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ABSTRACT
As with general graph processing systems, partitioning data over
a cluster of machines improves the scalability of graph database
management systems. However, these systems will incur additional
network cost during the execution of a query workload, due to inter-
partition traversals. Workload-agnostic partitioning algorithms
typically minimise the likelihood of any edge crossing partition
boundaries. However, these partitioners are sub-optimal with re-
spect to many workloads, especially queries, which may require
more frequent traversal of specific subsets of inter-partition edges.
Furthermore, they largely unsuited to operating incrementally on
dynamic, growing graphs.

We present a new graph partitioning algorithm, Loom, that op-
erates on a stream of graph updates and continuously allocates the
new vertices and edges to partitions, taking into account a query
workload of graph pattern expressions along with their relative
frequencies. First we capture the most common patterns of edge
traversals which occur when executing queries. We then compare
sub-graphs, which present themselves incrementally in the graph
update stream, against these common patterns. Finally we attempt
to allocate each match to single partitions, reducing the number of
inter-partition edges within frequently traversed sub-graphs and
improving average query performance.

Loom is extensively evaluated over several large test graphs
with realistic query workloads and various orderings of the graph
updates. We demonstrate that, given a workload, our prototype
produces partitionings of significantly better quality than existing
streaming graph partitioning algorithms Fennel & LDG.

1 INTRODUCTION
Subgraph pattern matching is a class of operation fundamental to
many “real-time” applications of graph data. For example, in social
networks [9], and network security [3]. Answering a subgraph pat-
tern matching query usually involves exploring the subgraphs of
a large, labelled graph G then finding those which match a small
labelled graph q. Fig.1 shows an example graphG and a set of query
graphsQ which we will refer to throughout. Efficiently partition-
ing large, growing graphs to optimise for givenworkloads of
such queries is the primary contribution of this work.

In specialised graph database management systems (GDBMS),
pattern matching queries are highly efficient. They usually corre-
spond to some index lookup and subsequent traversal of a small
number of graph edges, where edge traversal is analogous to pointer
dereferencing. However, as graphs like social networks may be both
large and continually growing, eventually they saturate the mem-
ory of a single commodity machine and must be partitioned and
distributed. In such a distributed setting, queries which require
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Figure 1: Example graph G with query workload Q

inter-partition traversals, such as q2 in Fig. 1, incur network com-
munication costs and will perform poorly. A widely recognised
approach to addressing these scalability issues in graph data man-
agement is to use one of several k-way balanced graph partitioners
[2, 10, 13, 17, 29–31]. These systems distribute vertices, edges and
queries evenly across several machines, seeking to optimise some
global goal, e.g. minimising the number of edges which connect
vertices in different partitions (a.k.amin. edge-cut). In so doing, they
improve the performance of a broad range of possible analyses.

Whilst graphs partitioned for such global measures mostly work
well for global forms of graph analysis (e.g. Pagerank), no one
measure is optimal for all types of operation [27]. In particular,
the workloads of pattern matching query workloads, common to
GDBMS, are a poor match for these kinds of partitioned graphs,
which we call workload agnostic. This is because, intuitively, a min.
edge-cut partitioning is equivalent to assuming uniform, or at least
constant, likelihood of traversal for each edge throughout query
processing. This assumption is unrealistic as a query workload may
traverse a limited subset of edges and edge types, which is specific
to its graph patterns and subject to change.

To appreciate the importance of a workload-sensitive partition-
ing, consider the graph of Fig.1. The partitioning {A,B} is optimal
for the balanced min. edge-cut goal, but may not be optimal for the
query graphs in Q . For example, the query graph q2 matches the
subgraphs {(1, 2), (2, 3)} and {(6, 2), (2, 3)} in G. Given a workload
which consisted entirely of q2 queries, every one would require a
potentially expensive inter-partition traversal (ipt). It is easy to see
that the alternative partitioning A′ = {1, 2, 3, 6}, B′ = {4, 5, 7, 8}
offers an improvement (0 ipt) given such a workload, whilst being
strictly worse w.r.t min. edge-cut.

Mature research of workload-sensitive online database partition-
ing is largely confined to relational DBMS [4, 22, 25]

1.1 Contributions
Given the above motivation, we present Loom: a partitioner for on-
line, dynamic graphs which optimises vertex placement to improve
the performance of a given stream of sub-graph pattern matching
queries.
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The simple goals of Loom are threefold: a) to discover patterns of
edge traversals which are common when answering queries from
our given workload Q ; b) to efficiently detect instances of these
patterns in the ongoing stream of graph updates which constitutes
an online graph; and c) to assign these pattern matches wholly
within an individual partition or across as few partitions as possible,
thereby reducing the number of ipt and increasing the average
performance of any q ∈ Q .

This work extends an earlier “vision” work [7] by the authors,
providing the following additional contributions:

• A compact 1 trie based encoding of the most frequent tra-
versal patterns over edges in G. We show how it may be
constructed and updated given an evolving workload Q .

• Amethod of sub-graph isomorphism checking, extending a
recent probabilistic technique[28]. We show how this mea-
sure may be efficiently computed and demonstrate both
the low probability of false positives and the impossibility
of false negatives.

• A method for efficiently computing matches for our fre-
quent traversal patterns in a graph stream, using our trie
encoding and isomorphism method, and then assign these
matching sub-graphs to graph partitions, using heuristics
to preserve balance. Resulting partitions do not rely upon
replication and are therefore agnostic to the complex repli-
cation schemes often used in production systems.

As online graphs are equivalent to graph streams, we present
an extensive evaluation comparing Loom to popular streaming
graph partitioners Fennel [30] and LDG[29]. We partition real and
synthetic graph streams of various sizes and with three distinct
stream orderings: breadth-first, depth-first and random order. Sub-
sequently, we execute query workloads over each graph, counting
the number of expensive ipt which occur. Our results indicate that
Loom achieves a significant improvement over both systems, with
between 15 and 40% fewer ipt when executing a given workload.

1.2 Related work

Partitioning graphs into k balanced subgraphs is clearly of practi-
cal importance to any applicationwith large amounts of graph struc-
tured data. As a result, despite the fact that the problem is known
to be NP-Hard [1], many different solutions have been proposed [2,
10, 13, 17, 29–31]. We classify these partitioning approaches into
one of three potentially overlapping categories: streaming, non-
streaming and workload sensitive. Loom is both a streaming and
workload-sensitive partitioner.

Non-streaming graph partitioners [2, 13, 17] typically seek to
optimise an objective function global to the graph, e.g. minimising
the number of edges which connect vertices in different partitions
(min. edge-cut).

A common class of these techniques is known as multi-level par-
titioners [2, 13]. These partitioners work by computing a succession
of recursively compressed graphs, tracking exactly how the graph
was compressed at each step, then trivially partitioning the smallest
graph with some existing technique. Using the knowledge of how
each compressed graph was produced from the previous one, this
1Grows with the size of query graph patterns, which are typically small

initial partitioning is then “projected” back onto the original graph,
using a local refinement technique (such as Kernighan-Lin [14]) to
improve the partitioning after each step. A well known example
of a multilevel partitioner is METIS [13], which is able to produce
high quality partitionings for small and medium graphs, but per-
formance suffers significantly in the presence of large graphs [30].
Other mutlilevel techniques [2] share broadly similar properties and
performance, though they differ in the method used to compress
the graph being partitioned.

