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Abstract 

The ability to measure the use and impact of published data sets is key to the success of 

the open data/open science paradigm. A direct measure of impact would require tracking 

data (re)use in the wild, which is difficult to achieve. This is therefore commonly replaced 

by simpler metrics based on data download and citation counts. In this paper we describe 

a scenario where it is possible to track the trajectory of a dataset after its publication, 

and show how this enables the design of accurate models for ascribing credit to data 

originators. A Data Trajectory (DT) is a graph that encodes knowledge of how, by whom, 

and in which context data has been re-used, possibly after several generations. We provide 

a theoretical model of DTs that is grounded in the W3C PROV data model for provenance, 

and we show how DTs can be used to automatically propagate a fraction of the credit 

associated with transitively derived datasets, back to original data contributors. We also 

show this model of transitive credit in action by means of a Data Reuse Simulator. In the 

longer term, our ultimate hope is that credit models based on direct measures of data reuse 

will provide further incentives to data publication. We conclude by outlining a research 

agenda to address the hard questions of creating, collecting, and using DTs systematically 

across a large number of data reuse instances in the wild. 
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Introduction 

The practice of publishing research data has been maturing rapidly, following increasing 

evidence that the combination of data sharing and emerging data citation practices 

represent new opportunities for extending the value chain of the data, rather than a threat 

to its owners (Piwowar & Vision, 2013). Reasons for publishing data, and scientific 

datasets in particular, include faciltating its re-use and enabling its validation. A plethora 

of data repositories are available where scientists can publish their datasets, assign a 

persistent identifier to them, and make them discoverable. Much less is known about the 

lifetime of those datasets after their publication, namely the knowledge of how, by whom, 

and in what contexts they have been re-used, and whether such instances of re-use have 

produced interesting derived data products, possibly after several generations. We refer 

to this new type of knowledge as the trajectories of published data (Data Trajectories, or 

DT). The main hypothesis that motivates our research is that knowledge of DTs makes it 

possible to quantify the impact and influence of research data through several generations 

of reuse and derivation, transitively . In turn, this will lead to new notions of transitive 

credit to data owners, which may inform and extend current data citation practices. We 

are aware of very few attempts at defining transitive credit in the context of data citation. 

Amongst these is (Katz, 2014), where the concept is not fully formalised nor made 

operational through metadata management and analysis. 

Challenges in Tracking Data Reuse and the Role of Data Citation 

While counting data downloads from repositories is straightforward, tracking their usage 

in the wild is much more challenging. Data can be reused in endless ways through program 

logic, entirely or in part, on its own or combined with other datasets. Furthermore, 

such derivations can extend over several generations, and may take place on different, 

autonomous information systems and data processing environments. 

(Robinson-García, Jiménez-Contreras & Torres-Salinas, 2015) describe data citation 

practices that go beyond simple download count as valid surrogates to direct tracking of 

data use. (Callaghan et al., 2012) recommend that data citation should be based on similar 

review stages as journal articles, as a necessary first step to treating data as a first class 

scientific object. However, recognising the complexity of data derivation, they also argue 

that further mechanisms are needed to facilitate data transparency and scrutiny. Even 

when data citation is primarily viewed as an extension of traditional article publication, 

tracking data citation requires different and more sophisticated processes than tracking 

data downloads (Mayernik, 2013). 

Efforts in this direction include Thomson’s data citation index 1 , as well as community 

efforts such as the Publishing Data Bibliometrics Working Group 2 at the Research Data 

Alliance (RDA) 3 ; the Snowball Metrics project 4 ; Altmetrics; and Elsevier’s Metrics

 

1 Web of Science Data Citation Index: http://wokinfo.com/products_tools/multidisciplinary/dci/ 

2 RDA/WDS Publishing Data Bibliometrics Working Group: https://rd-alliance.org/groups/rdawds 

-publishing-data-bibliometrics-wg.html 

3 Research Data Alliance: http://rd-alliance.org 

4 Snowball Metrics: http://snowballmetrics.com 
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Development Program 5 . In 2014, the NSF funded the “Make your data count” project, 

managed by the PloS Open Access journal in collaboration with DataONE 6 and the 

California Digital Library, to elicit ideas on data metrics from researchers. Earlier 

on, the MESUR project (Bollen, Van de Sompel & Rodriguez, 2008) focused on 

collecting evidence of usage through many types of events, but mostly those associated 

with references to articles. Organisations like DataCite 7 promote the use of persistent 

identifiers, like DOIs, for data, while the Publishing Data Services Working Group 8 at the 

RDA studies ways to link data and article publications. 

