11]. The workflow ex-

ecution follows the principle that a single workflow invoca-

tion is indivisible and always executed on a single workflow

engine. Although it is unlike other similar systems such

as Pegasus [16] and Taverna [17], it provides predictable

system performance for short-running blocks, as well as

faster communication between blocks; more details can be

found in [18].

The exception to the indivisibility principle in e-SC is

when a composite workflow contains sub-workflows (pos-

sibly nested at multiple levels). During runtime, each of

them will be treated as a new workflow invocation by

the system, and executed independently from other sub-

workflows. Sub-workflows are enqueued on the server and

any available engine can pull one or more of them from

the central queue and execute them. These executions

may be either synchronous or asynchronous. In particu-

lar, for an asynchronous execution an explicit Wait block

with a list of sub-workflows can be used to create a barrier

and force suspension of the current invocation until all the

listed invocations have completed. We exploit this exe-

cution model in one of our pipeline designs, as described

later in Sec. 3.

2. Pipeline migration challenges

Due to the amount of input data generated during se-

quencing, NGS pipelines require substantial amount of re-

sources to run. Departments which have local access to se-

quencers can greatly benefit from running them together

with a local HPC cluster. This can save a lot of time

and cost on data transfer.8 However, majority of research

labs outsource sample sequencing, using “sequencing-as-a-

service”, and so need to transfer the raw sequence reads

before they can start the analysis. In these cases, deploy-

ment of the NGS pipeline on the cloud becomes an attrac-

tive alternative approach to purchasing and maintaining a

local HPC cluster.

2.1. Starting point: the legacy pipeline

The current pipeline, developed for research purposes

at the Institute of Genetic Medicine, is illustrated in Fig. 1.

In our setting, sample sequencing is outsourced. For each

patient’s sample submitted to an external service, scien-

tists receive compressed, 2-lane, pair-end raw sequence

reads in the FASTQ format. It means that each sample

consists of four compressed fastq.gz files and on average is

nearly 15 GiB in size (36 GiB uncompressed).

The pipeline starts with sequence alignment of the reads

(BWA [19]). This is followed by cleaning (Picard), se-

quence recalibration, filtering, variant calling and recali-

bration (GATK [20]), coverage analysis (bedTools), and

annotation (Annovar [21] as well as a in-house annotation

tool). This processing sequence closely resembles the best

practices defined by the Broad Institute9 and adds only

extra annotation and coverage steps to it.

Overall, the pipeline involves three key stages: (1)

preparation of the raw sequences for variant discovery and

coverage calculation, (2) variant calling and recalibration,

(3) variant filtering and annotation. Stages 1 and 3 are

executed in a loop so that all tools involved are invoked

on each sample separately. As there is no dependency

between samples in these two stages, paralellisation at

8https://www.emc.com/collateral/brochure/

h10628-br-challenges-in-ngs.pdf
9http://www.broadinstitute.org/gatk/guide/best-practices
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Figure 1: Our existing NGS processing pipeline.

this stage is straightforward. Conversely, Stage 2 runs

only once for all input samples, thus parallel processing

across samples is no longer possible. However, since the

tools used in Stage 2 can operate independently on indi-

vidual chromosomes (or even on smaller sub-chromosomal

regions), we can still exploit parallelism at this stage, by

splitting each exome within each sample along chromo-

some boundaries. We refer to this as chromosome-split.

The current pipeline is implemented as a number of

shell scripts that coordinate the sequential execution of

the tools and is deployed on a shared HPC cluster with

the Open Grid Engine (OGE) submission environment.

Stages 1 and 3 are submitted using the standard OGE

qsub command. Stage 2 uses the GATK Queue framework

to split a large set of input data among all compute nodes

available in the cluster.

A fragment of the implementation script, namely to

invoke the Picard tools, is shown in Fig. 2. From this ex-

ample, it should be clear that the lack of abstraction in the

programming model complicates even the simplest pipeline

evolution task. In addition, pipeline developers must also

be knowledgeable about the available deployment options.

For instance, job submission to the local HPC cluster re-

quires explicit allocation of the desired number of nodes

and cores within the nodes. This configuration is spe-

cific to the tools invoked by the scripts and to the cluster

itself, making the entire implementation hardly portable.

Moreover, inter-task dependencies, and thus effectively the

structure of the pipeline, are hidden in the code. This in-

cludes knowledge of physical file locations and how files are

shared across the steps of the pipeline. Finally, the cluster

provides no isolation; interference from other cluster users,

in the form of apparently minor issues such as saturated

disk space of compute nodes (scratch space), causes long-

running executions to fail arbitrarily, often wasting hours

or even days of computing time.

2.2. Migration tasks

Porting an existing scientific pipeline involves the fol-

lowing sequence of tasks: (i) developing new tool blocks

and libraries to wrap the tools used in the pipeline, (ii)

developing adapter blocks (shims) for data format conver-

sion in between blocks [22], and (iii) designing workflows

that replicate the pipeline’s original functionality, possi-

bly using a nested workflow structure. The combination

of these tasks has been challenging, requiring about six

months of a workflow design expert’s time.

2.2.1. The tool blocks

These are for the most part wrappers that can drive

underlying tools using their native, command-line inter-

face. They are complemented by e-SC shared libraries,

which are installed only once and cached by the workflow

engine for any future use. The shared libraries provide

not only better efficiency in running the tools but they

also promote reproducibility because they eliminate de-

pendencies on external data and services. For instance, to

access the human reference genome (HG19 from UCSC),

we created a shared library that included the specific ver-

sion and flavour of the genome. By following this design

principle for all data dependencies and tools, our pipeline

is fully reproducible in e-SC and can also be “rolled back”
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to previous versions of any library. By the end of the mi-

gration, we had created 30 new tool block types and 14

libraries specific to the NGS data processing.

2.2.2. The adapter blocks

These shims are often necessary for mapping across

data formats, or to re-organise intermediate data. As a

design principle, their use should be minimal because they

are custom-made, non-reusable components. Our imple-

mentation only required two of them.

2.2.3. Designing workflows

As an example of partial migration, Fig. 2 shows the

main part of the script that implements the cleaning task

showed earlier in Fig. 1. The same functionality “recoded”

using a workflow is presented in Fig. 3. Wrapper blocks,

such as Picard-CleanSAM and Picard-MarkDuplicates,

communicate via files in the local filesystem of the work-

flow engine, which is explicitly denoted as a connection

between blocks. The workflow includes also utility blocks

to import and export files, i.e. to transfer data from/to

the shared data space (in this case, the Azure blob store).