Other types of non-streaming partitioner include Sheep [17]:
a graph partitioner which creates an elimination tree from a dis-
tributed graph using a map-reduce procedure, then partitions the
tree and subsequently translates it into a partitioning of the original
graph. Sheep optimises for another global objective function: min-
imising the number of different partitions in which a given vertex
v has neighbours (min. communication volume).

These non-streaming graph partitioners suffer from two main
drawbacks. Firstly, due to their computational complexity and high
memory usage[29], they are only suitable as offline operations,
typically performed ahead of analytical workloads. Even those par-
titioners which are distributed to improve scalability, such as Sheep
or the parallel implementation ofMetis (ParMetis) [13], make strong
assumptions about the availability of global graph information. As a
result they may require periodic re-execution, i.e. given a dynamic
graph following a series of graph updates, which is impractical
online [12]. Secondly, as mentioned, partitioners which optimise
for such global measures assume uniform and constant usage of a
graph, causing them to “leave performance on the table” for many
workloads.

Streaming graph partitioners [10, 29, 30] have been proposed
to address some of the problems with partitioners outlined above.
Firstly, the strict streaming model considers each element of a
graph stream as it arrives, efficiently assigning it to a partition.
Additionally, streaming partitioners do not perform any refinement,
i.e. later reassigning graph elements to other partitions, nor do they
perform any sort of global introspection, such as spectral analysis.
As a result, the memory usage of streaming partitioners is both low
and independent of the size of the graph being partitioned, allowing
streaming partitioners to scale to to very large graphs (e.g. billions
of edges). Secondly, streaming partitioners may trivially be applied
to continuously growing graphs, where each new edge or update
is an element in the stream.

Streaming partitioners, such as Fennel [30] and LDG [29], make
partition assignment decisions on the basis of inexpensive heuristics
which consider the local neighbourhood of each new element at the
time it arrives. For instance, LDG assigns vertices to the partitions
where they have the most neighbours, but penalises that number of
neighbours for each partition by how full it is, maintaining balance.
By using the local neighbourhood of a graph element e at the
time e is added, such heuristics render themselves sensitive to the
ordering of a graph stream. For example, a graph which is streamed
in the order of a breadth-first traversal of its edges will produce
a better quality partitioning than a graph which is streamed in
random order, which has been shown to be pseudo adversarial[30].
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In general, streaming algorithms produce partitionings of lower
quality than their non-streaming counterparts but with much im-
proved performance. However, some systems, such as the graph
partitioner Leopard [10], attempt to strike a balance between the
two. Leopard relies upon a streaming algorithm (Fennel) for the ini-
tial placement of vertices but drops the “one-pass” requirement and
repeatedly considers vertices for reassignment; improving quality
over time for dynamic graphs, but at the cost of some scalability.
Note that these Streaming partitioners, like their non-streaming
counterparts, are workload agnostic and so share those disadvan-
tages.

Workload sensitive partitioners [4, 22, 23, 25, 27, 31] attempt to
optimise the placement of data to suit a particular workload. Such
systems may be streaming or non-streaming, but are discussed
separately here because they pertain most closely to the work we
do with Loom.

Some partitioners, such as LogGP [31] and CatchW [27], are
focused on improving graph analytical workloads designed for the
bulk synchronous parallel (BSP) model of computation2. In the BSP
model a graph processing job is performed in a number of super-
steps, synchronised between partitions. CatchW examines several
common categories of graph analytical workload and proposes tech-
niques for predicting the set of edges likely to be traversed in the
next superstep, given the category of workload and edges traversed
in the previous one. CatchW then moves a small number of these
predicted edges between supersteps, minimising inter-partition
communication. LogGP uses a similar log of activity from previ-
ous supersteps to construct a hypergraph where vertices which
are frequently accessed together are connected. LogGP then parti-
tions this hypergraph to suggest placement of vertices, reducing
the analytical job’s execution time in future.

In the domain of RDF stores, Peng et al. [23] use frequent sub-
graph mining ahead of time to select a set of patterns common
to a provided SPARQL query workload. They then propose par-
titioning strategies which ensure that any data matching one of
these frequent patterns is allocated wholly within a single partition,
thus reducing average query response time at the cost of having to
replicate (potentially many) sub-graphs which form part of multiple
frequent patterns.

For RDBMS, systems such as Schism [4] and SWORD [25] cap-
ture query workload samples ahead of time, modelling them as
hypergraphs where edges correspond to sets of records which are
involved in the same transaction. These graphs are then partitioned
using existing non-streaming techniques (METIS) to achieve a min.
edge-cut. Whenmapped back to the original database, this partition-
ing represents an arrangement of records which causes a minimal
number of transactions in the captured workload to be distributed.
Other systems, such as Horticulture [22], rely upon a function to
estimate the cost of executing a sample workload over a database
and subsequently explore a large space of possible candidate parti-
tionings. In addition to a high upfront cost [4, 22], these techniques
focus on the relational data model, and so make simplifying assupm-
tions, such as ignoring queries which traverse > 1-2 edges [25]
(i.e. which perform nested joins). Larger traversals are common

2e.g. Pagerank executed using the Apache Giraph framework: http://bit.ly/2eNVCnv.

to sub-graph pattern matching queries, therefore its unclear how
these techniques would perform given such a workload.

Overall, the works reviewed above either focus on different types
of workload than we do with Loom (namely offline analytical or
relational queries), or they make extensive use of replication. Loom
does not use any form of replication, both to avoid potentially
significant storage overheads [24] and to remain interoperable with
the sophisticated replication schemes used in production systems.

1.3 Definitions
Here we review and define important concepts used throughout
the rest of the paper.

A labelled graph G = (V ,E,LV , fl ) is of the form: a set of
vertices V = {v1,v2, ...,vn }, a set of pairwise relationships called
edges e = (vi ,vj ) ∈ E and a set of vertex labels LV . The function
fl : V → LV is a surjective mapping of vertices to labels. We view
an online graph simply as a (possibly infinite) sequence of edges
which are being added to a graph G, over time. We consider fixed
width sliding windows over such a graph, i.e. a sliding window of
time t is equivalent to the t most recently added edges. Note that
an online may be viewed as a graph stream and we use the two
terms interchangeably.

A pattern matching query is defined in terms of sub-graph
isomorphism. Given a pattern graph q = (Vq ,Eq ), a query should
return R: a set of sub-graphs of G. For each returned sub-graph
Ri = (VRi ,ERi ) there should exist a bijective function f such
that: a) for every vertex v ∈ VRi , there exists a corresponding
vertex f (v) ∈ Vq ; b) for every edge (v1,v2) ∈ ERi , there exists
a corresponding edge (f (v1), f (v2)) ∈ Eq ; and c) for every ver-
tex v ∈ Ri , the labels match those of the corresponding vertices
in q, l(v) = l(f (v)). A query workload is simply a multiset of
these queries Q = {(q1,n1) . . . (qh ,nh )}, where ni is the relative
frequency of qi in Q .

A query motif is a graph which occurs, with a frequency of
more than some user defined threshold T , as a sub-graph of query
graphs from a workload Q .

A vertex centric graph partitioning is defined as a disjoint fam-
ily of sets of vertices Pk (G) = {V1,V2, . . . ,Vk }. Each setVi , together
with its edges Ei (where ei ∈ Ei , ei = (vi ,vj ), and {vi ,vj } ⊆ Vi ), is
referred to as a partition Si . A partition forms a proper sub-graph of
G such that Si = (Vi ,Ei ), Vi ⊆ V and Ei ⊆ E. We define the quality
of a graph partitioning relative to a given workload Q . Specifically,
the number of inter-partition traversals (ipt ) which occur while
executing Q over Pk (G). Whilst min. edge-cut is the standard scale
free measure of partition quality [13], it is intuitively a proxy for
ipt and, as we have argued (Sec. 1), not always an effective one.