Contributions 

This paper aims to contribute to the understanding of direct data reuse models, and its 

implications for the design of new credit models based on data reuse. Specifically, we 

make the following contributions. 

Firstly, from the well-known notion of data provenance we derive a definition of 

the trajectory of a dataset D . Informally, this is the graph of all direct and transitive 

derivations from D to any other D 

′, such that there is a provenance graph that includes D 

and D 

′, and D is reachable from D 

′ through derivation and usage/generation paths in the 

graph. 

Secondly, we show how perfect knowledge of all such dependencies can be used to 

formally define transitive credit , and we are going present one such credit model in detail 

as a concrete example. Transitive credit is based on the principle that any credit that 

is assigned to derivative work D 

′ should propagate transitively “upstream” to every D 

such that D 

′ is in the trajectory of D , i.e., to any D that contributed to the derivation of 

D 

′. Importantly, this model also accommodates any direct credit attribution that may be 

defined by the community, be it based on data citations, download counts, or other indirect 

criteria. Specifically, how much of D ’s credit should be apportioned to D 

′ is determined 

by the dependency relationships along the trajectory path from D to D 

′. Thus, we use the 

provenance of D 

′ to assign fair credit to D , and thus to its publisher (the Agent responsible 

for D , in provenance parlance). 

Thirdly, we present an instance of our credit model at work on a simulated data reuse 

scenario. With the understanding that many possible such models can be defined, we 

have implemented a data reuse simulator , 9 which we use as a research tool for exploring 

different credit models, and for understanding their implications for data publishers. 

These contributions are designed to lay the foundations for further research in the area 

of data reuse analysis based on provenance. In this sense, we are aware that the concepts 

presented in the paper are still only theoretical. The reality of tracking data usage is a 

vision that presents many challenges because of the broad diversity of ways in which public 

data can be used without control, and the lack of metadata management infrastructure 

for generating and collecting provenance across many independent information systems. 

Implementing these ideas in the wild is therefore a long-term research proposition, for

 

5 Metrics Development Program: http://emdp.elsevier.com 

6 DataONE: http://dataone.org 

7 DataCite: http://datacite.org 

8 Publishing Data Services Working Group: https://rd-alliance.org/groups/rdawds-publishing-data 

-services-wg.html 

9 Data Reuse Simulator: https://github.com/PaoloMissier/DRS 
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which simulated data reuse is only the beginning. 

Thus, as our final contribution, we highlight some of the challenges and set out a 

research agenda for a practical realisation of our vision of pervasive tracking of published 

data through its lifetime. 

Provlets and Data Trajectories 

We now outline an ideal, theoretical scenario where we assume that (i) published datasets 

are encapsulated as Research Objects (RO) (Bechhofer, De Roure, Gamble, Goble & 

Buchan, 2010), which are given unique and persistent identifiers through certified data 

repository managers, and (ii) complete provenance metadata is available, which describes 

each instance of RO reuse, at least at a high level. The research implications of relaxing 

these assumptions are discussed in the final section of the paper. 

Research Objects 

Following emerging practice for data preservation, specifically for scientific datasets, 

it is now becoming realistic to assume that units of publishable data be represented 

as Research Objects. These are the main entities whose trajectories we want to track. 

ROs are encapsulations of data and metadata of any type, described by a Resource Map 

in ORE format. Metadata artifacts may include the description of the process (script, 

workflow) used to generate the data, the provenance of the data, and other metadata of 

varying types. Different vocabularies, or ontologies, can be used in the Resource Map 

to best describe such diverse metadata content. We also assume, following for example 

DataCite and FigShare practices amongst others, that data publishers assign unique 

persistent ID (PIDs), such as DOIs, to ROs upon publication, and that such PIDs are used 

consistently throughout the derivation chain. RO formats may vary, ranging from their 

original, complex, specification 10 , to the simpler notion of Data Packages as defined by 

the DataONE project 11 , to the even simpler but more radical notion of nanopublications 

(Mons et al., 2011). 