Data in the shared space can be used by other workflows,

which are potentially running on different execution nodes.

This resembles the HPC configuration, where data be-

tween jobs are shared via the parallel file system and jobs

can also use the local, compute node disk space (scratch

space) to store their intermediate data.

2.2.4. Implementing limited loop functionality

In all stages the pipeline iterates either over a set of

samples (Stages 1 and 3) or over chromosomes within a

sample (Stage 2). For instance, in Stage 1 a sequence of

jobs including alignment, cleaning and recalibration are

run separately for each sample. This functionality cannot

be directly reproduced using e-SC, which is missing the

loop control primitive. However, it can be replicated us-

ing e-SC’s map functionality, whereby a lambda function

is applied independently to each element of a list. In this

echo Preparing directories $PICARD_OUTDIR and

$PICARD_TEMP

mkdir -p $PICARD_OUTDIR

mkdir -p $PICARD_TEMP

echo Starting PICARD to clean BAM files ...

$Picard_CleanSam INPUT=$SORTED_BAM_FILE

OUTPUT=$SORTED_BAM_FILE_CLEANED

echo Starting PICARD to remove duplicates ...

$Picard_NoDups INPUT=$SORTED_BAM_FILE_CLEANED \

OUTPUT=$SORTED_BAM_FILE_NODUPS_NO_RG \

METRICS_FILE=$PICARD_LOG REMOVE_DUPLICATES=true \

ASSUME_SORTED=true TMP_DIR=$PICARD_TEMP

echo Adding read group information to bam file ...

$Picard_AddRG INPUT=$SORTED_BAM_FILE_NODUPS_NO_RG

OUTPUT=$SORTED_BAM_FILE_NODUPS RGID=$READ_GROUP_ID \

RGPL=illumina RGSM=$SAMPLE_ID \

RGLB="${SAMPLE_ID}_${READ_GROUP_ID}" \

RGPU="platform_Unit_${SAMPLE_ID}_${READ_GROUP_ID}"

echo Cleaning intermediate files

rm $SORTED_BAM_FILE_CLEANED

rm $SORTED_BAM_FILE_NODUPS_NO_RG

rm -r $PICARD_TEMP

echo Indexing bam files ...

samtools index $SORTED_BAM_FILE_NODUPS

Figure 2: The main part of the clean script from Stage 1.

Figure 3: Pipeline fragment shown in Fig. 2 ported to e-Science

Central.
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instance, the list contains the input samples and is gen-

erated by an initial block, and the lambda function is a

sub-workflow that encodes the sequence of operations to

be applied to each sample; Fig. 4 shows this pattern.

set sample list
S := [s0, s1, s2, …]

<<e-SC block>>

list samples in directory

<<e-SC block>>

generate parameters

<<e-SC block>>

execute sub-workflow(S, P)

...

<<e-SC workflow>>

execute tool (sN, pN)<<e-SC workflow>>

execute tool (s1, p1)<<e-SC workflow>>

execute tool (s0, p0)

it.hasNext ?

submit tool script (s, p)

p := generate_params(s)

Y

N

...

S = [s0, s1, s2, …]

P = [p0, p1, p2, …]

s := it.getNext()

get list iterator
it := iterator(S)

Figure 4: Conversion of loops in a script (left) into an e-SC map

dataflow (right).

2.2.5. Automating the end-to-end pipeline

One additional advantage of the workflow solution is

the complete automation of the entire pipeline, from the

raw sequence alignment to the last step, variant annota-

tion. In contrast, the legacy pipeline makes use of the

batch-queuing system to submit the scripts and automates

only Stage 1, whilst the following stages are be submitted

manually.

3. Exploring alternative parallel workflow designs

One of our workflow design goals has been to fully ex-

ploit the distributed deployment model of e-SC workflows

over multiple engines. We wanted to take advantage of

the data parallelism in the genome processing logic and

make sure that a bioinformatician could still understand

the overall design.

As mentioned earlier, the pipeline consists of three

stages (Fig. 1). Stage 1 can process N input samples in

parallel. Stage 2, on the other hand, can process chromo-

somes independently from each other but requires input

from as many samples as possible. This means that at the

end of Stage 1 the intermediate results from each sample

are collected, each sample (an exome) is split by chromo-

some, and each of these M chromosomes is allocated to a

Stage 2 thread. Additionally, because of large variation in

the length of chromosomes on a human genome,10 longer

chromosomes can usually be split and processed in parts,

whilst shorter ones are processed as a whole. Once Stage

2 is completed, all resulting data fragments, one for each

chromosome, are merged again and split into the original

input samples to be processed in Stage 3 by N indepen-

dent threads. Fig. 5 depicts this multiple split structure

along two different axes (samples and chromosomes).

This data-parallel pattern can be exploited in differ-

ent ways using e-SC. To illustrate the range of options

available to the workflow designer, we now describe three

different yet functionally equivalent solutions.

3.1. Synchronous pipeline

The most intuitive and easy to understand approach is

the synchronous design. It consist of a top-level, coordi-

nating workflow that invokes eight sub-workflows, each of

which implements one step of the pipeline (Fig. 6). The

sub-workflows of each step are executed in parallel but syn-

chronously over a number of samples. This means that the

top-level workflow submits N sub-workflow invocations for

a particular step, waits until all of them complete, and

then moves on to the following step.

The complexity of the data structure imposed two vari-

ations to this basic behaviour. Firstly, each input file con-

sists of multi-lane sequence reads, so initially the align-

ment step runs independently for each lane within a sam-

ple. Then the aligned lanes are merged together to per-

10The longest human chromosome is chr1 with 249 Mbases,

whereas the shortest one is a mitochondrial chromosome chrM, only

16 kbases long.
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Figure 5: Data parallelism pattern in the genomics pipeline; Stages 1 and 3 exploit per-sample parallelism, Stage 2 exploits per-chromosome
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Figure 6: The top-level workflow implementing the WES pipeline; blocks highlighted in red submit subworkflows that implement the pipeline

steps; highlighted in dashed blue is Stage 2.

form per-sample refinement. This refinement is shown in

Fig. 7, where the separation into two workflows: parent

align sample and child align lane, is designed to improve

resource utilisation. Secondly, in Stage 2 we use two work-

flows: variant calling with chromosome-split (parent) and

haplotype caller (child), to improve the utilisation in the

variant calling step.

The latter optimisation concerns collecting all interme-

diate results from Stage 1 (BAM files) for subsequent pro-

cessing by the variant caller. As it is common for a single

sample cohort to include 30 or more input samples (about

450 GB of compressed data), this step splits the data by

chromosome region and processes each region in parallel.