1.4 Overview
Once again, Loom continuously partitions an online graphG into k
parts, optimising for a given workloadQ . The resulting partitioning
Pk (G,Q) reduces the probability of expensive ipt , when executing
a random q ∈ Q , using the following techniques.

Firstly, we employ a trie-like datastructure to index all of the
possible sub-graphs of query graphs q ∈ Q , then identify those
sub-graphs which are motifs, i.e. occur most frequently (Sec. 2).
Secondly, we buffer a sliding window over G, then use an efficient
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Figure 2: TPSTry++ for Q in fig. 1

graph stream pattern matching procedure to check whether each
new edge added to G creates a sub-graph which matches one of
our motifs (Sec. 3). Finally, we employ a combination of novel and
existing partitioning heuristics to assign each motif matching sub-
graphwhich leaves the slidingwindow entirely within an individual
partition, thereby reducing ipt for Q (Sec. 4).

2 IDENTIFYING MOTIFS
We now describe the first of the three steps mentioned above,
namely the encoding of all query graphs found in our pattern
matching query workload Q . For this, we use a trie-like datas-
tructure which we have called the Traversal Pattern Summary Trie
(TPSTry++). In a TPSTry++, every node represents a graph, while
every parent node represents a sub-graph which is common to the
graphs represented by its children. As an illustration, the complete
TPSTry++ for the workload Q in Fig. 1 is shown in Fig. 2.

This structure not only encodes all sub-graphs found in each
q ∈ Q , it also associates a support value p with each of its nodes,
to keep track of the relative frequency of occurrences of each sub-
graph in our query graphs.

Given a threshold T for the frequency of occurrences, a motif
is a sub-graph that occurs at least T times in Q . As an example, for
T = 40%, Q’s motifs are the shaded nodes in Fig. 2.

Intuitively, a sub-graph of G which is frequently traversed by a
query workload should be assigned to a single partition. We can
idenfity these sub-graphs as they form within the stream of graph
updates, by matching them against the motifs in the TPSTry++.
Details of the motif matching process are provided in Sec.3. In the
rest of this section we explain how a TPSTry++ is constructed,
given a workload Q .

A TPSTry++ extends a simpler structure, called TPSTry, which
we have recently proposed in a similar setting [8]. It employs fre-
quent sub-graph mining[11] to compactly encode general labelled
graphs. The resulting structure is a Directed Acyclic Graph (DAG),
to reflect the multiple ways in which a particular query pattern may
extend shorter patterns. For example in Fig. 2 the graph in node
a-b-a-b can be produced in two ways, by adding a single a-b edge
to either of the sub-graphs b-a-b, and a-b-a. In contrast, a TPSTry
is a tree that encodes the space of possible traversal paths through
a graph as a conventional trie of strings, where a path is a string
of vertex labels, and possible paths are described by a stream of
regular path queries [19].

Note that the trie is a relatively compact structure, as it grows
with |LV |t , where t is the number of edges in the largest query
graph in Q and LV is typically small. Also note that the TPSTry++
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is similar to, though more general than, Ribiero et al’s G-Trie [26]
and Choudhury et al’s SJ-Tree [3], which use trees (not DAGs) to
encode unlabelled graphs and labelled paths respectively.

2.1 Sub-graph signatures
We build the trie for Q by progressively building and merging
smaller tries for each q ∈ Q , as shown in Fig. 3. This process
relies on detecting graph isomorphisms, as any two trie nodes from
different queries that contain identical graphs should be merged.
Failing to detect isomorphism would result, for instance, in two
separate trie nodes being created for the simple graphs a-b-c and
c-b-a, rather than a single node with a support of 2, as intended.
One way of detecting isomorphism, often employed in frequent sub-
graph mining, involves computing the lexicographical canonical
form for each graph [18], whereby two graphs are isomorphic if
and only if they have the same canonical representation.

Computing a graph’s canonical form provides strong guaran-
tees, but can be expensive[26]. Instead, we propose a probabilistic,
but computationally more efficient approach based on number the-
oretic signatures, which extends recent work by Song et al. [28].
In this approach we compute the signature of a graph as a large,
pseudo-unique integer hash that encodes key information such as
its vertices, labels, and nodes degree. Graphs with matching signa-
tures are likely to be isomorphic to one another, but there is a small
probability of collision, i.e., of having two different graphs with the
same signature.

Given a query graphGq = {Vq ,Eq } we compute its signature as
follows. Initially we assign a random value r (l) = [1,p), between
1 and some user specified prime p, to each possible label l ∈ LVi
from our data graph G; recall that the function fl maps vertices in
G to these labels. We then perform three steps:

(1) Calculate a factor for each edge e = (vi ,vj ) ∈ Eq , accord-
ing to the formula:

edдeFac(e) = (r (fl(vi )) − r (fl(vj )))mod p

(2) Calculate the factors that encode the degree of each vertex.
If a vertex v has a degree n, its degree factor is defined as:

deдFac(v) = ((r (fl(v)) + 1)mod p)·
((r (fl(v)) + 2)mod p) · . . . · ((r (fl(v)) + n)mod p)

4



(3) Finally, we compute the signature of Gq = (Vq ,Eq ) as:

(
∏
e ∈Ei

edдeFac(e)) · (
∏
v ∈Vi

deдFac(v))

To illustrate, consider query q1 from Fig. 1. Given a p of 11 and
random values r (a) = 3, r (b) = 10 we first calculate the edge factor
for an a-b edge: edдeFac((a,b)) = (3−10)mod 11 = 7. Asq1 consists
of foura-b edges, its total edge factor is 74 = 2401. Thenwe calculate
the degree factors 3, starting with a b labelled vertex with degree 2:
deдFac(b) = ((10 + 1)mod 11) · ((10 + 2)mod 11) = 11, followed by
an a labelled vertex also with degree 2: deдFac(a) = 20. As there are
two of each vertex, with the same degree, the total degree factor is
112 · 202 = 48400. The signature of q1 = 2401 · 48400 = 116208400.

This approach is appealing for two reasons. Firstly, since the
factors in the signature may be multiplied in any order, a signature
for G can be calculated incrementally if the signature of any of its
sub-graphsGi is known, as this is the combined factor due to the
additional edges and degree in G \ Gi . Secondly, the choice of p
determines a trade-off between the probability of collisions and
the performance of computing signatures. Specifically, note that
signatures can be very large numbers (thousands of bits) even for
small graphs, rendering operations such as remainder costly and
slow. A small choice of p reduces signature size, because all the
factors are mapped to a finite field [16] (factor mod p) between 1
and p, but it increases the likelihood of collision, i.e., the probability
of two unrelated factors being equal. We discuss how to improve
the performance and accuracy of signatures in Section 2.3.

