From scripted HPC-based NGS pipelines to
workflows on the cloud

Jacek Cata*, Yaobo Xuf, Eldarina Azfar Wijaya* and Paolo Missier*
*School of Computing Science
Newcastle University, Newcastle upon Tyne, UK
TInstitute of Genetic Medicine
Newcastle University, Newcastle upon Tyne, UK
Email: {firstname.lastname @newcastle.ac.uk}

Abstract—In this paper we describe our initial experiences
in the Cloud-e-Genome project with moving the whole exome
sequencing pipeline from the scripted HPC-based solution to a
workflow enactment system running in the cloud. We discuss
shortcomings of the existing approach based on scripts and list
benefits that a workflow-based solution can provide. Despite the
effort it involved to wrap all required tools in the form of
workflow blocks and the restrictions of the dataflow model used
to represent workflows we expect the migration to significantly
improve the current status of the pipeline. Our target is to enable
flexibility, traceability and reproducibility of the solution, so that
it can better fit the evolution of tools, data and pipeline itself
and allow us to run it at national scale. This work will become
foundation for the more complete system that includes variant
filtering and interpretation for the diagnostic purposes.

I. INTRODUCTION

The cost of genomic sequencing has been decreasing more
than linearly over the past few years. Figures from 2010 show
the number of base pairs (bp) that can be sequenced per $
unit, doubling every five months [1]. In the UK, the cost
of sequencing a single patient sample is currently just under
$1.5K and decreasing.

Combined with the cost-effective availability of scalable
cloud computing infrastructure, the economics of genome
sequencing are dramatically changing the traditional percep-
tion of genetic testing as a method of last resort for the
diagnosis of unfamiliar and rare genetic diseases. In fact, Next
Generation whole-exome sequence (WES) and, soon, whole-
genome sequence data (WGS) for disease-gene identification
are predicted to become routine diagnostic tools in clinical
practice within a few years, especially for the diagnosis of rare
diseases. WES-based diagnosis involve sequencing the coding
portions of the patient’s genome (the exome), and then extract-
ing information from it about potentially pathogenic mutations
(gene variants) using a variety of published algorithms and
tools, both established and experimental.

In this paper we describe preliminary findings from the
Cloud-e-Genome project, a collaboration between the Institute
of Genetic Medicine and the School of Computing Science
at Newcastle University, funded by the Biomedical Research
Centre in the UK.! The project’s overall goal is to facilitate

IPartial funding for the project comes from NIHR (National Institute for
Health and Research) as well as from a grant from Microsoft Research under
their Windows Azure for Research Award.

the adoption of systematic and reliable genetic testing in
clinical practice, at population scale, within the UK. This
vision of routine population-scale genetic testing presents a
real scalability challenge. Genetic diseases affect 6-8% of the
population in the UK, or about 5 million people who could
benefit from genetic testing. At the same time, exons only
account for about 1% of the human genome [2], and that is
broadly acknowledged to be insufficient for a robust diagnosis
in all cases. The ability to routinely sequence the entire genome
(WGS) will soon bring the remaining 99% into the picture.

To give an idea of computational cost, it currently takes
about 18 hours of computing time, on our local HPC cluster,
to obtain a list of variants (SNVs) from one sample. This
time increases when samples of a patients relative(s) are also
sequenced, to improve diagnostic accuracy. It further increases
when one considers reprocessing old sequences, following
evolution in any of the many algorithms and tools involved
in variant calling. If we add to this the expected 100 fold
scale up in data size and processing times for the upcoming
third generation sequencing technology, it becomes clear that
a highly scalable, yet economically affordable storage and
computing infrastructure is required.

A. Flexibility, traceability and reproducibility requirements

This evolving scenario suggests two key additional re-
quirements for any NGS processing system, in addition to
scalability.

a) Flexibility and extensibility: Firstly, the system must
be able to track technology evolution by rapidly adapting an
existing pipeline, i.e., by reconfiguring tools (changing their
configuration parameters to explore different options), rapidly
adding new tools, tracking their evolution across versions. As
newer versions of some of the algorithms become available,
old sequences need to be re-processed, as the set of variants
called by the new version is very likely to be different from the
original one. In fact, even slightly different configurations of
tools within a single pipeline are known to produce different
results.

b) Traceability: Secondly, associated with the variabil-
ity in variant lists produced at different times, is also the need
to explain the differences amongst those sets of variants, in
terms of differences between the pipelines that produced them.
In turn, this brings about the requirement to produce a detailed
trace of pipeline execution, and thus to record and store the

provenance of each and every set of variants, in a way that
makes it amenable to explaining differences observed amongst
the output datasets.