Thus, the parent workflow implements the split-merge pat-

tern, whereas the child workflow does actual variant dis-

covery on a selected chromosome region. Afterwards, all

parts are merged together and we obtain a multi-sample

variants file (a VCF file), which is then recalibrated and

split into single-sample VCF files.

The synchronous design is easy to understand. The

structure of the pipeline is modular and clearly represented

by the top-level orchestrating workflow that mainly in-

cludes control blocks to run sub-workflows. The control

blocks take care of the interaction with the system to sub-

mit the sub-workflows, and also suspend the parent invo-

cation until all sub-workflows complete. In this case the

parallelisation and synchronisation is managed by e-SC au-

tomatically and does not affect the design of the pipeline.

The main drawback of this simple approach is under-

utilisation of the computing resources allocated to the en-

gines. This is because each step introduces a synchronisa-

tion point, where the parent workflow waits for the slow-

est sub-workflow invocation to complete (note red dots in

Fig. 7). The result is a saw-like utilisation graph, where

each step consists of the initial period of high resource

utilisation, followed by a “tail” during which the use of re-
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sources degrades (Fig. 8). Importantly, the more variance

there is in the size of the input data files (sample cohort),

the longer the tail becomes.
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Figure 8: The saw-like utilisation observed with the synchronous

design.

3.2. Asynchronous pipeline

An alternative design, aimed at removing waiting times,

is the asynchronous mode workflow, where the parent work-

flow does not wait for all children to complete (easily con-

figurable in the workflow submission blocks). In this de-

sign, synchronisation points are defined as barriers spec-

ified by adding the Wait blocks before each stage only.

The effect of these new wait points is that the top-level

workflow is not suspended at each step, but rather all the

steps are submitted one after another, and synchronisation

occurs only at the end of each stage.

Using the asynchronous approach, most of the syn-

chronisation points move from the top-level workflow to

each individual sub-workflow invocation. For example,

step clean cannot start until the previous step align com-

pletes. However, an invocation of the clean subworkflow

for sample A needs to be blocked only by the invocation

of the align subworkflow related to the same sample A.

The Wait block, added at the beginning of the clean sub-

workflow, achieves the desired effect by suspending it un-

til results from the predecessor, align step, are available.

Note that this mode resembles the way job dependencies

are expressed in the OGE cluster, where the successor jobs

need to know the invocation names of the predecessor jobs

and are dispatched only after the predecessor completes.

Unfortunately, this design has its own drawbacks. It

exhibited very uneven resource allocation and poor over-

all performance due to certain subtleties in the invocation

dispatch policy in e-SC. In more detail, a barrier block

can be located anywhere in a workflow and does not sus-

pend the invocation until it is executed. This means that

even if a workflow includes a barrier block, it may be dis-

patched and executed before the predecessor invocations

finish. However, once locked on the barrier waiting for

predecessors, the invocation does not consume an execu-
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tion thread and the workflow engine is free to pull another

invocation from the queue. As a result, it may happen

that a single workflow engine accepts many workflows with

barriers in them, while other engines are busy processing

predecessor invocations. Later, when the predecessors are

finished and barriers are released the workflows accumu-

lated on that single engine resume while the other engines

remain idle.

The analysis of the problem suggested that we exper-

iment with yet another implementation model, which we

called the chained pipeline mode.

3.3. Chained pipeline

The main reason why the asynchronous design failed

in reducing the “tails” in the resource utilisation was that

the successor invocations (e.g. clean sample and recalibrate

sample in Stage 1) were dispatched and started before the

predecessor invocations completed (align lane and clean

sample, respectively). As a consequence, the decision on

which engine to allocate to a sub-workflow invocation oc-

curred too early, i.e. before the actual resources for the

workflow were needed; these are only known at a later

stage, namely when locked invocations are resumed. To

correct this issue, we redesigned the pipeline so that a

successor workflow (e.g. clean sample) was submitted only

after a predecessor invocation has completed (align lane,

respectively). In this way we were able to create indepen-

dent invocation chains, one per sample such as: Align →

Clean → Recalibrate Sample in Stage 1. This time, how-

ever, the structure of the top-level workflow had to change,

too. It reflected stages rather than steps of the pipeline,

while the steps in Stages 1 and 3 were linked together in

a chain of invocations (Fig. 9).

From the performance perspective, the chained version

is very efficient as it does not use any synchronisation at

the top level (except between stages and to calculate cov-

erage) nor does it use barriers to wait on predecessor in-

vocations. Instead, it relies on subworkflows calling one

another and thus making the chain of invocations.

There are two drawbacks to this design too, however.

Firstly, the top-level workflow no longer shows all the steps

of the pipeline, but rather only the first step of each stage.

This makes the workflow much harder to understand, re-

quiring careful analysis not only of the top-level workflow,

but also all subworkflows. Secondly, and more impor-

tantly, the pipeline is susceptible to resource depletion.

This effect occurs because storage resources are not re-

leased when a sub-workflow is suspended while waiting for

the chain of its successors to complete. For example, Align

waits until Clean and then Recalibrate Sample complete.

Although the execution thread of an upstream workflow

is evicted from the engine, the data it requires is retained

on the engine’s local storage; the thread will eventually

resume and may use that data. However, if too many of

these upstream workflows are allocated to an engine, ul-

timately their storage requirements exhaust the available

space on the cloud node, resulting in failure of the work-

flow and of the whole pipeline.

One could experiment with further redesign of the work-

flow, for instance using a combination of the chained and

asynchronous modes. Yet this would make the design even

more complicated and, as evaluation shows, the benefit of

using the chained version over the synchronous one is not

significant. For this reason, in our performance analysis

we used the simpler, synchronous design and compared it

with the HPC-based solution.

4. Evaluation

Our evaluation aimed at testing the scalability, relia-

bility, and cost properties of our resulting pipeline. We

measure scalability in terms of the number of exome sam-

ples in the workflow input (but we are also going to report

scalability results relative to the raw input file size). The

need to increase the number of samples in a single input

batch comes mainly from the underlying bioinformatics

tools used in the pipeline. In particular, the accuracy of
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variant calling provided by the GATK tool (Stage 2) is

known to increase with the number of samples in the co-

hort.

As discussed earlier, there are opportunities for exploit-

ing the available data parallelism in the pipeline, namely

by launching independent sub-workflows, which are then

automatically allocated to engines deployed on different

physical nodes. Thus, our strategy for controlling response

time with increasing input size is to increase the number of

engines available to the system. At the same time, we want

to ensure that the allocated resources are used effectively;

we may easily over provision the system by allocating too

many engines relative to the available sub-workflow work-

load.