2.2 Constructing the TPSTry++

Algorithm 1 Recursively add a query graph Gq to a TPSTry++

1: f actors(e, д) ← degree/edge factors to multiply a graph д’s signature
when adding edge e

2: suppor t (д) ← a map of TPSTry++ nodes (graphs) to p-values
3: tpstry ← the TPSTry++ for workload Q
4: parent ← a TPSTry++ node, initially root (an empty graph)
5: Gq ← the query graph defined by a query q
6: д some sub-graph of Gq

7: for e in edges from Gq do
8: g← new empty graph
9: corecurse(parent, e, tpstry, g)
10: siд ← f actor (e, д) · parent .siдnature
11: if tpstry .siдnatures contains siд then
12: n ← node from tpstry with signature siд
13: n .suppor t ← n .suppor t + 1
14: else
15: n ← new node with graph д + e , signature siд and support 1
16: tpstry ← tpstry + n
17: if not parent .children contains n then
18: parent .children ← parent .children + n
19: newEdдes ← edges incident to д + e & not in д + e
20: for e′ in newEdдes
21: corecurse(n, e′, tpstry, g + e)
22: return tpstry

3Note we don’t consider 0 a valid factor, and replace it with p (e.g. 11mod 11 = 11)

Our approach to constructing the TPSTry++ is to incrementally
compute signatures for sub-graphs of each query graph q in a trie,
merging trie nodes with equal signatures to produce a DAG which
encodes the sub-graphs of all q ∈ Q . Alg. 1 formalises this approach.

Essentially, we recursively “rebuild” the graphGq | Eq | times,
starting from each edge e ∈ Eq in turn. For an edge e we calculate
its edge and degree factors, initially assuming a degree of 1 for each
vertex. If the resulting signature is not associated with a child of the
TPSTry++’s root, thenwe add a noden representing e . Subsequently,
we “add” those edges e ′ which are incident to e ∈ Gq , calculating
the additional edge and degree factors, and add corresponding trie
nodes as children of n. Then we recurse on the edges incident e +e ′.

Consider again our earlier example of the query graph q1: as it
arrives in theworkload streamQ , we break it down to its constituent
edges {a-b, a-b, a-b, a-b}. Choosing an edge at random we calculate
its combined factor. We know that the edge factor of an a-b edge is
7. When considering this single edge, both a and b vertices have a
degree of 1, therefore the signature for a-b is 7 · ((3 + 1)mod 11) ·
((10 + 1)mod 11) = 308. Subsquently, we do the same for all other
edges and, finding that they have the same signature, leave the
trie unmodified. Next, for each edge, we add each incident edge
from q1 and compute the new combined signature. Assume we
add another a-b edge adjacent to b to produce the sub-graph a-b-a.
This produces three new factors: the new edge factor 7, the new
a vertex degree factor ((3 + 1)mod 11) and an additional degree
factor for the existing b vertex ((10 + 2)mod 11). The combined
signature for a-b-a is therefore 308 · 7 · 4 · 1 = 8624; if a node with
this signature does not exist in the trie as a child of the a-b node, we
add it. This continues recursively, considering larger sub-graphs of
q1 until there are no edges left in q1 which are not in the sub-graph,
at which point, q1 has been added to the TPSTry++.

2.3 Avoiding signature collisions
Asmentioned, number theoretic signatures are a probabilisticmethod
of ismorphism checking, prone to collisions. There are several sce-
narios in which two non-isomorphic graphs may have the same
signature: a) two factors representing different graph features, such
as different edges or vertex degrees, are equal; b) two distinct sets
of factors have the same product; and c) two different graphs have
identical sets of edges, vertices and vertex degrees.

The original approach to graph isomorphic checking [28] makes
use of an expensive authoritative pattern matching method to verify
identified matches. Given a query graph, it calculates its signature
in advance, then incrementally computes signatures for sub-graphs
which form within a window over a graph stream. If a sub-graph’s
signature is ever divisible by that of the query graph, then that
sub-graph should contain a query match.

There are some key differences in how we compute and use
signatures with Loom, which allow us to rely solely upon signa-
tures as an efficient means for mining and matching motifs. Firstly,
remember our overall aim is to heuristically lower the probability
that sub-graphs in a graph G which match our discovered motifs
straddle a partition boundary. As a result we can tolerate some small
probability of false positive results, whilst the manner in which
signatures are executed (Sec. 2.1) precludes false negatives; i.e. two
graphs which are isomorphic are guaranteed to have the same
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signature. Secondly, we can exploit the structure of the TPSTry++
to avoid ever explicitly computing graph signatures. From Fig. 2
and Alg. 1, we can see that all possible sub-graphs of a query graph
Gq will exist in the TPSTry++ by construction. We calculate the
edge and degree factors which would multiply the signature of
a sub-graph with the addition of each edge, then associate these
factors to the relevant trie branches. This allows us to represent
signatures as sets of their constituent factors, which eliminates a
source of collisions, e.g. we can now distinguish between graphs
with factors {6, 2}, {4, 3} and {12}. Thirdly, we never attempt to
discover whether some sub-graph contains a match for query q,
only whether it is a match for q. In other words, the largest graph
for which we calculate a signature is the size of the largest query
graph |Gq | for all q ∈ Q , which is typically small4. This allows us
to choose a larger prime p than Song et al. might, as we are less
concerned with signature size, reducing the probability of factor
collision, another source of false positive signature matches.

Concretely, we wish to select a value of p which minimises the
probability that more than some acceptable percentage C% of a
signature’s factors are collisions. From Section 2.1 there are three
scenarios in which a factor collision may occur: a) two edge factors
are equal despite different vertices with different random values
from our range [1,p); b) an edge factor is equal to a degree factor;
and c) two degree factors are equal, again despite different vertices.
Song et al. show that all factors are uniform random variables from
[1,p), therefore each scenario occurs with probability 1

p .
For either edge or degree factors, from the above it is clear that

there are two scenarios in which a collisionmay occur, giving a colli-
sion probability for any given factor of 2

p . The Handshaking lemma
tells us that the total degree of a graph must equal 2|E |, which
means that a graph must have 3|E | factors in its signature: one per
edge plus one per degree. Combined with the binary measure of
“success” (collision / no collision), this suggests a binomial distribu-
tion of factor collision probabilities, specifically Binomial(3|E |, 2p ).
Binomial distributions tell us the probability of exactly x “suc-
cesses” occuring, however we want the probability that no more
than Cmax = C% · 3|E | factors collide and so must sum over all
acceptable outcomes x ∈ Cmax :

Cmax∑
x=0

Pr (X = x) where X ∼ Binomial(3|E |, 2
p
)

Figure 4 shows the probabilities of having fewer than 5% factor
collisions given query graphs of 8, 12 or 16 edges and p choices
between 2 and 317. In Loom, when identifying and matching motifs,
we use a p value of 251, which as you can see gives a neglible
probability of significant factor collisions.

3 MATCHING MOTIFS
We have seen how motifs that occur in Q are identified. By con-
struction, motifs represent graph patterns that are frequently tra-
versed during executions of queries in Q . Thus, the sub-graphs of
G that match those motifs are expected to be frequently visited
together and are therefore best placed within the same partition. In
this section we clarify how we discover pattern matches between

4Of the order of 10 edges.
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Figure 4: Probability of < 5% factor collisions for various p

sub-graphs and motifs, whilst in the next Section we describe the
allocation of those sub-graphs to partitions.

Loom operates on a sliding window of configurable size over the
stream of edges that make up the growing graph G. The system
monitors the connected sub-graphs that form in the stream within
the space of the window, efficiently checking for isomorphisms with
any known motif each time a sub-graph grows. Upon leaving the
window, sub-graphs that match a motif are immediately assigned
to a partition, subject to partition balance constraints as explained
in Section 4.

Note that this technique introduces a delay, corresponding to the
size of the window, between the time edges are submitted to the
system and the time they are assigned and made available. In order
to allow queries to access the new parts of graph G, Loom views
the sliding window itself as an extra partition, which we denote
Ptemp . In practice, vertices and edges in the window are accessible
in this temporary partition prior to being permanently allocated to
their own partition.