The PROV Model for Provenance 

We use the PROV provenance model (Moreau et al., 2012) as a foundation for a 

formal and machine-processable definition of Data Trajectories. A recent book on 

PROV describes the W3C recommendation through a number of case studies (Moreau 

& Groth, 2013). Using PROV, we can express derivation dependencies of the form 

“ RO2 

wasDerivedFrom RO1”, where RO1, RO2 

are PROV Entities, i.e., data or other 

artifacts to which we can associate a provenance. Further, if a program P is known 

to have used RO1 

as input, and have generated a new RO2 

as output, we can express 

the derivation of RO2 

from RO1 

through P using the following two PROV assertions: 

< P used RO1 

>, < RO2 

wasGeneratedBy P >, which collectively form a (very basic) 

PROV document . Here, P is an example of an Activity, i.e., “ something that occurs over

 

10 See: http://researchobjects.org 

11 See: https://releases.dataone.org/online/api-documentation-v1.2.0/design/DataPackage.html 
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a period of time and acts upon or with entities ” (Moreau et al., 2012). 

We can also use PROV to explicitly associate both Entities and Activities with Actors, 

i.e, people but also, possibly, automated systems, who have been responsible for those 

Entities and Activities. The following PROV document extends the example above by 

including attribution annotations concerning two actors A1, A2: 

< P used RO1 

>, < RO2 

wasGeneratedBy P > (1) 

< RO1 

wasAttributedTo A2 

>, < RO2 

wasAttributedTo A1 

>, < P wasAssociatedWith A1 

> (2) 

where assertions on line (1) describe dependencies amongst the ROs, and those on line 

(2) associate the ROs and the program P with Agents. 

PROV defines three types of sets: (i) Entities ( En ), i.e., data, documents; (ii) Activities 

( Act ), which represent the execution of some process over a period of time, and (iii) Agents 

( Ag ), i.e., humans, computing systems, software. We are going to use the following subset 

of relations amongst these sets: 

usage: used ⊆ Act × En generation: wasGeneratedBy ⊆ En × Act 

derivation: wasDerivedFrom ⊆ En × En 

association: wasAssociatedWith ⊆ Act × Ag attribution: wasAttributedTo ⊆ En × Ag 

Furthermore, to each activity a ∈ Act we associate a type, τact ( a ) . Activity types are 

useful to describe properties that are common to a set of activities, such as the parameters 

used to compute transitive credit for ROs, as defined later. Finally, we represent a 

provenance document as a Directed Acyclic Graph (DAG), where nodes denote either 

Entities, Activities, or Agents, and an arc of the form x 

r
−→ y denotes the directed 

relationship r ( x , y ) , where r is one of the relation types above. 

Provlets 

We have made the ideal assumption that complete provenance is available to describe 

each instance of data reuse. More precisely, each derivation/reuse event involving ROs 

is described by a small PROV document, such as those shown above. We have coined 

the term provlets to denote such documents. Although in reality each of these events 

may occur on a different Information System and at different times, we also assume that 

provlets, possibly created independently of each other, are available for each reuse event. 

Taken individually, each provlet tells a limited story of an RO’s lifetime, as each is 

concerned with a single derivation step. However, as long as there is agreement amongst 

the system on consistently using the PIDs assigned to each RO, it is straightforward to 

combine a collection of provlets that contain references to the same RO, into a larger 

PROV document. 