Importantly, the need to systematically track the variant
calling process extends to downstream phases of WES-based,
and in the near future, WGS-based testing, namely variant
interpretation for diagnostic purposes. One of the promises of
WES/WGS is the ability to test multiple disease hypotheses
regarding common and, perhaps more interestingly, rare ge-
netic diseases. Given one or more phenotypes that are derived
from the patient’s clinical observations, the task of variant
interpretation in a clinical setting involves isolating those
variants (generally very few) that have a high likelihood of
being pathogenic for the specific patient, and are located on
genes that are known to be associated with the phenotypes.
Techniques for variant filtering and selection are the subject of
active and intense research (see [?], [?] for a list of references).
The main concern, for WES to become usable by clinicians, is
to guarantee a very low false positives rate (i.e., the chance to
erroneous deliver a disease diagnosis to the patient). Currently,
variant filtering is still a semi-automated, knowledge-intense
task which is broadly based on heuristic rules, and is partly in
the hands of human experts. The ability to track the filtering
steps is therefore critical to explaining the decision process
that ultimately led to a diagnosis. Thus, once again making
the entire process provenance-aware is a key requirement for
our project.

c) Reproducibility: Related to traceability, the third
major requirement for Cloud-e-Genome is support for repro-
ducibility. Not only is it necessary to provide evidence for
the outcome of a complex process; the process must also be
repeatable over time, and furthermore, it should be possible
to compare results obtained at different times, possibly using
different versions of the tools involved.

B. From scripted pipelines on HPC to workflows on the cloud

In the rest of the paper we describe our technical approach
to addressing the requirements set out above, focusing solely
on phase I of Cloud-e-Genome, namely variant calling.

WES is currently in use within our local research setting
(i.e., not for general clinical use) at the Institute for Genetic
Medicine. The pipeline is illustrated in Fig. 1 and includes
typical NGS processing steps [3], i.e., alignment (BWA),
cleaning (Picard), sequence recalibration, filtering, variant call-
ing and recalibration (GATK), coverage analysis (bedTools),
and annotation (Annovar). The implementation consists of a
number of shell scripts that coordinate the sequential execution
of each of the tools, and is deployed on a dedicated cluster
running the Alces cluster management software.

Our approach involves a double porting effort. Firstly, the
pipeline has been re-coded using our homegrown Workflow
Management System (WfMS), e-Science Central (e-SC). e-SC
has been under active development for over 5 years within the
School of Computing Science, and in past projects has proven
itself as a viable programming model and execution environ-
ment on multiple cloud infrastructures, including Azure [4],
[5]. It also provides provenance recording and serialization
using the interoperable Open Provenance Model [6].

One of the main goals of workflow technology is to
empower scientists with no specific programming background
to take control of the design of their data processing pipelines.
Workflow models achieve this goal by reducing the pro-
gramming effort by increasing the level of abstraction, so
that it becomes an intuitive assembly of pre-defined com-
ponents. This involves separating two sets of tasks, namely
(i) developing new pipeline components and making them
available to designers, and (ii) creating new workflows (e.g. an
NGS pipeline) using those components. The former requires
competence both on the tools and their interfaces, as well as
in general programming. Workflow design, on the other hand,
can be tackled by domain experts (i.e., geneticists) with only
a modest amount of specific training.

With this in mind, re-coding the pipeline involved two
types of initial development effort. Firstly, the tools that make
up the existing pipeline must be turned into workflow blocks.
Secondly, an initial version of the pipeline, modelled on the
existing one, must be reconstructed using the available blocks.
As discussed in detail in Sec. III-A, this is itself a complex
task, as it entails moving from a control-based implementation
(scripts) to a dataflow model (the model is briefly described in
Sec. III-C). Once this initial setup is complete, however, the
resulting workflow provides domain experts with a platform
that they can use to experiment on their own by introducing
minor variations (e.g. changing the values of some tools’
configuration parameters). Incremental pipeline evolution may
still involve deploying new blocks, however.

Another element of our porting effort involves deploying
on a public IaaS cloud (Microsoft Azure). We contend that
an architecture based on cloud-deployed workflow meets the
requirements of scalability and flexibility in a way that is
cost-effective and does not compromise performance, thus
opening the way to operational deployment for clinical use.
Furthermore, provenance recording available in e-SC enables
detailed traceability of process execution. These traces can
be used not only as a form of evidence on how the results
were obtained, but also, in some cases, to describe the effect
of minor variations between two workflow specifications, i.e.
either in the structure or in the versions of some of the
tasks [7].