To help understand how the matching occurs, note that in the
TPSTry++, by construction, all anscestors of any node n must rep-
resent strict sub-graphs of the graph represented by n itself. Also,
note that the support of a node n is the relative frequency with
which n’s sub-graph Gn occurs in Q . As, by definition, each time
Gn occurs in Q so do all of its sub-graphs, a trie node n must have
a support lower than any of its anscestors. This means that if any
of the nodes in the trie, including those representing single edges,
are not motifs, then none of their descendants can be motifs either.
Thus, when a new edge e = (v1,v2) arrives in the graph stream, we
compute its signature (Sec. 2.1) and check if e matches a single-edge
motif at the root of the TPSTry++. If there is no match, we can be
certain that e will never form part of any sub-graph that matches a
motif. We therefore immediately assign e to a partition and do not
add it to our stream window Ptemp . If, on the other hand, e does
match a single-edge motif then we record the match into a map,
matchList, and add e to the window. The matchList maps vertices
v to the set of motif matching sub-graphs in Ptemp which contain
v; i.e. having determined that e = (v1,v2) is a motif match, we
treat e as a sub-graph of a single edge, then add it to the matchList
entries for both v1 and v2. Additionally, alongside every sub-graph
in matchList, we store a reference to the TPSTry++ node which
represents the matching motif. Therefore, entries in matchList take
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Algorithm 2Mine motif matches from each new edge e ∈ G
1: f ac(e, д) ← degree/edge factors to multiply a graph д’s signature

when adding edge e
2: tpstry ← the filtered TPSTry++ of motifs for workload Q

3: for each new edge e(v1, v2) do
4: matches ←matchList (v1) ∪matchList (v2)
5: for each sub-graphm inmatches do
6: n ← the tpstry node form
7: if n has child c w. f actor = f ac(e,m) then
8: add ⟨m + e, c ⟩ tomatchList for v1&v2 //Match found!
9: ms1 ←matchList (v1)
10: ms2 ←matchList (v2)
11: for all possible pairs (m1,m2) from (ms1,ms2) do
12: n1 ← the tpstry node form1
13: recurse(tpstry, m2, m1, n1)
14: for each edge e2 inm2 do
15: if n1 has child c1 w. f actor = f ac(e2,m1) then
16: recurse(tpstry, m2 − e2, m1 + e2, c1)
17: if m2 is empty then //Match found!
18: add ⟨m1 +m2, n1 ⟩ tomatchList for v1&v2

the form v → {⟨Ei ,mi ⟩, ⟨Ej ,mj ⟩, . . .}, where Ei is a set of edges
in Ptemp that form a sub-graph дi with the same signature as the
motifmi .

Given the above, any edge e which is added to Ptemp must at
least match a single edge motif. However, if e is incident to other
edges already in Ptemp , then its addition may also form larger
motif matching sub-graphs which we must also detect and add to
matchList. Thus, having added e = (v1,v2) to matchList, we check
the map for existing matches which are connected to e ; i.e we look
for matches which contain one of v1 or v2. If any exist, we use
the procedure in Alg. 2, along with the TPSTry++, to determine
whether the addition of edge e to these sub-graphs creates another
motif match.

Essentially, for each sub-graph дi from matchList to which e is
connected, we calculate the set of edge and degree factors f ac(e,дi )
which would multiply the signature of дi upon the addition e , as
in Sec. 2. Recall, also from Sec. 2, that a TPSTry++ node contains a
signature for the graph it represents, and that these signatures are
stored as sets of factors, rather than their large integer products.
As each sub-graph in matchList is paired with its associated motif
n from the trie, we can efficiently check if n has a child c where
a) c is a motif; and b) the difference between n’s factor set and
c’s factor set corresponds to factors for the addition of e to дi , i.e.,
f ac(e,дi ) = c .siдnatures \n.siдnatures . If such a child exists in the
trie then adding e to a graph which matches motif n (дi ) will likely
create a graph which matches motif c: the addition of e to Ptemp
has formed the new motif matching sub-graph дi + e .

We also detect if the joining of two existing multi edge mo-
tif matches (⟨E1,m1⟩, ⟨E2,m2⟩) forms yet another motif match, in
roughly the same manner. First we consider each edge from the
smaller motif match (e.g. e ∈ E2 from ⟨E2,m2⟩), checking if the
addition of any of these edges to E15 constitutes yet another match;
if it does then we add the edge to E1 and recursively repeat the pro-
cess until E2 is empty. If this process does exhaust E2 then E1 ∪ E2
5Treating E1 as a sub-graph.

constitute a motif matching sub-graph. Once this process is com-
plete, matchList will contain entries for all of the motif matching
sub-graphs currently in Ptemp . Note that as more edges are added
to Ptemp ,matchList may contain multiple entries for a given vertex
where one match is a sub-graph of another, i.e. new motif matches
don’t replace existing ones.

As an example of the motif matching process, consider the por-
tion of a graph stream (left), motifs (center) and matchList (right)
depicted in Fig. 5. Our window over the graph stream G is ini-
tially empty, with the depicted edges being added in label order (i.e.
e1, e2, . . .). As the edge e1 is added, we first compute its signature
and verify whether e1 matches a single-edge motif in the TPSTry++.
We can see that, as an a-b labelled edge, the signature for e1 must
match that of motif m1, therefore we add e1 to Ptemp , and add
the entry ⟨e1,m1⟩ to matchList for both e1’s vertices 1,2. As e1 is
not yet connected to any other edges in Ptemp , we do not need to
check for the formation of additional motif matches. Subsequently,
we perform the exact same process for edge e2. When e3 is added,
again we verify that, as a b-c edge, e3 is a match for the single-
edge motif m3 and so update Ptemp and matchList accordingly.
However, e3 is connected to existing motif matching sub-graphs
in Ptemp therefore the union of matchList entries for e3’s vertices
4,5 (line 4 Alg. 2) returns {⟨e2,m1⟩}. As a result, we calculate the
factors to multiply e2’s signature by, when adding e3. Remember
that when computing signatures, each edge has a factor, as well as
each degree. Thus, when adding e3 to e2 our new factors are an edge
factor for a b-c labelled edge, a first degree factor for the vertex
labelled c (5) and a second degree factor for the vertex labelled b6
(4) (Sec. 2.1). Subsquently we must check whether the motif for e2,
m1, has any child nodes with additional factors consistent with the
addition of a b-c edge, which it does:m3. This means we have found
a new sub-graph in Ptemp which matches the motifm3, and must
add ⟨{e2, e3},m3⟩ to the matchList entries for vertices 3, 4 and 5.
Similarly, the addition of b-c labelled edge e4 to our graph stream
produces the new motif matches ⟨e4,m2⟩ and ⟨{e1, e4},m3⟩, as can
be seen in our example matchList.

Finally, the addition of our last edge, e5, creates several new
motif matches (e.g. ⟨{e1, e5},m4⟩, ⟨{e2, e5},m5⟩ etc. . . ). In partic-
ular, notice that the addition of e5 creates a match for the motif
m6, combining the new motif match ⟨{e1, e5},m4⟩ with an existing
one ⟨e2,m1⟩. To understand how we discover these slightly more
complex motif matches, consider Alg. 2 from line 11 onwards. First
we retrieve the updated matchList entries for vertices 2 and 3, in-
cluding the new motif matches gained by simply adding the single
edge e5 to connected existing motif matches, as above. Next we
iterate through all possible pairs of motif matches for both vertices.
Given the pair of matches (⟨{e1, e5},m4⟩, ⟨e2,m1⟩), we discover
that the addition of any edge from the smaller match (i.e. e2) to
the larger produces factors which correspond to a child ofm4 in
the TPSTry++:m6. As e2 is the only edge in the smaller match, we
simply add the match ⟨{e1, e2, e5},m6⟩ to the matchList entries for
1, 2, 3 and 4. In the general case however, we would not add this
new match but instead recursively “grow” it with new edges from
the smaller match, updating matchList only if all edges from the
smaller match have been successfully added.