A Publication-Reuse Scenario 

We show the provlets idea on a simple RO publication-reuse scenario, depicted in Figure 

1. The scenario involves an initial RO, RO1, which is created and then published by 

Alice to data repository DR1. This RO is later discovered, downloaded, and reused by 

Bob through a process P1, and independently by Charlie through process P2, resulting in 

derivative objects RO2, RO3, and RO4, respectively. These new ROs may be published 
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Figure 1. A hypothetical sequence of publish- 

reuse actions.
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Figure 2. PROV graph for the se- 

quence on the left. 

into different and separate data repositories, e.g. DR2, DR3 

as in the figure. Here Alice, 

Bob, and Charlie are modelled as PROV Agents, and P1, P2 

as Activities. Not all details 

about a derivation are always available. For instance, in this example RO2 

and RO3 

are later themselves reused by some unknown Agent through some unknown Activity, 

generating RO5 

as a result. Table 1 lists the RO reuse events for this scenario, along with 

the corresponding provlets in textual and graph form. 

Data Trajectories 

Given a provenance DAG p , consider the graph p′ obtained by reversing the direction of 

the arcs in p . For each node RO of p′, we define the trajectory DT ( RO ) of RO to be the 

tree obtained by traversing p′ starting from RO . We write DT . e ( RO ) and DT . a ( RO ) to 

denote the set of Entity (i.e. RO) nodes and Activity nodes, respectively, that appear in 

the DT ( RO ) tree. As an example, the trajectories of each of the ROs for the complete 

provenance graph in Figure 2 are presented in Figure 3. Note that this definition allows 

an RO to appear in the trajectory of another RO more than once, for instance RO5 

appears 

twice in DT ( RO1) , because it is reachable from RO1 

both through RO2 

and RO3.

P1

P2

RO1DT(RO1): 
DT(RO3)

P2

Px

RO3DT(RO3): 

DT(RO4)

DT(RO5)

RO5DT(RO5): PxRO2 DT(RO5)

DT(RO2)

RO4
DT(RO4)

DT(RO2): 

DT(RO4): 

Credit propagation

 

Figure 3. Summary of trajectory trees for each of the ROs in the running example. 

From Data Trajectories to Transitive Credit for Data 

Owners 

To illustrate how this simple notion of data trajectories provides a foundation for 

experimenting with models of transitive credit , we define one such model as an example. 
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P2 
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P2 
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RO1

RO3
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genBy
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Unknown Agent reuses 

RO2 

and RO3, 

generating RO5 

through an unknown 
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DR2
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DR3RO5

RO3

 

Px 

used RO2, 

Px 

used RO3, 

RO5 

wasGeneratedBy Px

Px

RO2

RO3

RO5used genBy

 

Table 1. RO reuse events and corresponding provlets for the running example. 

The model is underpinned by a simple principle: when a derived data product RO′ is 

credited, i.e. by the community, as a valuable research data contribution, then all of the 

other RO s that made RO′ possible should receive some of that credit, in a proportion that 

depends on their importance on creating RO′. The more indispensable RO is perceived 

to RO′s derivation, the more credit RO should receive. This principle applies transitively 

to account for multiple generations of reuse and derivation. We use Data Trajectories to 

determine how credit propagates “upstream” from derived ROs, possibly several steps 

removed from the original RO. We introduce a number of parameters, one for each of 

the types τact ( a ) of activities a that account for the RO transformations, to quantify the 

notion of relative importance of the upstream ROs in the derivation process. Ultimately, 

credit transfers from the ROs to the Agents who are responsible for them, according to 

the Entity attribution assertions in the PROV document. 

Following this rationale, we separate the total credit ascribed to RO , denoted cr ( RO ) , 

into two separate components. The first is the external credit , denoted crext( RO ) . 

This component accommodates any criteria that a community may decide to adopt for 

associating a score to a published RO, and which is independent on the reuse history 

of the RO. Such score may, for example, reflect emerging community practices on data 

citations in repositories. The second component of cr ( RO ) reflects the reuse history of 

RO . It allows each RO in the provenance graph to receive a fraction of the credit that is 
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ascribed to each “downstream” RO′ ∈ DT . e ( RO ) . For the sake of the example, we assume 

that downstream credits combine linearly to provide credit to upstream nodes. 

Note that this is a definition by induction, following the tree structure of DT ( RO ) . 

The base case is that of a RO′ that has not been reused at all. In this case, only the 

external, baseline credit component crext( RO 

′) applies. For the induction, we now 

distinguish several PROV patterns of reuse. A summary of these patterns, along with their 

corresponding credit propagation rules and the trajectory patterns, is depicted in Figure 4.