The complexity of the hierarchical workflow designs

shown in the previous sections, compounded with the fact

that different stages in the pipeline exhibit different de-

grees of data parallelism, suggest that it would be difficult

to determine analytically the optimal number of engines.

Therefore, our goal is to show that we can achieve bet-

ter response time than on an equivalent configuration of

nodes allocated to our HPC cluster, while providing better

scalability through the elastic properties of the underlying

cloud infrastructure. With these considerations, we have

designed our experimental evaluation of scalability prop-

erties in three phases.

Phase I. Firstly, we explored a space of VM configura-

tions in the cloud that can reliably handle our NGS sce-

nario, while providing response times that compete with

those of our HPC cluster. As a full-size input requires over

30 hours of wall clock time to compute, in this phase we

tested the pipeline on a small scale (three compute nodes)

and with small input sizes (six samples, or about 83 GiB

of compressend raw sequence reads), in order to collect

enough data points within a reasonable time.

Phase II. Secondly, having found a configuration of

cloud resources that works well on a small input, we tested

its reliability against increasing input size, at the same

time comparing its performance across the different work-

flow designs discussed earlier, namely synchronous, asyn-

chronous and chained. Reliability, defined as the prob-

ability that a workflow runs to completion, is important

because failed workflows are expensive, as each workflow

execution on a realistic input size can take up to 40 hours

of wall clock time, which translates into cloud node allo-

cation costs. This second phase resulted in a final cloud

configuration which used a synchronous design that was

able to reliably support long running workflows with a 24-

12



sample input.

Phase III. Finally, we performed scalability testing on

the configuration found in the previous phase, measuring

response time as a function of input samples over increas-

ing engine numbers. In this phase we also assessed the

cost per sample through direct observation of billing infor-

mation from the Azure cloud provider.

Note that, once a suitable configuration has been found

as shown in the rest of this section, it can be simply cloned

on the Azure cloud to achieve virtually indefinite scalabil-

ity over multiple batches of input samples.

4.1. Phase I: Rapid configuration discovery on small scale

input

In order to compare the pipeline performance in the

HPC environment with that in the cloud, we set up com-

parable test clusters in both environments. Our HPC clus-

ter consists of 20 8-core compute nodes with Intel Xeon

E5640, 2.67GHz CPU, running Scientific Linux: 16 nodes

with 48 GiB of memory and 160 GB of the local scratch

space, and four with 96 GiB of memory and 900 GB of

the scratch space. All nodes are connected with Gigabit

Ethernet and have access to the shared parallel file system

(Lustre) where all input, output and reference data were

stored. Intermediate data produced during script execu-

tion are stored either in the compute nodes’ scratch space

based on regular HDD or on the Lustre file system.

To perform tests in the cluster in conditions as similar

to the cloud as possible, we selected three “larger” com-

pute nodes (with more memory and disk) with exclusive

access for the duration of our test runs. The tests, there-

fore, produced unrealistically good results on the cluster,

where NGS jobs are normally affected by workload from

other users. Note also that in the experiments we did not

consider login and head nodes of the cluster because they

were used only to submit and manage jobs, with negligi-

ble overhead compared to the amount of processing needed

from the compute nodes. We also did not consider time

required to transfer raw sequence input data to the cluster.

The corresponding Azure tests were run using a small,

6-sample input set to find a configuration comparable with

the HPC setup and reliable enough to handle the workload.

This resulted in two candidate configurations. The first

consisted of A7 VMs with 8-core CPU, 56 GiB of memory

and 1.2 TB RAID level-0 disk array built of 600 GB local

HDD and two attached 300 GB network disks. The second

used D13 VMs with 8-core CPU, 56 GiB of memory and

400 GB SSD. Ubuntu 14.04 was used in both. To mirror

the HPC cluster test configuration, we used three of these

VMs to run the e-SC workflow engines.

For all tests in Azure the e-SC server ran on a D2 VM

but, as for login and head nodes in the cluster, the amount

of processing power it required was negligible. Data stor-

age in e-SC was configured to use the Azure blob store,

which meant that transfer of large data files between the

e-SC workflow engines and the blob store was direct with-

out the need to pass through the server.

Moreover, the Azure e-SC instance was deployed as a

single cloud service, so network communication between

the server and engines was direct and did not go via the

Azure load balancer. Also, similarly to the HPC configu-

ration, the instance was used exclusively to run the evalu-

ation tests and the raw input sequences were stored in the

cloud before the tests. Table 1 shows the summary of the

configuration of the three selected environments.

Table 1: Basic information about the test infrastructure.

Node type CPU model Cores RAM Local disk

HPC com-

pute node

Intel Xeon

E5460 2.66GHz
8 96 GiB

900 GB

HDD

Azure VM

(A7)

Intel Xeon

E5-2660 2.2GHz
8 56 GiB

1.2 TB

L0-RAID

Azure VM

(D13)

Intel Xeon

E5-2660 2.2GHz
8 56 GiB

400 GB

SSD
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Lessons learnt. Small scale testing was crucial for explor-

ing the large space of target cloud configurations, which is

very time-consuming due to the long-running nature of the

workflow. Configuration options focus mostly on the VM

and its attached local storage. Variability and incremental

evolution of the underlying cloud offering from a provider

must be taken into account. For example, our tests were

conducted at a time when Azure was phasing in SSD disks

for attached storage at a competitive cost, prompting us

to compare it with our prior RAID-based configuration.

While the configuration space improves over time, this also

complicates the exploration as it makes for a “mobile tar-

get”.

4.2. Phase II: testing reliability over realistic workloads

In phase II we tested the candidate configurations on

larger workloads, namely 10, 12 and 24 samples per input.

Each sample included 2-lane, pair-end raw sequence reads

(four files per sample). The average size of input was about

150 Gbases per sample, which was provided as compressed

files of nearly 15 GiB size; file decompression is included

in the pipeline as one of the initial tasks.

Fig. 10a shows the response time for different config-

urations relative to the number of samples. From the re-

sponse time, we derived the throughput of the pipeline,

shown in Fig. 10b (each figure is the average over two

workflow runs).11

The most important finding from this set of tests is that

not all configurations scale well with the number of input

samples. The WES pipeline stresses file I/O of the under-

lying system, and we discovered that we were able to satu-

rate the available I/O bandwidth for A-series VMs. Even

systems running on the A7 VMs with the RAID L0 array

built of three Azure attached disks did not have sufficient

11Note that due to the amount of time required to complete a

single run, it was not feasible to repeat all tests for larger input sets

in the HPC cluster. Thus, for 12- and 24-sample runs figures include

only a single data point.