6As, with the addition of e3 , vertex 4 has degree 2.
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Figure 5: t-length window over G (left), Motifs from TPSTry++ (center) and motifmatchList for window (right)

4 ALLOCATING MOTIFS
Following graph stream pattern matching, we are left with a collec-
tion of sub-graphs, consisting solely of the most recent t edges in
G, which match motifs from Q . As new edges arrive in the graph
stream, our window Ptemp grows to size t and then “slides”, i.e.
each new edge added to a full window causes the oldest (t + 1th )
edge e to be dropped. Our strategy with Loom is to then assign this
old edge e to a permanent partition, along with the other edges in
the window which form motif matching sub-graphs with e . The
sole exception to this is when an edge arrives that may not form
part of any motif match and is assigned to a partition immediately
(Sec. 3). This exception does not pose a problem however, because
Loom behaves as if the edge was never added to the window and
therefore does not cause displacement of older edges.

Recall again that with Loom we are attempting to assign motif
matching sub-graphs wholly within individual partitions with the
aim of reducing ipt when executing our query workload Q . One
naive approach to achieving this goal is as follows: When assigning
an edge e = (v1,v2), retrieve the motif matches associated with
v1 and v2 from Ptemp using our matchList map, then select the
subset Me that contains e , where Me = {⟨E1,m1⟩, . . . ⟨En ,mn⟩},
e ∈ Ei and Ei is a match formi . Finally, treating these matches as
a single sub-graph, assign them to the partition which they share
the most incident edges. This approach would greedily ensure that
no edges belonging to motif matching sub-graphs inG ever cross a
partition boundary. However, it would likely also have the effect of
creating highly unbalanced partition sizes, portentially straining
the resources of a single machine, which prompted partitioning in
the first place.

Instead, we rely upon two distinct heuristics for edge assignment,
both of which are aware of partition balance. Firstly, for the case
of non-motif-matching edges that are assigned immediately, we
use the existing Linear Deterministic Greedy (LDG) heuristic [29].
Similar to our naive solution above, LDG seeks to assign edges7 to
the partition where they have the most incident edges. However,
LDG also favours partitions with higher residual capacity when
assigning edges in order to maintain a balanced number of vertices
and edges between each. Specifically, LDG defines the residual
capacity r of a partition Si in terms of the number of vertices
currently in Si , given asV(Si ), and a partition capacity constraint
C: r (Si ) = 1 − |V(Si ) |C . When assigning an edge e , LDG counts the
number of e’s incident edges in each partition, given as N (Si , e),
and weights these counts by Si ’s residual capacity; e is assigned to

7LDG may partition either vertex or edge streams.

the partition with the highest weighted count. The full formula for
LDG’s assignment is:

max
Si ∈Pk (G)

N (Si , e) · (1 −
|V(Si )|

C
)

Secondly, for the general case where edges form part of motif
matching sub-graphs, we propose a novel heuristic, equal oppor-
tunism. Equal opportunism extends ideas present in LDG but, when
assigning clusters of motif matching sub-graphs to a single parti-
tion as we do in Loom, it has some key advantages. By construc-
tion, given an edge e to be assigned along with its motif matches
Me = {⟨E1,m1⟩ . . . ⟨En ,mn⟩}, the sub-graphs Ei Ej inMe have sig-
nificant overlap (e.g. they all contain e). Thus, individually assigning
each motif match to potentially different partitions would create
many inter-partition edges. Instead, equal opportunism greedily
assigns the match cluster to the single partition with which it shares
the most vertices, weighted by each partition’s residual capacity.
However, as these vertices and their new motif matching edges
may not be traversed with equal likelihood given a workload Q ,
equal opportunism also prioritises the shared vertices which are
part of motif matches with higher support in the TPSTry++.

Formally, given the motif matches Me we compute a score for
each partition Si and motif match ⟨Ek ,mk ⟩ ∈ Me , which we call a
bid. LetN(Si ,Ek ) = |V(Si )∩V(Ek )| denote the number of vertices
in the edge set Ek (which is itself a graph) that are already assigned
to Si 8. Additionally, let supp(mk ) refer to the support of motifmk in
the TPSTry++ and recall that C is a capacity constraint defined for
each partition. We define the bid for partition Si and motif match
⟨Ek ,mk ⟩ as:

bid(Si , ⟨Ek ,mk ⟩) = N(Si ,Ek ) · (1 −
|V(Si )|

C
) · supp(mk ) (1)

We could simply assign the cluster of motif matching sub-graphs
(i.e. E1 ∪ . . . ∪ En ) to the single partition Si with the highest bid
for all motif matches inMe . However, equal opportunism further
improves upon the balance and quality of partitionings produced
with this new weighted approach, limiting its greediness using a
rationing function we call l . l(Si ) is a number between 0 and 1 for
each partition, the size of which is inversely correlated with Si ’s size
relative to the smallest partition Smin = minS ∈Pk (G) |V(S)|, i.e. if
Si is as small as Smin then l(Si ) = 1. Equal opportunism sorts motif
matches in Me in descending order of support, then uses l(Si ) to
control both the number of matches used to calculate partition Si ’s
total bid, and the number of matches assigned to Si should its total
bid be the highest. This strategy helps create a balanced partitioning
8Note that N is a generalisation of LDG’s function N
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by a) allowing smaller partitions to compute larger total bids over
more motif matches; and b) preventing the assignment of large
clusters of motif matches to an already large partition. Formally
we calculate l(Si ) as follows:

l(Si ) =
|V(Si )|
Smin

· α , where α =


1, |V(Si )| = |V(Smin )|
0, |V(Si )| > |V(Smin )| · b
α , otherwise

(2)
where α is a user specified number 0 < α ≤ 1 which controls the
aggression with which l penalises larger partitions and b limits the
maximum imbalance. Throughout this work we use an empirically
chosen default of α = 2

3 and set the maximum imbalance to b = 1.1,
emulating Fennel [30].

Given definitions (1) and (2), we can now simply state the output
of equal oppurtinism for the sorted set of motif matchesMe , as:

max
Si ∈Pk (G)

l (Si )· |Me |∑
k=0

bid(Si , ⟨Ek ,mk ⟩) (3)

Note that motif matches inMe which are not bid on by the winning
partition are dropped from the matchList map, as some of their
constituent edges (e.g. e , which all matches inMe share) have been
assigned to partitions and removed from the sliding window Ptemp .

To understand how to the rationing function l improves the
quality of equal opportunism’s partitioning, not just its balance,
consider the following: Just because an edge e ′ falls within the
motif match setMe of our assignee e , does not necessarily imply
that placing them within the same partition is optimal. e ′ could
be a member of many other motif matches in Ptemp besides those
in Me , perhaps with higher support in the TPSTry++ (i.e. higher
likelihood of being traversed when executing a workload Q). By
ordering matches by support and prioritising the assignment of
the smaller, higher support motif matches, we often leave e ′ to be
assigned later along with matches to which it is more “important”.