RO reused p times 

 

 

single-input, 
single-output activity 

 

 

many-input, 
many-output activity 

 

 

RO derivation  
with unknown activity 

 

 

RO

used

genBy

ApA1

… …

……

…

genBy

used
credit

cr(RO) =

p�

k:1

crak
(RO)

RO

used

genBy

A

credit

RO’

αa credit
cra(RO) = �(a) · cr(RO �) + crext(RO)

used

genBy

Aαa

RO’mRO’1

RO1 ROi ROnβa

γa

cra(RO) = �a · �a
i ·

m�

j:1

�a
j · cr(RO �

j) + crext(RO)

wasDerivedFrom αder

RO’

RO

cr(RO) =
�der

n
· cr(RO �) + crext(RO)

 

Figure 4. RO reuse patterns, trajectories, and credit propagation rules 

To begin, consider the most general case, where we assume that RO has been reused 

by r different activities, a1 

. . . ar , possibly at different times, as in Figure4(a). Following 

the structure of DT ( RO ) from Figure 3, we define cr ( RO ) to be the sum of r distinct credit 

components, cra1 ( RO ) . . . crar ( RO ) , each due to one activity ak 

that has reused RO : 

cr ( RO ) = 

r∑ 

k :1 

crak ( RO ) (3) 

We now progressively build up to a general definition of cra ( RO ) , for a generic 

activity a . We begin with the simplest case where RO is used by a to generate a single 

new RO, RO′, as in Figure4(b). As mentioned, we want RO to receive a fraction of RO′s 

credit. To model the extent to which credit propagates through a , we introduce a credit 

transfer parameter α( a ), with 0 ≤ α( a ) ≤ 1 . To explain its function, recall that the idea of 
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credit propagation through a reuse pattern < a used RO >, < RO′ wasGeneratedBy a > 

is based upon the intuition that RO′ owes its value to both RO , and the transformation 

a . Introducing α( a ) allows us to explicitly model the value contribution due to the 

transformation a , relative to that of its input data RO . For instance, consider a data 

cleaning algorithm that takes noisy data RO and produces a cleaner version, RO′, of the 

same data. One may argue that much of the value in RO′ is due to the algorithm, rather 

than to the data. We model this by only transferring a small portion of cr ( RO′) credit 

back to RO , i.e., by setting a low value for α( a ). Note that discussing specific criteria for 

setting the values of this and other parameters introduced in the model is beyond the scope 

of this paper and left for further research, as mentioned in the last section of the paper. 

Formally, we define the credit propagation rule for the graph pattern in Figure4(b) as: 

cra ( RO ) = α( a ) · cr ( RO′) + crext( RO ) (4) 

where cra ( RO ) is defined inductively in terms of cr ( RO′) , with the external credit 

crext( RO′) as the base case. 

Next, we extend Equation (4) to the case where RO is only one of n > 1 inputs 

used by a . This new pattern is shown in Figure4(c). In this scenario, in addition to the 

transfer parameter α( a ), we also account for the relative importance of each of the n inputs 

RO1 

. . . ROn. We therefore introduce n new factors, 0 < β( a ) 

i 

≤ 1 , i : 1 . . . n , subject to: 

n∑ 

i :1 

β( a ) 

i 

= 1 

and define: 

cra ( ROi) = α( a ) · β( a ) 

i 

· cr ( RO′) + crext( ROi) (5) 

With this new definition, RO accrues a proportion of the total credit of RO , which accounts 

for its perceived importance in computing RO′ using a . Note that when there is only 

one input, Equation (5) reduces to Equation (4) as expected, and when all inputs to a are 

equally important, i.e. β( a ) 

i 

= 

1

 

n 

for all i , Equation (5) becomes 

cra ( ROi) = 

αa

 

n 

· cr ( RO′) + crext( ROi) (6) 