II. RELATED WORK

Our architecture is aligned with Stein’s vision of a “genome
informatics ecosystem” centred around a cloud computing
infrastructure, where most genome datasets are stored centrally
on virtual servers, and computing resources are allocated elas-
tically to cope with the requirements of increasingly complex
data processing pipelines [1]. Indeed, cloud computing has
recently and repeatedly been advocated as a viable infrastruc-
ture and economic model to support scalable data-intensive
computing, and exemplars of cloud-based data processing
architectures for genomics are beginning to emerge. Recent
examples include the suite of cloud-based bioinformatics tools
described in [8] and the Advanced Sequence Automated
Pipeline (ASAP) framework [9]. Both these solutions offer
little flexibility for re-coding and experimenting with workflow
variations, however. The dependency on external tools that are
not under the control of the “workflow” owner also suggest
limitations in the reproducibility of the analysis.

Stage 1 |

Stage 2

| Stage 3

variant
calling

ol ol
raw Sequences align »| dean recalibrate | |

I

annotated

| »
recalibrate > filter
| annotate

Y

variants

1
: —

coverage w

coverage

Fig. 1. Original NGS processing pipeline

Galaxy is a broadly adopted and successful platform for
genomics studies [10]. Galaxy provides ease of programming,
reproducibility by way of an eco-system of dedicated tools,
provenance recording, and recently, cloud deployment of the
pipelines. This is achieved by means of CloudMan [11], [12], a
cloud manager for the provisioning and control of the required
data analysis environment on popular cloud infastructures.
Galaxy also integrates functionalities from the popular Tav-
erna workflow manager [13] with cloud computing support
(Tavaxy [14]).

Arguably, Galaxy comes close to satisfying the require-
ments we set above. Used in conjunction with Globus Online
services, Condor and Amazon EC2, its effectiveness was
demonstrated in several use cases including ChIP-, RNA- and
Exome-sequencing [15]. The solution shows, however, that to
run a complete NGS pipeline in the cloud Galaxy needs some
additional support tools. In contrast, our goal is to offer an
integrated solution that comprises all software stack needed
to run scientific analyses and which requires nothing more
than the user’s input data. Furthermore, in favour of e-SC is
also its ability to distribute a workflow computation across
cloud cluster nodes in a user-controlled manner. Briefly, work-
flows may contain special tasks which are used to start sub-
workflows. Each sub-workflow can then be run on a separate
worfklow engine, and multiple engines can be deployed on
distinct nodes. Thus, workflow designers explicitly control
the degree of available parallelism by specifying fork-able
sub-workflows at suitable points within the main workflow.
Technical arguments aside, as a home-grown system e-SC
gives us complete control over the evolution of the workflow
model, its technical features, and its future deployment model
over a variety of cloud infrastructures.

A different deployment model involves replicating HPC
cluster functionalities on a public cloud, as the success of the
UPPNEX HPC cluster infrastructure in Sweden shows [16].
The elasticHPC software package and library, designed to sim-
plify the use of high performance cloud computing resources
for bioinformatics applications, is another example [17]. Pro-
vided these models can be successfully combined with a
workflow-based implementation of the pipelines, we may
consider this option as an alternative in the future.

Ultimately, the adoption of e-SC as a workflow platform
for e-science has been proven viable by the experience of the
recent project Cloud4Science [4], where programmable work-
flows have been used to orchestrate a selected set of selected
bioinformatics tools. These tools are designed specifically to
support NGS pipelines in the cloud, with the goal to reduce
technical skills requirements on users.

i ‘ .
—_
—_—

information

Finally, the potential role of MapReduce implementations
of popular tools in genomics is relevant in this context. One
strand of tools, eg Cloudgene [18], are aimed at simplifying the
execution of MapReduce programs for Bioinformatics through
a user-friendly, web-based interface. More directly relevant to
an approach based on programmable workflow is the avail-
ability of specific tools on top of open source MapReduce
implementations, such as Hadoop. A number of such tools
are listed in [19], and the popular Genomics Analysis Toolkit
(GATK), which is used in our Cloud-e-Genome pipeline, is
one example [20].

It is easy to imagine how the e-SC deployment model may
work alongside workflow blocks that are MapReduce jobs,
as they may share the same cloud infrastructure. Specifically,
e-SC can distribute sub-workflow computation across multiple
cloud-based workflow engines, as mentioned above, while
individual blocks are executed on Hadoop cloud nodes. The
appeal of this configuration is not proven, however, and this
option is left for the future investigation.