As an example, consider again the graph and TPSTry++ frag-
ment in Fig. 5. If assigning the edge e1 to a partition at the time
t + 1, its support ordered set of motif matches Me1 would be
⟨e1,m1⟩, ⟨{e1, e4},m3⟩, ⟨{e1, e5},m4⟩ and ⟨{e1, e2, e5},m6⟩. Assume
two partitions S1 and S2, where S1 is 33.3% larger than S2 and ver-
tex 2 already belongs to partition S1, whilst all other vertices in
the window are as yet unassigned (i.e. this is the first time edges
containing them have entered the sliding window). In this scenario,
S1 is guaranteed to win all bids, as S2 contains no vertices fromMe1
and therefore N(S2, _) will always equal 0. However, rather than
greedily assign all matches to the already large S1, we calculate the
ration l for S1 as 1

1.33
· 1
1.5 =

1
2 , given α = 1.5. In other words, we

only assign edges from the first half ofMe1 (⟨e1,m1⟩, ⟨{e1, e4},m3⟩)
to S1; edges such as e5 and e2 remain in the window Ptemp . As-
sume an edge e6 = (4, 6) subsequently arrives in the graph stream
G, where vertex 6 already belongs to partition S2 and e6 matches
the motifm2 (i.e. has labels b-c). If we had already assigned e5 to
partition S1 then this would lead to an inter-partition edge which is
more likely to be traversed together with e5 than are other edges in
S1, given our workload Q . Instead, we compute a match in Ptemp
between {e5, e6} and the motifm3, and will likely later assign e5
to partition S2. Within reason, the longer an edge remains in the

sliding window, the more of its neighbourhood information we are
likely to have access to, the better partitioning decisions we can
make for it.

5 EVALUATION
Our evaluation aims to demonstrate that Loom achieves high quality
partitionings of several large graphs in a single-pass, streaming
manner. Recall that we measure graph partitioning quality using
the number of inter-partition traversals when executing a realistic
workloads of pattern matching queries over each graph.

Loom consistently produces partitionings of around 20% superior
quality when compared to those produced by state of the art alter-
natives: LDG [29] and Fennel [30] Furthermore, Loom partitionings’
quality improvement is robust across different numbers of parti-
tions (i.e. a 2-way or a 32-way partitioning). Finally we show that,
like other streaming partitioners, Loom is sensitive to the arrival or-
der of a graph stream, but performs well given a pseudo-adversarial
random ordering.

5.1 Experimental setup
For each of our experiments, we start by streaming a graph from
disk in one of three predefined orders: Breadth-first: computed by
performing a breadth-first search across all the connected compo-
nents of a graph; Random: computed by randomly permuting the
existing order of a graph’s elements; andDepth-first: computed by
performing a depth-first search across the connected components
of a graph. We choose these stream orderings as they are common
to the evaluations of other graph stream partitioners [10, 21, 29, 30],
including LDG and Fennel.

Subsequently, we produce 4 separate k-way partitionings of this
ordered graph stream, using each of the following partitioning ap-
proaches for comparison: Hash: a naive partitioner which assigns
vertices and edges to partitions on the basis of a hash function. As
this is the default partitioner used by many existing partition graph
databases9, we use it as a baseline for our comparisons. LDG: a
simple graph stream partitioner with good performance which we
extend with our work on Loom. Fennel: a state-of-the-art graph
stream partitioner and our primary point of comparison. As sug-
gested by Tsourakakis et al, we use the Fennel parameter value
γ = 1.5 throughout our evaluation. Loom: our own partitioner
which, unless otherwise stated, we invoke with a window size of
10k edges and a motif support threshold of 40%.

Finally, when each graph is finished being partitioned, we exe-
cute the appropriate query workload over it and count the number
of inter-partition traversals (ipt ) which occur.

Note that we avoid implementation dependent measures of par-
titioning quality because, as an isolated prototype, Loom is unlikely
to exhibit realistic performance. For instance, lacking a distributed
query processing engine, query workloads are executed over logical
partitions during the evaluation. In the absence of network latency,
query response times are meaningless as a measure of partitioning
quality.

All algorithms, data structures, datasets and query workloads
are publicly available10. All our experiments are performed on a

9The Titan graph database: http://bit.ly/2ejypXV
10The Loom repository: http://bit.ly/2eJxQcp
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Figure 6: Examples of q for MusicBrainz, DBLP & ProvGen

Dataset ∼ |V | ∼ |E | |LV | Real Description
DBLP 1.2M 2.5M 8 Y Publications & citations
ProvGen 0.5M 0.9M 3 N Wiki page provenance
MusicBrainz 31M 100M 12 Y Music records metadata
LUBM-100 2.6M 11M 15 N University records
LUBM-4000 131M 534M 15 N University records
Table 1: Graph datasets, incl. size & heterogeneity

commodity machine with a 3.1Ghz Intel i7 CPU and 16GB of RAM.

5.1.1 Graph datasets. Remember that the workload-agnostic
partitioners which we aim to supersede with Loom are liable to
exhibit poor workload performance when queries focus on travers-
ing a limited subset of edge types (Sec. 1). Intuitively, such skewed
workloads are more likely over heterogeneous graphs, where there
exist a larger number of possible edge types for queries to discern
between, e.g. a-a, a-b, a-c . . . vs just a-a. Thus, we have chosen to
test the Loom partitioner over five datasets with a range of different
heterogeneities and sizes; three of these datasets are synthetic and
two are real-world. Table 1 presents information about each of our
chosen datasets, including their size and how heterogeneous they
are (|LV |). We use the DBLP, and LUBM datasets, which are well
known. MusicBrainz11 is a freely available database of curated mu-
sic metadata, with vertex labels such as Artist, Country, Album and
Label. ProvGen[6] is a synthetic generator for PROV metadata [20],
which records detailed provenance for digital artifacts.

5.1.2 Query workloads. For each dataset we must propose a
representative query workload to execute so that we may mea-
sure partitioning quality in terms of ipt . Remember that a query
workload consists of a set of distinct query patterns along with a
frequency for each (Sec. 1.3). The LUBM dataset provides a set of
query patterns which we make use of. For every other dataset, how-
ever, we define a small set of common-sense queries which focus
on discovering implicit relationships in the graph, such as potential
collaboration between authors or artists 12. The full details of these
query patterns are elided for space10, however Fig. 6 presents some
examples. Note that whilst the TPSTry++ may be trivially updated
to account for change in the frequencies of workload queries (Sec. 2),
our evaluation of Loom assumes that said frequencies are fixed and
known a priori. Recall that, for online databases, we argue this is a
realistic assumption (Sec. 1). However, more complete tests with
changing workloads are an important area for future work.

11The MusicBrainz database: http://bit.ly/1J0wlNR
12If possible, workloads are drawn from the literature, e.g. common PROV queries [5]

5.2 Comparison of systems
Figures 7 and 8 present the improvement in partitioning quality
achieved by Loom and each of the comparable systems we desribe
above. Initially, consider the experiment depicted in Fig. 7. We
partition ordered streams of each of our first 4 graph datasets13
into 8-way partitionings, using the approaches described above,
then execute each dataset’s query workload over the appropriate
partitioning. The absolute number of inter-partition traversals (ipt )
suffered when querying each dataset varies significantly. Thus,
rather than represent these results directly, in Fig. 7 (and 8) we
present the results for each approach as relative to the results for
Hash; i.e. how many ipt did a partitioning suffer, as a percentage
of those suffered by the Hash partitioning of the same dataset.