I/O throughput to sustain tests larger than six input sam-

ples. This is consistent with the limited write throughput

of RAID L0 arrays in Amazon EBS as reported in [23]. In

effect running our tests for 10 and 12 input samples, we ex-

perienced random errors such as blocks hanging infinitely

or read/write errors to the file system.

Furthermore, due to the resource depletion problem

discussed earlier, the chained version of the pipeline could

not handle inputs larger than 12 samples. Despite e-SC

offering a number of control blocks that can ease the de-

signing of parallel pipelines, improving the workflow design

was far more difficult than expected and revealed nuances

in the e-SC invocation dispatch and resource eviction poli-

cies that were unsuitable to handle tasks large in terms of

CPU and data size. Thus, the only two configurations

which proved to be reliable enough were the one running

in the HPC cluster and the synchronous version of the

workflow-based pipeline running in Azure and hosted on

the D13 VMs with SSD.

For these two solutions results show linear relation be-

tween the response time and number of input samples,

and in the largest tested case, with 24 input samples, the

cloud-based configuration was 2.3 times faster than the

HPC variant running in the exclusive access mode. Note

that in practice the response from the HPC system would

be even longer due to workload of other users and the

shared nature of these systems.

The primary reason for such good response time was

the availability of the fast, local SSD storage and its exten-

sive use by the e-SC workflow engines. In the HPC cluster

the compute nodes were equipped with regular HDD but

also the pipeline relied more heavily on the parallel, net-

work filesystem. Presumably, this was also the reason why

by adding more input data to the sample cohort, our cloud-

based pipeline showed increasing performance, whereas in

the cluster the throughput decreased (cf. Fig. 10b).

In the cloud the response time was very stable for VMs

with SSD (for the worst case, 24 sample run, σ/µ ≈ 2%)
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Figure 10: The response time (a) and throughput (b) for different variants of the pipeline and hardware configuration and the increasing

number of input samples. Dots represent the actual observed time, lines connect average values (if available).

and slightly less stable for configuration with the RAID

array (σ/µ ≈ 4.1% for 6 sample run). In the HPC cluster

the response time was also slightly less stable (for the 10

sample run, σ/µ ≈ 7.2%; note that we could not repeat

tests for 12 and 24 input samples). Apparently, the dis-

persion of the response time was higher for configurations

that relied more on shared network disks.

The outcome of this phase was a reliable cloud config-

uration coupled with a synchronous pipeline design.

Lessons learnt. Public cloud infrastructure is designed for

scale-out computations, at large scale. In order to achieve

this, applications must be designed to account for failures,

as at the scale of hundreds to thousands of nodes, this is

likely in any infrastructure. Configurations that appear

to work well on a small scale may perform less optimally

on higher workloads, even leading to failures where the

software is not designed to account for the architecture.

However, the flexibility afforded by a commercial cloud

provider makes it possible to experiment with and engi-

neer configurations that would be impossible on a closed

in-house cluster. In the end, our target configuration out-

performed the HPC cluster while giving us a specific price

tag per input sample.

For very I/O bound Big Data problems the main area

of improvement is in the data access. Therefore, the pri-

mary reason for performance gains was not the pipeline

redesign but rather the combination of fast, local SSD stor-

age on the VMs and its extensive use by the e-SC work-

flow engines. In the HPC cluster the compute nodes were

equipped with regular HDD but also the pipeline relied

more heavily on the parallel, network filesystem. With

e-Science Central the use of local disk storage is implicit

and, therefore, users would not make a mistake of using

shared, network filesystem unless it is necessary to dis-

tribute work across nodes.

4.3. Phase III: testing scalability

In this phase we scaled out the deployment by allocat-

ing additional cloud nodes and adding workflow engines

to the e-SC pool, one per node. The evaluation involves

processing the same set of input samples over target con-

figurations of 6 and 12 workflow engines (48 and 96 cores

respectively), and comparing their response time against

the 3-engine baseline from Phase II.

Fig. 11a presents the observed response time for the

three configurations as the function of the input size. Fig. 11b

shows system throughput (samples per day) in relation to

the number of processing engines. It is compared with

ideal linear speed-up and illustrates gains in the process-

ing speed when adding workflow engines to the system.

Lastly, Fig. 11c shows how well the different configura-

tions scale when compared to baseline with 3 engines, using

a measure of relative processing effectiveness (RPE; the

higher the better). Given a fixed input sample size s, if

Ts(n) is the response time for a configuration with n en-
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gines, we define the relative processing effectiveness of the

n-engine configuration relative to the b-engine configura-

tion as:

RPEs(b, n) =
bTs(b)

nTs(n)
(1)

In our experimental space we have used baseline b = 3,

n = 6 and n = 12, and s ranging from 6 to 24. 100%

effectiveness is achieved when Ts(n) = b
nTs(b). For ex-

ample, resources are perfectly utilised when doubling the

number of engines (n = 2b) results in the halving of the

response time relative to the baseline (Ts(2b) = 1
2Ts(b))

on the same input size. In contrast, one of the actual data

points in our chart, RPE12(3, 6) = 75%, indicates that

doubling the number of engines on the 12-sample input is

only 1.5× faster than the baseline; ideally, it would be 2×

faster.

Our results show that for larger configurations the re-

sponse time grows slowly with the number of samples. For

the smallest, 6-sample, input we observed very little gain

when adding workflow engines to the system (cf. through-

put). Only for the biggest, 24-sample, input the pipeline

showed good effectiveness – about 86% when running on 6

engines (Fig. 11c). In our practice, however, it is common

to run the pipeline with 30 input samples or more, which

will allow us to scale the system to larger configurations

and still reduce response time effectively.

The main reason for low effectiveness in processing

small input datasets was the amount of parallelism hid-

den in the data that our pipeline could exploit. For N in-

put samples during alignment we had 2 ·N pair-end reads,

whilst the following steps of Stage 1 processed N aligned

sequences. In Stage 2 we used a fixed (but configurable)

value of 50 chunks to split the data across chromosomes.

Later on, the pipeline again worked with N input samples.

Given that for improved resource utilization we configured

each engine to run 4 workflow invocations concurrently, for

small N not all execution threads of all engines could be

utilized. For example, if the system ran 12 engines, there

were 48 execution threads waiting to accept invocations.

Then, with only six samples of the input data the majority

of these threads were idle causing less effective use of the

resources.