Finally, we extend Equation (5) one more time, to account for the most general pattern 

where not only is RO only one of the inputs, but also, a generates m > 1 outputs, as 

shown in Figure 4(d). In this situation, RO receives credit from each of the outputs RO′, 

which are all part of DT ( RO ) . Again, we model the different importance ascribed to each 

of these derived data products by introducing m new factors γ ( a ) 

j 

, subject to 

m∑ 

j :1 

γa 

j 

= m 

and define: 

cra ( ROi) = αa · βa 

i 

· 

m∑ 

j :1 

γa 

j 

· cr ( RO′ 

j ) + crext( ROi) (7) 
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We conclude by adding the special case where the activity that accounts for the RO 

reuse is unknown. In this case, we use the generic data derivation relationship: 

RO′ wasDerivedFrom RO (8) 

where of course more than one RO′ may have been derived from RO . According to 

the PROV constraints document (Cheney, Missier & Moreau, 2012), from pattern (8) 

we can infer the existence of an activity a , such that both assertions < a used RO > 

, < RO′ wasGeneratedBy a > hold. We introduce a final credit transfer parameter, αder, 

to model credit propagation due to derivation. In this case, when there are n known 

derivations of RO , rule (4) becomes: 

cr ( RO ) = 

αder

 

n 

· cr ( RO′) + crext( RO ) (9) 

Finally, we stipulate that the Agents A g that are mentioned in the PROV document 

accrue a credit cra g ( A g ) that is simply the sum of every credit associated to the ROs they 

are responsible for: 

cra g ( A g ) = 

∑ 

r 

cr ( r ) over all RO r s.t. < r wasAttributedTo A g > holds. (10) 

Model Summary 

We have shown how a formal notion of a data trajectory DT ( RO ) , derived from a 

composition of multiple, independently generated provlets, can be used to apportion 

credit to data publishers. As an example, we have presented a model that consists of three 

main elements: 

• An external credit function, crext( RO ) , which associates a value to each RO 

that appears in the compound provenance graph. Such value can follow any 

community-based scoring scheme of data relevance; 

• A set of credit propagation rules (3) through (9) that are computed inductively from 

DT ( RO ) and which formalise the notion of transitive credit , cr ( RO ) ; 

• A set of credit transfer parameters, which account for the nature of the activities 

involves in the trajectory of RO , including, where this information is available, the 

relative importance of each of its inputs and outputs. 

Simulating Data Trajectories and Credit Propagation 

Realising an information management infrastructure that is capable of generating data 

trajectories for all instances of data reuse is a long-term, challenging research proposition, 

which we articulate in the final section of this paper. As a starting point for the research, 

we have implemented a Data Reuse Simulator , which we use as a tool for experimenting 

with various assumptions regarding the completeness of data trajectories, and with 
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different credit models. 12 . The simulator is capable of generating two types of events: 

(i) new instances of data reuse and derivation, and (ii) updates to the external credit of 

one or more of the ROs, on the assumption that community-ascribed credit may change 

over time. Data reuse events cause the generation of more ROs, the creation of the 

corresponding provlets, and the update of data trajectories to reflect the new derivation 

and usage/generation relationships, as shown in the example of Figure 3. They also trigger 

the propagation of the initial external credit associated with new ROs, backwards along 

each of the relevant trajectories. The second type of events, changes to external credit, 

also triggers the propagation of the credit updates. 

The simulator can be used to explore many scenarios of possible trajectory structures 

and credit propagation dynamics, through the generation of random interleavings of 

events, with some user control. Here we show the simulator in action, to reproduce the 

scenario in Figure 1. We have also presented a more complex data reuse scenario in the 

Appendix, to provide a better intuition for the simulator’s capabilities. The plot in Figure 5 

shows how credit changes for the ROs, in response to key events in our example, shown 

at the bottom. Initially, all new ROs have the same external credit value 1. Following 

the reference scenario, these values propagate through activities P1 and P2, as well as 

through a third unknown activity.

 

Figure 5. Total credit changes to ROs following reuse and external credit adjustment events. 

In the simulator, we make the simplifying assumption that all inputs to an activity a 

are equally important, i.e. we use Equation (5) where β( a ) 

i 

= 

1

 

n 

for all i . Similarly, we 

use a single value γ ( a ) = m , the number of inputs to a . With these assumptions, we can 

express the type τact ( a ) of an activity a as a triple τact ( a ) = [ α, β, γ ] . In the example, 

we have used τact ( P1 ) = [0 . 5 , 1 , 0 . 5] , and τact ( P2 ) = [0 . 8 , 0 . 5 , 1] . The implicit activity 

dt:act_297 is assigned τact ( P1 ) by default. 