III. TECHNICAL APPROACH

We now describe the shortcomings of the current pipeline
that triggered the migration effort, and the technical challenges
associated with it.

A. Shortcomings of legacy pipelines

The migration effort was triggered by a combination of
technical and organizational considerations, some of which are
arguably common to most “legacy” code. In essence, pipeline
development and maintenance requires intimate knowledge
of the pipeline, which consists of a collection of low-level,
bash scripts, with no abstraction on top of the raw tools
command line interface. The developers’ knowledge must
extend not only to each of the tools configuration, but also to
the available deployment options. For instance, job submission
to the local HPC cluster requires the explicit allocation of the
desired number of nodes and cores within the nodes. This
configuration is specific to the tools invoked by the scripts
and to the cluster itself, making the entire implementation
hardly portable. Maintaining the pipeline is also complicated,
in sharp contrast to a rapidly changing NGS tools landscape.
For instance inter-task dependencies, and thus effectively the
structure of the pipeline, are hidden in the code. This includes
knowledge of physical file locations and how files are shared
across steps of the pipeline. Also, the cluster provides no
isolation. Interference from other cluster users, in the form
of apparently minor issues such as saturated scratch shared
disk space, causes long-running executions to fail arbitrarily.

In addition to making the code fragile, such complexity
dangerously centralizes control, requiring a highly skilled
developer role. At the same time, limitations in the developers’
technology skills translates into a fragmented pipeline which is
not as fully automated as it could be. This happens for instance
with handling errors of the tools, which if done incorrectly
leads to the need for manual inspection whether the produced
result is correct and can become input for the subsequent step.

Ultimately, as it is often the case with low level e-science
tools, these limitations get in the way of producing valid sets
of variants while tracking technology evolution.

B. The e-SC WfMS

e-SC is a cloud-based data processing system that sup-
ports both Software and Platform as a Service (SaaS/PaaS)
deployment models for scientific data management, analysis
and collaboration. It is a portable system which can be
deployed on both private and public clouds (e.g. Eucalyptus,
Amazon AWS and Microsoft Windows Azure, respectively).
The SaaS interface allows scientists to upload data, edit and
run workflows, and share results in the cloud using only a
web browser. It is underpinned by a scalable cloud platform
consisting of a set of components designed to support the needs
of scientists. More advanced users with software development
skills in common languages (e.g. Java, R) may use the system
in PaaS mode, by uploading their own analysis services into
the system and making these available to others in the form of
ready-to-use workflow tasks. A REST-based API is also pro-
vided so that external applications can leverage the platform’s
functionality, making it easier to build scalable, secure cloud
based applications [21].

e-SC has been used in a number of scientific projects
such as spectral data visualisation, medical data capture and
analysis, and chemical property prediction [22]. As mentioned
earlier, it also featured as the WfMS of choice (in server-
only mode) to run simple NGS analyses in the Cloud4Science
project [4]. Such instance demonstrated the appeal of providing
a higher abstraction level than scripts, as well as the capability
to hide the intricacies of workflow design from end users.

Importantly, e-Science Central supports enactment of data-
flows as opposed to control-flows. Briefly, the control-flow
model defines the order of operations to be executed and
allows workflows to include control interactions such as loops
and conditionals. It usually also includes some form of com-
mon data store so that the operations can manipulate shared
variables and data. Conversely, the dataflow model remains
very simple and defines only services used and the data
dependencies between them [23]. In dataflows there is no
global data shared between services and the flow of execution
and data is explicitly created by the graph of connections
between services. The major advantage of dataflows is the
simplicity of the workflow structure which makes them easier
to understand by non-expert users. They are also a very good
option for visual representation.

C. Migration challenges and associated effort

Considering all the disadvantages of the script-based ap-
proach discussed above and potential advantages that e-SC
workflows can offer, we decided to migrate from scripts to

workflows and from our local HPC cluster to the cloud.
The former should result in better pipeline design and easier
provenance tracking, whereas the latter should offer us better
flexibility in resource access.

The process of migration, although a seemingly simple
task, involved substantial effort. It was mainly related to the
number of tools and reference data we had to embed as e-SC
blocks and libraries and converting the existing script-based
pipeline into dataflows. Moreover, it involved extending e-SC
to match specific requirements of the tools (e.g. the need
to efficiently upload large sequence files), testing partial and
complete solution and, finally, the management of the cloud
service.