Lessons learnt. The main insight gained from these results

is that larger deployment configurations can easily be over-

provisioned relative to the amount of parallelism available

in the workflow. The computation/communication ratio

has to be optimised, as with HPC applications. There-

fore, care must be taken to best match the application

workload with the appropriate services and deployment

options. This situation is different to using on-premise

HPC machines that have typically been pre-configured for

maximum performance without reference to optimising for

price/performance. In the cloud the application devel-

oper has some of the responsibilities for specifying the

computing infrastructure, including system-level I/O per-

formance. Thus, for complex applications such as WES,

cloud computing can deliver enough scalability but work is

required at the system-design level to ensure success and

efficiency.

4.4. Cost estimation

As mentioned in the introduction, one of the advan-

tages of adopting the cloud-based approach to NGS data

processing over a closed HPC system is the ability to pre-

cisely quantify the monetary cost associated with process-

ing one exome sample. These figures are very welcome to

public health providers, who are planning to deploy WGS-

based genetic testing at population scale. In the cost as-

sessment described below, we have translated resource con-

sumption into cost using the Azure commercial rates at the

time of writing (June, 2015). Clearly, these figures only

represent a point of reference, as continually decreasing

prices for resource allocation on commercial clouds make

them rapidly obsolete.

Our cost estimation model accounts for (i) compute

time of the master (server) as well as of each compute
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Figure 11: Response time, throughput and relative processing effectiveness of the pipeline with the increasing number of input samples and

different number of workflow engines in the system.

node VMs (workflow engines), and (ii) storage usage dur-

ing the run. We exclude one-off setup costs for the un-

derlying infrastructure, as in a production system these

would become insignificant. We also exclude the cost of

data transfer to/from the cloud because they are negligi-

ble when compared to hiring VM. Transfer to the cloud is

free in Microsoft Azure, whereas the output data is over

200x smaller than the input (about 70 MB per sample).

Additionally, the first 5 GB/month of data transferred out

of Azure is free.

While it is easy to measure precise uptime figures for

each run, some storage costs, e.g. related to storing input

and reference data, were shared between test runs and so

were not easy to account precisely to a specific run. How-

ever, as Fig. 12 shows, the number of wall clock compute

hours (VM uptime) dominates the cost (up to 83% of total

charges over a month). Therefore, without losing too much

accuracy we estimate storage cost per hour, denoted HSC ,

by aggregating the storage cost over the entire billing pe-

riod (one month) and assuming its uniform distribution.

Compute Hours ( £702.71 )

Total Storage ( £137.87 )

Data Transfer In ( £0 )

Data Transfer Out ( £1.14 )

Figure 12: Cost by resource type for one billing period.

To estimate the cost CR of one run, we use the following

parameters: RE
CH and RS

CH are the uptime cost rates per

Compute Hour for the engine and server VM, respectively;

ER is the number of engines involved in the run, and HSC

is the estimated Hourly Storage Cost. Then, the cost of a

single run is calculated as:

CR = T × (RE
CH × ER +RS

CH + HSC ) (2)

where T is the wall clock duration of the run expressed in

hours.

Figure 13 reports on the cost per size of input data

and per sample, CR/N , using Eq. (2) for different input

sample sizes N and number of engines ER ∈ {3, 6, 12};

note that to run the server we used a single VM of the

same size in all runs. The figure shows two data points for

each configuration, with a line through their average. The

exact figures used for this chart are presented in Table A.3

in Appendix A. The table shows remarkable consistency,

as the values for each pair of runs are very close to each

other. Actual cost figures used in Eq. (2) are RE
CH=£0.47,

RS
CH=£0.10, and HSC =£0.21 and are up to date as of the

time of writing.

This cost assessment is consistent with the results from

the effectiveness chart in Fig. 11(c), which indicates that

running the tests on the 3-engine configuration is the most

cost-effective across all data points. Nonetheless, the sig-

nificant amount of data processed and stored in the system

means that for larger input data sets the storage costs can

balance scalability inefficiencies. Thus, when the input
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reaches 24 samples, using six engines provides a faster re-

sponse time without increasing the overall cost per sample.

0 100 200 300

0

0.2

0.4

0.6

0.8

1

1.2

0 6 12 18 24

0
2
4
6
8

10
12
14
16
18

Size of the input data [GiB]

C
o

st
 p

e
r 

G
iB

  [
£]

Number of samples

C
o

st
 p

e
r 

sa
m

p
le

  [
£]

 3 eng (24 cores)

 6 eng (48 cores)

12 eng (96 cores)

Figure 13: Cost per sample and GiB of compressed input data for

the 3-, 6- and 12-engine configurations.

5. Related work

The areas of workflow, Cloud, HPC and NGS tech-

nologies have been covered by extensive literature and

it is out of scope of this paper to address all of them

in depth. Instead, we focus this section on the prob-

lems related to Big Data and, in particular, Next Gen-

eration Sequencing. From our and others previous experi-

ence (e.g. [18, 24, 25, 26]), achieving very good scalability

properties for CPU-bound problems is possible. It is, how-

ever, very different from managing large amounts of data.

Moreover, the current set of NGS tools, usually, do not

require sophisticated MPI-based algorithms which make

proper use of the HPC systems. Rather they need effec-

tive data splitting strategies that can turn Big Data into

an embarrassingly parallel problem [27].

A number of projects have undertaken the task of au-

tomating NGS data processing such as [5, 6, 7, 8] amongst

others. These pipelines run on HPC clusters or, more re-

cently, on a cloud infrastructure. Some, like SIMPLEX,

can do both.

SIMPLEX [6] is delivered as a preconfigured Virtual-

Box or cloud image for Amazon EC2. It can delegate

compute intensive tasks to the cluster or cloud using in-

house developed JClusterService. The pipeline combines

a set of pre-defined tools in a fixed topology. As the only

customisation is in the configuration of the tool parame-

ters, SIMPLEX is easy to use but not very flexible. In

contrast, our workflows provide a more flexible approach,

where users can not only tune tool parameters, but they

can also change tools and modify the design. Furthermore,

e-SC keeps track of all versions of the processing tools as

well as of the libraries. This makes it easier to track tech-

nology advances in the tools and to enforce reproducibility

of older versions of the pipeline.

The evaluation results shown for SIMPLEX give only

a limited view over its performance. They only include

absolute response time for a single small-scale experiment

consisting of a 10-sample input data set, with average sam-

ple size of 3.1 GB, obtained on a small HPC cluster with

128 cores and 1 TB of memory. In contrast, our experi-

mental results shown in Section 4 include multi-lane, pair-

end raw sequences reads of about 15GB compressed data

each (or 37 GB of uncompressed files). Also, despite over

10-fold increase in size, our 10-sample experiment runs in

less than 24 hours and using only 48 cores (6 nodes).