As expected, the naive hash partitioner performs poorly: it pro-
duces partitionings which suffer twice as many inter-partition tra-
versals, on average, when compared to partitionings produced by
the next best system (LDG).Whilst the LDG partitioner does achieve
around a 55% reduction in ipt vs our Hash baseline, its produces
partitionings of consistently poorer quality than those of Fennel
and Loom. Although both LDG and Fennel optimise their partition-
ings for the balanced min. edge-cut goal (Sec. 1), Fennel is the more
effective heuristic, cutting around 25% fewer edges than LDG for
small numbers of partitions (including k = 8) [30]. Intuitively, the
likelihood of any edge being cut is a coarse proxy for the likelihood
of a query q ∈ Q traversing a cut edge. This explains the disparity
in ipt scores between the two systems.

Of more interest is comparing the quality of partitionings pro-
duced by Fennel and Loom. Fig. 7 clearly demonstrates that Loom
offers a significant improvement in partitioning quality over Fennel,
given a workload Q . Loom’s reduction in ipt relative to Fennel’s
is present across all datasets and stream orders, however it is par-
ticularly pronounced over ordered streams of more heterogeneous
graphs; e.g. MusicBrainz in subfigure 8b, where Loom’s partition-
ing suffers from 42% fewer ipt than Fennel’s. This makes sense
because, as mentioned, pattern matching workloads are more likely
to exhibit skew over heterogeneous graphs, where query graphs
Gq contain a, potentially small, subset of the possible vertex labels.
Across all the experiments presented in Fig. 7, the median range of
Loom’s ipt reduction relative to Fennel’s is 20 − 25%. Additionally,
Fig. 8 demonstrates that this improvement is consistent for different
numbers of partitions. As the number of partitions k grows, there
is a higher probability that vertices belonging to a motif match are
assigned across multiple partitions. This results in an increase of
absolute ipt when executing Q over a Loom partitioning. However,
increasing k actually increases the probability that any two vertices
which share an edge are split between partitions, thus reducing
the quality of Hash, LDG and Fennel partitionings as well. As a
result, the difference in relative ipt is largely consistent between all
4 systems.

On the other hand, neither Fig. 7, nor Fig. 8, present the runtime
costs of producing a partitioning. Table 2 presents how long (in ms)
each partitioner takes to partition 10k edges. Whilst all 3 algorithms
are capable of partitioning many 10s of thousands of edges per
second, we do find that Loom is slower than LDG and Fennel by
an average factor of 2-3. This is likely due to the more complex

13Excluding LUBM-4000
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(a) Random order (b) Breadth-first order (c) Depth-first order

Figure 7: ipt %, vs. Hash, when executing Q over 8-way partitionings of graph streams in multiple orders.

(a) k = 2 (b) k = 8 (c) k = 32

Figure 8: ipt %, vs. Hash, when executing Q over multiple k-way partitionings of breadth-first graph streams.

Dataset LDG (ms) Fennel (ms) Loom (ms) Hash (ms)
DBLP 91 96 235 28
ProvGen 144 146 240 33
MusicBrainz 48 52 129 18
LUBM-100 47 51 147 22
LUBM-4000 45 49 138 16

Table 2: Time to partition 10k edges

map-lookup and pattern-matching logic performed by Loom, or a
nascent implementation. The runtime performance of Loom varies
depending on the query workloadQ used to generate the TPSTry++
(Sec. 2), therefore the performance figures presented in Table 2 are
averaged across many different Q . The minimum slowdown factor
observed between Loom and Fennel was 1.5, the maximum 7.1.
Note that popular non-streaming partitioner Metis [13] is around
13 times slower than Fennel for large graphs [30].

We contend that this performance difference is unlikely to be an
issue in an online setting for two reasons. Firstly, most production
databases do not support more than around 10k transactions per
second (TPS) [15]. Secondly, it is considered exceptional for even
applications such as twitter to experience >30k-40k TPS 14. Mean-
while, the lowest partitioning rate exhibited by Loom in Table 2 is
equivalent to ~ 42k edges per second, the highest 72k.

Note that Figures 7 and 8 do not present the relative ipt figures
for the LUBM-4000 dataset. This is because measuring relative ipt
involves reading a partitioned graph into memory, which is beyond
the constraints of our present experimental setup. However, we
14Tweets per second in 2013: http://bit.ly/2hQH5JJ

include the LUBM-4000 dataset in Table 2 to demonstrate that, as
a streaming system, Loom is capable of partitioning large scale
graphs. Also note that none of the figures present partitioning
imbalance as this is broadly similar between all approaches and
datasets 15, with LDG varying between 1% − 3%, Loom and Fennel
between 7% and their maximum imbalance of 10% (Sec. 4).

5.3 Effect of stream order and window size
Fig. 7 indicates that Loom is sensitive to the ordering of its given
graph stream. In fact, subfigure 7a shows Loom achieve a smaller
reduction in ipt over Fennel and LDG, than in 7b and 7c. Specifically
Loom achieves a 42% greater reduction in relative ipt than Fennel
given a breadth-first stream of the MusicBrainz graph, but only
a 26% when the stream is ordered randomly, despite Fennel and
LDG also being sensitive to stream ordering [29, 30]. This implies
that Loom is particularly sensitive to random orderings: edges
which are close to one another in the graph may not be close in the
graph stream, resulting in Loom detecting fewer motif matching
subgraphs in its stream window.

Intuitively, this sensitivity can be ameliorated by increasing the
size of Loom’s window, as shown in Fig. 9 As Loom’s window grows,
so does the probability that clusters of motif matching subgraphs
will occur within it. This allows Loom’s equal opportunism heuris-
tic to make the best possible allocation decisions for the subgraph’s
constituent vertices. Indeed, the number of ipt suffered by Loom

15Except Hash, which is balanced.

11

http://bit.ly/2hQH5JJ


Figure 9: ipt (y-axis) when executing Q over Loom partition-
ings with multiple window sizes t (x-axis)

partitionings improves significantly, by as much as 47%, as the win-
dow size grows from 100 to 10k. However, increasing the window
size past 10k clearly has little effect on ipt suffered to execute Q
if your graph stream is ordered. The exact impact of increasing
Loom’s window size depends upon the degree distribution of the
graph being partitioned. However, to gain an intuition consider
the naive case of a graph with a uniform average vertex degree of
8, along with a TPSTry++ whose largest motif contains 4 edges.
In this case, a breadth-first traversal of 84 edges from a vertex a
(i.e. window size t ≈ 4k) is highly likely to include all the motif
matches which contain a. Regardless, Fig. 9 might seem to sug-
gest that Loom should run with the largest window size possible.
However, besides the additional computational cost of detecting
more motif matches, remember that Loom’s window constitutes
a temporary partition (sec. 3). If there exist many edges between
other partitions and Ptemp , then this may itself be a source of ipt
and poor query performance.

6 CONCLUSION
In this paper, we have presented Loom: a practical system for pro-
ducing k-way partitionings of online, dynamic graphs, which are
optimised for a given workload of pattern matching queriesQ . Our
experiments indicate that Loom significantly reduces the number
of inter-partition traversals (ipt ) required when executing Q over
its partitionings, relative to state of the art (workload agnostic)
streaming partitioners.

There are several ways in which we intend to expand our current
work on Loom. In particular, as a workload sensitive technique,
Loom generates partitionings which are vulnerable to workload
change over time. In order to address this we must integrate Loom
with an existing, workload sensitive, graph re-partitioner [8] or
consider some form of restreaming approach [10].
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