The first step in migrating the pipeline was to wrap existing
NGS tools and reference data, like bwa sequence aligner
and GATK processing tools, into e-SC blocks and libraries.
This process resulted in building 25 blocks and 13 libraries
specific to NGS. If the need for blocks is clear, they are
used to design workflows, building e-SC libraries provides two
benefits. It gives better efficiency in running the tools. The
libraries are installed and cached by the workflow engine only
once. Moreover, it is a way to ensure reproducibility because
we do not need to rely on external services to provide us human
reference genome and all other referenced data but we can
store and version them under e-SC control.

With all tools ready, the next step was to adopt existing
script-based pipeline so it could be run as an e-SC workflow.
This required a few changes to the overall pipeline architecture.
Firstly, being unable to express control interactions within
a dataflow we had to rewrite the loops in the scripts into
equivalent constructs. Secondly, we wanted to fully automate
the pipeline so no manual intervention was required unless
necessary, .g. unless errors occur.

Figure 1 shows the high-level picture of the WES pipeline
as coded in the shell scripts. It closely resembles the best prac-
tices defined by the Broad Institute? and adds only calculating
sample coverage data and variant annotation (also including
in house annotation based on a locally available database).
The pipeline involves three key stages: (1) preparation of the
raw sequences for variant discovery, (2) variant calling and
recalibration, (3) variant filtering and annotation. Stages (1)
and (3) were run in a loop so that all tools involved were
executed for each sample separately. Stage (2) was run only
once for all input samples.

Loops were used during stage (1) and (3) to iterate over the
number of samples that the pipeline was configured to process.
For each sample, the script coordinating stage (1) invokes a
set of jobs like sequence alignment, cleaning and recalibration.
To model the same process as a dataflow we exploited the fact
that blocks can transmit a list of data elements through their
ports and also that certain e-SC blocks can start a number
of sub-workflow invocations based on the length of an input
data list. This creates a clear pattern in which an initial block
generates a list of data samples to process and the following
block starts a sub-workflow (the loop body) for each element
in the list.

Zhttp://www.broadinstitute.org/gatk/guide/best-practices

<<block>>
produce list of elements

P

<<block>>
generate attributes

init sample list [s0, s1, s2,...] '

[s0, s1, s2,...]

init list iterator I

[attrO, attrl, attr2,...]

y Y

current = I.getNext <<block>>

run subworkflow(sN, attrN)

y

set attributes v
attr = Attr(current)
<<sub-workflow>>
tool(s0, attr0)
submit tool script
tool(current, attr)
\ 4

=

Fig. 2.
dataflow.

The general pattern how loops in script can be converted into a

However, the loop construct in a script allows also for
data manipulation and state variables to be used within the
loop body. Our pipeline scripts used a few state variables to
rewrite read group information for the input sequences. As
variables are not allowed in e-SC dataflows directly, to rewrite
read groups we had to implement a custom block that can
generate relevant information based on input data. In fact, this
custom block implements a loop that mimics exactly the loop
from the script. Instead of calling the loop body, however, it
outputs a data list that is used by a subsequent, generic block
to call the sub-workflows that realize the loop body. Figure 2
shows a pattern which converts a loop from a script into an
equivalent dataflow. The pattern can be used only for loops that
do not include self-references and so which are not inherently
sequential like e.g. calculating Fibonacci sequence.

To unwind the loop in stage (3) we used the same pattern.
In this case, though, the loop included simple string manipula-
tion and so we were able to avoid implementing a custom loop
block and used existing blocks provided by e-SC. This was
very useful because such custom blocks are very specific to a
particular case and are hardly reused in any other scenarios.

IV. DISCUSSION

Moving the NGS pipeline to the cloud was based on the
assumption that the cloud is able to give us more flexibility
in scaling resources up and down. To achieve other benefits
like reproducibily and extensibility we decided to adopt the
workflow-based approach discussed earlier. Clearly, however,
there are other ways in which this migration cloud be done.

One of the easiest ways would be to run the SGE envi-
ronment in the cloud and transfer data and scripts verbatim;
this could be facilitated by solutions such as StarCluster® or

3http://star.mit.edu

CloudMan [12]. On the one hand, it would save us substantial
effort in wrapping tools into workflow blocks and designing
workflows. On the other hand, we would suffer from most
of the issues and problems that have been observed in the
cluster such as: low-level abstraction of scripts, unclear data
dependencies, no metadata management, no provenance. If we
add to this significantly lower performance of the cloud than
HPC (c.f. [24], [25]), the only benefit of running SGE in the
cloud would be flexibility in resource scaling.