The figure illustrates the different ways that the total credit of each RO progresses, at a 

faster or slower pace than that of others, depending on the amount of reuse and the type of

 

12 The current version of the simulator software is available at http://github.com/PaoloMissier/DRS. It is 

implemented in Python and makes use of the Southampton provenance suite: http://provenance.ecs.soton 

.ac.uk 
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activity that consumes the RO. As expected, the oldest RO, RO1 

acquires the highest credit 

as its trajectory extends over time, and as its descendents acquire recognition through 

additional external credit. Note that credit can be transferred from ROs to the agents that 

are responsible for them, by using the attribution and association PROV relationships. 

Data Trajectories in Practice: Challenges and Research 

The data trajectories and the transitive credit model illustrated in this paper are both 

theoretical. In reality, because of the broad diversity of ways in which public data can be 

used without control, the vision of tracking data usage in the wild faces many challenges. 

We conclude by highlighting some of these challenges, and set out a research agenda for 

realising transitive credit in practice. 

Trajectories are compositions of independently created provlets, which must be 

systematically generated by multiple, diverse, autonomous information systems, to 

the extent possible through observation of data transformation processes. This is not 

unrealistic, as provenance recorders exist for languages like Python (Murta, Braganholo, 

Chirigati, Koop & Freire, 2014) and R (Liu & Pounds, 2014; Lerner & Boose, 2014), 

as well as for many workflow management systems including Taverna, eScience Central, 

SciCumulus, Pegasus, Kepler. However, no system today systematically harvests these 

traces in a central place, where trajectories can be computed. This is a long-term 

infrastructure problem, requiring concerted efforts across data repositories organisations. 

Also, the granularity at which provenance is recorded varies, depending on the systems’ 

provenance capture capabilities. Further, provlet composition requires the consistent use 

of data identifiers across instances of data reuse and across systems. This is by no means 

the norm today, although standards for data PIDs, like those promoted by DataCite, are 

gaining acceptance in forums like the Digital Curation Centre in the UK 13 , and more 

globally, the RDA. However, even when identifiers are available data consumers have no 

obligation to acknowledge their primary source of data. This is particularly problematic in 

the so-called long tail of science (Wallis, Rolando & Borgman, 2013), where consumers 

are less likely to record reuse in any systematic way. Credit management is further 

complicated when ROs are only partially reused, as this violates the assumption that ROs 

are atomic data entities. 

To some extent, these issues can be addressed through a long-term plan to develop 

infrastructure to support the notion of data trajectories across the broad research science 

community. More fundamentally, however, we should assume that trajectories are always 

bound to be fragmented and incomplete representations of actual data reuse, leading in 

turn to unrealistic credit assignments. Our suggested research agenda is therefore focused 

on addressing the following key research questions. 

• Firstly, under what circumstances it is possible to estimate the likelihood of some 

of the missing derivations (for instance, using machine learning and predictive 

analytics techniques)? 

• Secondly, to what extent can the resulting probabilistic provenance graphs and 

trajectories be used to support useful, fair, and credible transitive credit models?

 

13 Digital Curation Centre: http://dcc.ac.uk 
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• Thirdly, when using a credit model that relies on credit transfer parameters, as we 

have shown, how are these determined? Can they be learnt, or adjusted dynamically 

following feedback from the community? 
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Appendix: A More Complex Instance of Simulated Data 

Reuse 

Figure 6 shows a more complex simulated data reuse scenario, which includes 15 

ROs, managed by nine Data Operators (the Agents at the top of the figure), with a 

random combination of ten derivation and usage/generation events. These are (randomly) 

interleaved with ten external credit update events. The resulting progression of total credit 

over time is shown in Figure 7. 
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Figure 6. The global provenance graph for the entire reuse history. 
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Figure 7. RO total credit progression for the data reuse scenario of Figure 6. 
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