Bhuvaneshwar et al. [12] present the application of

the Globus Genomics system to NGS analyses. Globus

Genomics [28] integrates the Galaxy workflow system [29]

with the Globus toolkit to improve data management ca-

pabilities and allow workflows to be scaled across cloud re-

sources. Although there are similarities with our pipeline,

there are also important differences. Firstly, the system

includes data transfer to and from the Globus Genomics,

whereas we focus only on data processing. Secondly, it in-

cludes automated quality control while our pipeline does

not. However, we use a more recent version of the GATK

variant caller, the HaplotypeCaller, as recommended by

the Broad Institute in the GATK Best Practices docu-

ment.12 Lastly, our pipeline includes an automatic anno-

tation step using ANNOVAR [21] in addition to our own

12https://www.broadinstitute.org/gatk/guide/

best-practices
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in-house annotation tool, which makes the output ready

for a researcher to analyse. This also means that output

from the pipeline can be directly fed into our variant in-

terpretation tool [30].

Comparing execution performance, our pipeline offers

better throughput (in GB/s) even though we use a much

slower variant caller. If we were to run our pipeline with

the older UnifiedGenotyper used by Globus Genomics, in-

stead of the current HaplotypeCaller, we could further in-

crease the throughput and reduce the response time al-

though with negative impact on the quality of results.

Unfortunately, the authors present only scalability tests

in relation to the increasing size of the input data, but

no information is presented on how well the system scales

when more processing nodes are added.

In [31] the authors discuss ways to accelerate process-

ing of NGS pipelines in Azure using Hadoop over Azure.

The authors show performance gains at various stages of

their pipeline when using techniques such as CRAM com-

pression [32] and careful storage mapping. However, their

pipeline, although similar in the overall design, was not

evaluated in a way which would allow for direct compari-

son with ours.

Finally, Gao et al. [33] have proposed recently to follow

a direction opposite to ours. They provide the Fastq2vcf

Perl program, which can generate command-line scripts to

most commonly used NGS tools including BWA, Picard

and GATK. Their goal is to simplify the construction of

pipelines by delivering wrapper shell scripts, which can

then be executed on a desktop computer or submitted to

a HPC cluster. Nonetheless, we believe that an approach

where the user has control over tool and data versions, can

collect data provenance and run their pipeline effectively

on a set of nodes, is better in the longer term.

Similarly, Kelly et al. [27] proposed recently a WGS re-

sequencing solution called Churchill. It is an example of a

careful redesign of the algorithms used in NGS analyses to

achieve fast resequencing of the whole genome sequences.

These efforts resulted in near-optimal CPU utilization on

a single 8-core VM and very good scalability properties, so

that Churchill can run effectively on 96 cores in HPC (up

to 768 cores) and 128 cores (up to 512 cores) in the Ama-

zon AWS cloud. At the core of Churchill is a novel data

splitting algorithm that allows chromosomal subregions to

be processed independently yet with high sensitivity and

accuracy of the variants found. However, Churchill is a

highly specialized, closed solution that is specifically tai-

lored to do WGS analyses with limited flexibility for users.

It may be seen as the opposite of the workflow-based ap-

proach which offers clear insight into the pipeline structure

and easy customisation of the whole pipeline and each sin-

gle step.

With regards to efficiency of the NGS analyses Car-

rier et al. show in [34] the impact of reimplementation

of NGS tool called Trinty using the HPC best practices.

They present scalability of the tool from 32 to 2048 CPU

cores for the RNA sequencing of mouse and from 256 to

8192 CPU cores for the RNA sequencing of axolotl with

response time speed-up of about 20x and 7x, respectively.

This example indicates two important facts. On the one

hand, access to a HPC platform can offer scalability ca-

pabilities which might be difficult to achieve in the cloud,

for reason as simple as prohibitively high cost. On the

other hand, ability to use a large pool of resources almost

never results in equivalent gains in speed-up; cf. 8192 vs

256 CPU cores (32x) with speed-up of only 7x in this case,

and Amdahl’s law in general. In the cloud users need to

pay much more attention to the amount of resources they

hire, which usually pushes towards the more efficient use

of the resources.

6. Discussion and conclusions

In this paper we have presented the results from a case

study aimed at increasing the scalability, flexibility, and

performance of a Big Data, WES processing pipeline. We

have described requirements, design challenges (Sec. 2),
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and alternative workflow designs for exploiting the latent

parallelism in the input data and pipeline algorithms (Sec. 3).

The main results, discussed in Sec. 4, indicate that our

scientific workflows, once deployed on the Microsoft Azure

cloud and fine-tuned (Sec. 4.1), achieve better performance

than the original HPC configuration, while at the same

time provide a higher level of abstraction for the design,

and potentially indefinite scalability. Our pipeline redesign

efforts showed that the main reason for achieving the per-

formance gains was not due to improved pipeline structure

but rather due to the availability of VMs with fast SSD

disks combined with the extensive use of the local disk

resources by e-SC workflow engines. For very I/O bound

Big Data problems this combination is vital, which has

also been observed by Zhao et al. [35], recently.

We have discussed some of the lessons learnt from this

specific exercise throughout the paper. Genomics, how-

ever, is only one of several areas of science where these

porting exercises are becoming commonplace as the de-

mand for capacity increases while the cost of cloud re-

sources continues to decrease. Some of our conclusions are,

therefore, applicable to a whole class of projects where an

existing implementation, deployed on a closed HPC archi-

tecture, is replaced with a new implementation of the same

processing deployed over a commercial public cloud.

As a summary, we provide a balanced view of the key

benefits and drawbacks we observed during the migration.

These considerations are also summarised in Table 2.

Flexibility and Scalability. The combination of workflow

technology with a cloud deployment provides flexibility, in

terms of the challenges listed earlier, and scalability in the

volume of computing resources that can be made elasti-

cally available to face peaks of demand in the amount of

data to be processed. We have demonstrated this feature

by showing three different designs to parallelise the WES

pipeline. However, we also expose weaknesses of the soft-

ware stack which was not always able to sustain very high

CPU and I/O demands. Surprisingly, the best cloud solu-

tion was not one of the more sophisticated approaches but

the simplest, synchronous pipeline.

Alternative paths to migrating legacy pipelines are avail-

able, however. For instance, one may allocate virtual clus-

ters in the cloud, e.g. using StarCluster13 or CloudMan

[36], and then simply transfer data and scripts verbatim.