Another approach to consider, as discussed earlier in sec-
tion II, could involve using MapReduce to implement the
pipeline. MapReduce fits, however, the level of NGS tool
implementation (see e.g. [20]) and thus would still require a
higher abstraction level to match our requirements.

Our approach was to use a workflow framework to im-
plement the pipeline and move it to the cloud, so that we
could eliminate the most annoying issues inherent to using
shell scripts and add some of the attractive features offered by
e-SC. The main advantages of this migration are:

e resource scaling,

e version control,

e data provenance,

e uniform tool interface,

e casier sharing of pipelines.

Firstly, it is easy to manage cloud resources in the pool
and grow or shrink the cluster according to the actual needs.
Importantly, it is also easier to grow the data storage space. In
Azure the current limit for a storage account is 200 TB* which
is substantially more than 60 TB of working space available
in our HPC cluster.

Secondly, in e-Science Central changes to data, workflows
and workflow blocks are automatically tracked and every
change generates a new version of the object. This gives a
detailed insight into which tool, data and workflow version
was used to produce particular result. Although similar level of
version control could be achieved by means of source version
control systems such as git and subversion, the advantage of
versioning provided by e-SC is that it happens automatically.
It does not require any user intervention until the user is
interested in other than the latest version of an object. For
less experienced users it greatly minimizes the learning curve
of managing versions.

Thirdly, together with version information, e-SC keeps
track of data provenance, which enables users to investigate
also the configuration of workflows and blocks that accessed
or produced data objects. As mentioned earlier, we find this
feature very important in achieving traceability of results.

A valuable side effect of wrapping NGS tools into e-SC
workflow blocks is that the blocks offer a uniform, clearly
defined user interface; they have input and output data ports
and input properties. This, again, lowers the learning curve for
less experienced users but is also convenient for experts. Users
can simply focus on the actual function of a tool and required

4See “Windows Azure Storage Scalability and Performance Targets” at
http://msdn.microsoft.com/en-us/library/windowsazure/dn249410.aspx

input rather than on remembering what execution environment
it needs and how to set desirable input. It also saves users the
need to build the tools from source code, which is often the
primary way the tools are distributed.

Finally, once a block or workflow has been built, it can
be shared with users of the same e-SC instance, e.g. to build
new workflows and pipelines. However, it can also be reused
in other e-SC installations. Conversely, moving shell scripts
between HPC systems would almost always involve some
effort to rewrite and adapt them to particular configuration
of a cluster (c.f. tool versions, paths to data, job submission
parameters).

Nonetheless, the migration to workflows and the cloud
involves also some disadvantages. Two of them seem to be
most important.

First, the dataflow model we used imposes some restric-
tions in the way pipelines can be designed. As shown earlier,
to escape these restrictions users can implement custom blocks.
That, however, requires programming skills. Also being very
specific to a particular use case, these blocks can hardly be
reused in other contexts. On the other hand, the presented
pipeline required us to implement only one such custom
block, which does not justify the use of the more complex
control-flow model. And to minimize the skillset required,
e-SC supports a few scripting languages in which the blocks
can be programmed (JavaScript, R, Octave). It also offers a
web-based interface to develop simple blocks.

The other issue that will need our attention in the close
future is the expected lower performance of cloud deployments
when compared to traditional HPC clusters. This problem was
observed earlier ([24], [25]) yet with the focus on the Amazon
EC2 cloud and standard VM instances. To run our pipeline
we use, however, the IaaS over Windows Azure for which
performance comparison with HPC systems is not readily
available. Moreover, recently both Microsoft and Amazon
announced availability of HPC clusters in their clouds, a setting
that closely resembles traditional HPC solutions. We are very
keen to compare performance of the pipeline running in our
HPC cluster and in the Azure cloud. Worth noting is also the
fact that despite standard HPC systems are superior in raw
performance, cloud clusters may produce better turnaround
times [?]. This is because a traditional HPC cluster is shared
among multiple users and almost always involves queue wait
time. Conversely, a cluster started in the cloud can be dedicated
for a single user only.

V. CONCLUSION

In this paper we describe our initial experiences with
the migration of a WES pipeline from a script-based HPC
environment to a workflow enactment system running in the
cloud. Although it is too early to claim the absolute benefits
of such a move, which need to be supported by collecting
experiences over time, we expect that the workflow-based
solution in the cloud will alleviate most of the issues we have
been facing using the previous approach.