While this would minimise the recoding effort, it would

not meet our flexibility requirements. HPC performance in

the cloud is becoming available, with Microsoft Azure Big

Compute supporting low-latency, high-bandwidth Infini-

band services. Presently this is a unique offering though,

that is atypical of the usually lower performance of the

cloud than HPC (cf. [37, 38]). Thus, the only benefit of

running OGE in a cloud-based virtual cluster would be

flexibility in resource allocation.

Effectiveness and cost control. To date there is little evi-

dence on how well NGS pipelines scale with an increasing

number of processing nodes, and scalability is typically

only measured in terms of the number of input samples.

Even when absolute response time and prices are reported,

there is little concern about how effective it is to use multi-

node and multi-core environments. On a cloud, this ap-

proach is no longer sufficient, simply because adding re-

sources increases cost linearly but almost never linearly

reduces time (the effectiveness is reduced). For instance,

in our study the fastest response from the system was al-

ways provided by the largest configuration with 12 engines.

Nonetheless, as shown in Fig. 13, the most cost effective

configuration was the 3-engine, whilst for larger input data

sets the 6-engine configuration offered comparable cost ef-

fectiveness and much shorter response time.

Reproducibility. Another advantage of our approach is the

automated tracking and versioning of changes to data,

workflows and workflow blocks. This gives a detailed in-

sight into which tool, data and workflow version was used

13http://star.mit.edu
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Table 2: Advantages and disadvantages of migration from script-based HPC to workflow-based Cloud NGS pipeline.

Migration direction Advantages Disadvantages

Hardware and OS:

HPC → Cloud

+ more flexibility if resources are required

only intermittently or there is a signifi-

cant variation in workload,

+ clear cost control; encourages to design

more efficient solutions,

+ transparent resource upgrades; e.g. in-

troduction of VMs with local SSD disk,

+ easy access to monitoring tools which

give insight into the performance of the

system.

− continuous access to large resources may

be costly,

− access to very large resources (10k+

CPU) may be prohibitively costly,

− HPC resources are carefully configured

to reach the highest performance; in the

Cloud some of the configuration aspects

need to be addressed by the user.

Middleware:

cluster manager → WfMS

OGE/SGE → e-SC

+ transparent provenance tracking,

+ portability; easy migration between dif-

ferent Cloud providers,

+ transparent caching policy makes the

most of the node-local disk resources;

very beneficial when combined with fast

SSD disks,

+ easy control and management of tool

and reference data versions; increased

reproducibility.

− OGE/SGE is a mature and widely

adopted job management system,

− some tools, e.g. GATK Queue, already

support OGE/SGE and can dispatch

work across a number of HPC compute

resources.

Programming model and ab-

straction:

scripting → scientific work-

flow

+ visual design with more prominent ar-

chitecture of the pipeline,

+ low-level aspects such as file and di-

rectory management are less important

and do not obfuscate the pipeline de-

sign,

+ implicit file management may save users

from making certain mistakes, e.g. us-

ing networked file system for tasks other

than sharing data between nodes.

− scripts offer a more expressive and,

sometimes, more concise language; cf.

shim blocks and support for loops,

− designing an effective, parallel workflow-

based pipeline requires substantial level

of knowledge; equivalent to design-

ing the pipeline using scripts and

SGE/OGE over HPC system.
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to produce particular result. This information is neces-

sary to reproduce the workflow, using older versions of the

tools, which may be required for comparison or validation

purposes. Although similar levels of version control could

be achieved in a HPC setting, e.g. by means of the En-

vironment Modules14 package and source version control

systems, when using e-Science Central this happens auto-

matically and almost transparently to the user. Impor-

tantly, together with version information, e-SC also keeps

track of data provenance, a key element in documenting

the geneticists’ findings and making them reproducible.

Design complexity and performance. Finally, the workflow-

based approach can be criticised on the grounds of lim-

ited expressiveness of the dataflow model. While this may

translate into complexity of design to exploit the available

data parallelism, we have shown that this effort pays off

in terms of overall performance. Our workflow-based so-

lution deployed in the cloud is over twice as fast as the

original, script-based HPC pipeline running in the exclu-

sive access mode. NGS pipelines, usually, do not require

complex parallel algorithms but rather they combine sim-

ple tools in a sequence of tasks that need to process large

data files one after another. This makes visual WfMS such

as e-SC a very good fit for the problem, while the benefits

of the HPC environment, e.g. low latency network, play

less important role.

In summary, we have shown how migration from a lo-

cal, script-based HPC pipeline to a workflow-based pipeline

running in a public cloud infrastructure can provide ben-

efits in terms of speed, flexibility, scalability and cost-

effectiveness for NGS. Performing such a migration re-

quires careful execution, but can ultimately lead to more

scalable and manageable solutions for scientific applica-

tions.

14http://modules.sourceforge.net
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Appendix A. Detailed report on duration and costs of all experiments

Table A.3: Duration and cost* in £ of the tests ran on the 3-, 6- and 12-engine configuration.

Samples

number

3-engine configuration 6-engine configuration 12-engine configuration

Duration

[hh:mm]

Total test

cost (£)

Cost per

sample [£]

Cost per

GiB [£]

Duration

[hh:mm]

Total test

cost [£]

Cost per

sample [£]

Cost per

GiB [£]

Duration

[hh:mm]

Total test

cost [£]

Cost per

sample [£]

Cost per

GiB [£]

6 21:52 37.62 6.27 .452 19:17 60.41 10.07 .725 17:09 102.11 17.02 1.226

6 22:32 38.75 6.46 .465 19:04 59.74 9.96 .717 16:44 99.63 16.60 1.196

10 32:38 56.15 5.62 .385 21:57 68.74 6.87 .472 19:35 116.62 11.66 .801

10 32:56 56.67 5.67 .389 22:20 69.94 6.99 .480 17:55 106.70 10.67 .732

12 36:38 63.04 5.25 .360 23:47 74.48 6.21 .426 20:47 123.76 10.31 .708

12 36:23 62.60 5.22 .358 25:37 80.25 6.69 .459 23:39 140.77 11.73 .805

24 65:44 113.10 4.71 .316 41:25 129.70 5.40 .363 31:50 189.52 7.90 .530

24 69:05 118.87 4.95 .333 36:47 115.21 4.80 .322 26:47 159.44 6.64 .446

*Unit costs used in the calculations: D2 VM £0.10/hour, D13 VM £0.47/hour, Geo Redundant (GR) Block Blob £0.029/GB, GR Page Blob £0.058/GB.
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