First of all, the new approach should allow us to track all
the details of the variant discovery process. Having provenance
data, we can explore how pipeline parameters influence results,

compare and choose the best configurations but also give
detailed evidence of each step in this process. The workflow-
based approach will also ease the evolution of the pipeline,
which is critical since new improved tools, tool versions and
reference data appear regularly. It will also be important to fa-
cilitate pipeline redesign once the third generation sequencing
becomes a viable option.

Following the move, our next goal for the future is twofold.
First, we need to test performance of the cloud-based approach
and compare it with the existing HPC-based solution. Despite
our preliminary experiments show lower raw performance,
which is in line with observations made by others previously,
only the extensive testing and tuning of the new solution can
reveal the exact difference. Yet with easy way to acquire large
amount of resources and the new HPC facilities offered in the
cloud we look at this exercise with hope.

Second, the existing workflow-based solution will become
an input for the following phase involving variant filtration and
interpretation. The basic requirements set in this work, such
as flexibility and traceability, will play a very important role
in that phase.

ACKNOWLEDGMENT

This work is sponsored by Biomedical Research Centre,
National Institute for Health and Research and a grant from
Windows Azure Research programme.

REFERENCES

[1] L. D. Stein, “The case for cloud computing in genome informatics.”
Genome biology, vol. 11, no. 5, p. 207, Jan. 2010. [Online]. Available:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2898083 &tool=pmcentre

[2] S. B. Ng, E. H. Turner, P. D. Robertson, S. D. Flygare, A. W.
Bigham, C. Lee, T. Shaffer, M. Wong, A. Bhattacharjee, E. E.
Eichler, M. Bamshad, D. A. Nickerson, and J. Shendure, “Targeted
capture and massively parallel sequencing of 12 human exomes.”
Nature, vol. 461, no. 7261, pp. 272-6, Sep. 2009. [Online]. Available:
http://dx.doi.org/10.1038/nature08250

[3] S. Pabinger, A. Dander, M. Fischer, R. Snajder, M. Sperk,
M. Efremova, B. Krabichler, M. R. Speicher, J. Zschocke,
and Z. Trajanoski, “A survey of tools for variant analysis
of next-generation genome sequencing data.” Briefings in
bioinformatics, pp. bbs086—, Jan. 2013. [Online]. Available:
http://bib.oxfordjournals.org/content/early/2013/01/21/bib.bbs086.long

[4] 1. B. Blanquer, G. Brasche, J. Caa, F. Gagliardi,
D. Gannon, H. Hiden, H. Soncu, K. Takeda, A. Tomas,
and S. Woodman, “Supporting NGS Pipelines in the cloud,”
EMBnet.journal, vol. 19, pp. 14-16, 2013. [Online]. Available:
http://journal.embnet.org/index.php/embnetjournal/article/view/625/879

[5] S. Woodman, H. Hiden, P. Watson, and P. Missier, “Achieving Re-
producibility by Combining Provenance with Service and Workflow
Versioning,” in Procs. WORKS 2011, Seattle, WA, USA, 2011.

[6] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwas-
nikowska, S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan,
E. Stephan, and J. Van Den Bussche, “The Open Provenance Model
— Core Specification (v1.1),” Future Generation Computer Systems,
vol. 7, no. 21, pp. 743-756, 2011.

[7]1 P. Missier, S. Woodman, H. Hiden, and P. Watson, “Provenance and
data differencing for workflow reproducibility analysis,” Concurrency
and Computation: Practice and Experience, vol. in Press, pp. n/fa—-n/a,
2013. [Online]. Available: http://dx.doi.org/10.1002/cpe.3035

[8] Y-C. Lin, C.-S. Yu, and Y.J. Lin, “Enabling large-
scale biomedical analysis in the cloud.” BioMed research
international, vol. 2013, p. 185679, Jan. 2013. [Online]. Available:

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3832998 &tool=pmcentre

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

E. S. Torstenson, B. Li, and C. Li, “ASAP: an environment vol. 25, no. 5, pp. 528-540, May 2009. [Online]. Available:
for automated preprocessing of sequencing data.” BMC research http://linkinghub.elsevier.com/retrieve/pii/S0167739X08000861

notes, vol. 6, no. 1, p. 5, Jan. 2013. [Online]. Available: [24] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
http://www.biomedcentral.com/1756-0500/6/5 D. Epema, “A Performance Analysis of EC2 Cloud Computing Services

J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a for Scientific Computing,” in Cloud Computing, 2010, pp. 115-131.
comprehensive approach for supporting accessible, reproducible, and [25] E. Walker, “benchmarking Amazon EC2 for high-performance scientific
transparent computational research in the life sciences.” Genome computing,” ;login:, vol. 33, no. 5, pp. 18-23, 2008.

biology, vol. 11, no. 8, p. R86, Jan. 2010. [Online]. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2945788 &tool=pmcentrez&rendertype=abstract

E. Afgan, D. Baker, N. Coraor, H. Goto, I. M. Paul,
K. D. Makova, A. Nekrutenko, and J. Taylor, “Harnessing
cloud computing with Galaxy Cloud.” Nature biotechnology,
vol. 29, no. 11, pp. 972-4, Nov. 2011. [Online]. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3868438 &tool=pmcentrez&rendertype=abstract

E. Afgan, B. Chapman, and J. Taylor, “CloudMan as a platform
for tool, data, and analysis distribution.” BMC bioinformatics,
vol. 13, no. 1, p. 315, Jan. 2012. [Online]. Available:
http://www.biomedcentral.com/1471-2105/13/315

P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dunlop,
A. Williams, T. Oinn, and C. Goble, “Taverna, reloaded,” in Procs.
SSDBM 2010, M. Gertz, T. Hey, and B. Ludaescher, Eds., Heidelberg,
Germany, 2010. [Online]. Available: http://www.ssdbm2010.org/

M. Abouelhoda, S. A. Issa, and M. Ghanem, “Tavaxy: integrating
Taverna and Galaxy workflows with cloud computing support.”
BMC bioinformatics, vol. 13, p. 77, Jan. 2012. [Online]. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3583125&tool=pmcentrez&rendertype=abstract

R. K. Madduri, P. Dave, D. Sulakhe, L. Lacinski, B. Liu, and I. T. Foster,
“Experiences in building a next-generation sequencing analysis service
using galaxy, globus online and Amazon web service,” Proceedings
of the Conference on Extreme Science and Engineering Discovery
Environment Gateway to Discovery - XSEDE 13, p. 1, 2013. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2484762.2484827

S. Lampa, M. Dahls, P. I. Olason, J. Hagberg, and O. Spjuth,
“Lessons learned from implementing a national infrastructure in
Sweden for storage and analysis of next-generation sequencing data.”
GigaScience, vol. 2, no. 1, p. 9, Jan. 2013. [Online]. Available:
http://www.gigasciencejournal.com/content/2/1/9

M. El-Kalioby, M. Abouelhoda, J. Kriiger, R. Giegerich, A. Sczyrba,
D. P. Wall, and P. Tonellato, “Personalized cloud-based bioinformatics
services for research and education: use cases and the elasticHPC
package.” BMC bioinformatics, vol. 13 Suppl 1, no. Suppl 17, p. S22,
Jan. 2012. [Online]. Available: http://www.biomedcentral.com/1471-
2105/13/S17/S22

S. Schonherr, L. Forer, H. Weil3 ensteiner, F. Kronenberg, G. Specht,
and A. Kloss-Brandstitter, “Cloudgene: a graphical execution platform
for MapReduce programs on private and public clouds.” BMC
bioinformatics, vol. 13, no. 1, p. 200, Jan. 2012. [Online]. Available:
http://www.biomedcentral.com/1471-2105/13/200

A. ODiriscoll, J. Daugelaite, and R. D. Sleator, “Big data,
Hadoop and cloud computing in genomics,” Journal of Biomedical
Informatics, vol. 46, no. 5, pp. 774-781, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1532046413001007

A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis,
A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly,
and M. A. DePristo, “The Genome Analysis Toolkit: a MapReduce
framework for analyzing next-generation DNA sequencing data.”
Genome research, vol. 20, no. 9, pp. 1297-303, Sep. 2010.
[Online]. Available: http://www.scopus.com/inward/record.url ?eid=2-
$2.0-77956295988&partnerID=tZOtx3y1

H. Hiden, S. Woodman, P. Watson, and J. Caa, “Developing cloud
applications using the e-Science Central platform,” Philosophical
transactions. Series A, Mathematical, physical, and engineering
sciences, vol. 371, no. 1983, Jan. 2013. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/23230161

J. Cala, P. Watson, and S. Woodman, “Cloud Computing for Fast
Prediction of Chemical Activity,” in Procs. 2nd International Workshop
on Cloud Computing and Scientific Applications (CCSA), Ottawa,
Canada, 2012.

E. Deelman, D. Gannon, M. Shields, and 1. Taylor,
“Workflows and e-Science: An overview of workflow system
features and capabilities,” Future Generation Computer Systems,

