

Newcastle University

19th September 2014

Programme

Welcome and registration 9.15

Session 1: 9.30-10.30

 Energy-Aware Profiling for Cloud Computing Environments, Ibrahim Alzamil, Karim
Djemame, Django Armstrong, Richard Kavanagh (University of Leeds)

 A case study in inspecting the cost of security in cloud computing, Said Naser Said
Kamil and Nigel Thomas (Newcastle University)

Coffee 10.30-11

Session 2: 11-12.30

 Efficient Reliability and Performance Analysis of Layered Queueing Models, Juan F.
Perez and Giuliano Casale (Imperial College London)

 Performance Analysis of Collective Adaptive Behaviour in Time and Space, Cheng
Feng, Marco Gribaudo and Jane Hillston (University of Edinburgh and Politecnico di
Milano)

 Development of a Smart Grid Simulation Environment, J. Delamare , B. Bitachon, Z.
Peng, Y. Wang, B.R. Haverkort, M.R. Jongerden, (University of Twente)

Lunch 12.30-1.30

Session 3: 1.30-3 PM

 Validation of automatic vehicle location data in public transport systems, Stephen
Gilmore and Daniel Reijsbergen (University of Edinburgh)

 Dynamic subtask dispersion reduction in heterogeneous parallel queueing systems,
Tommi Pesu and William Knottenbelt (Imperial College London)

 A Hybrid Simulation Framework for the Analysis of Queueing Networks and Petri
Nets, Esmaeil Habibzadeh, Demetres D. Kouvatsos (University of Bradford) and
Guzlan M.A. Miskeen (University of Sebha, Libya)

Afternoon tea 3-3.30 PM

Session 4: 3.30-5 PM

 A Case Study in Capacity Planning for PEPA Models with the PEPA Eclipse Plug-in,
Christopher D. Williams and Allan Clark (University of Edinburgh)

 Performance Modelling and Evaluation of Secure Dynamic Group Communication
Systems in RANETs, D.D. Kouvatsos, E. Habibzadeh (University of Bradford) and
Guzlan M.A. Miskeen (University of Sebha, Libya)

 Operating policies for energy efficient dynamic server allocation, Thai Ha Nguyen,
Matthew Forshaw and Nigel Thomas (Newcastle University)

PASM 2014

Energy-Aware Profiling for Cloud Computing
Environments

Ibrahim Alzamil, Karim Djemame, Django Armstrong
and Richard Kavanagh

School of Computing
University of Leeds

Leeds, UK
E-mail: {sc11iaa, K.Djemame, scsdja, scsrek}@leeds.ac.uk

Abstract

Cloud Computing has changed the way in which people use the IT resources today. Now, instead of buying
their own IT resources, they can use the services offered by Cloud Computing with reasonable costs based
on a “pay-per-use” model. However, with the wide adoption of Cloud Computing, the costs for maintaining
the Cloud infrastructure have become a vital issue for the vendors, especially with the large input of energy
costs to underpin these resources. Thus, this paper proposes a system architecture that can be used for
profiling the resources usage in terms of the energy consumption. From the profiled data, the application
developers can enhance their energy-aware decisions when creating or optimising the applications to be more
energy efficient. This paper provides initial exploratory insight into Key Performance Indicators (KPIs) that
the proposed system architecture will make use of.

Keywords: Cloud Computing, Energy Efficiency, Energy-Aware Profiling, Energy Efficiency Metrics.

1 Introduction

The radical adoption of Cloud Computing technology has exposed a significant

overhead in maintaining its infrastructure, which has become a major issue for

the Cloud providers due to the associated high operational costs, such as energy

consumption. It has been stated that a data centre may consume about 100 times

more energy than a typical office of the same size [1]. So, efficiently managing the

power consumed by the servers would improve the overall consumption; in the sense

that as the servers consume less power, the heat generated by these servers would

be reduced, which would then reduce the need for cooling resources that consume

large amount of energy as well.

Improving the energy efficiency of Cloud Computing has been an attractive

research topic for both academia and industry as it has become gradually significant

for the future of Information and Communication Technology (ICT) [2]. Many

researchers have investigated new ways for managing the Cloud infrastructure as a

means of enhancing the energy efficiency. A number of techniques have been already

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Alzamil et al

proposed and deployed for better resource management. For example, Data Voltage

and Frequency Scaling (DVFS) and Virtual Machines (VMs) allocation have been

widely studied and deployed to manage the resources more efficiently. Nonetheless,

there is still a need to make the whole stack of Cloud Computing more energy-aware

and not only focusing on the resource management.

There are a large number of different Cloud applications with different require-

ments of resources; some of them are data-intensive whereas others are compute-

intensive. So, depending on the taxonomy of the application, the energy consump-

tion of the resources that underpin these different applications can vary. Thus, this

research is aimed to add value to the Cloud Computing energy efficiency by inves-

tigating energy efficiency modelling in terms of energy-aware profiling and energy

efficiency metrics. Energy-aware profiling is studied in order to understand how the

energy is consumed by the infrastructure components, like CPUs, when the appli-

cation is in operation. Further, it would investigate the introduction of new energy

efficiency metrics to better understand how energy efficient the running application

is and provide overall Key Performance Indicators (KPIs) of that application.

Thus, the output measurements of energy-aware profiling and energy efficiency

metrics will be combined to form KPIs for the running application. Also, these KPIs

will be further analysed and used to facilitate the decision-making of application

developers with better energy-aware programming.

The main contributions of this paper include:

• Proposed system architecture for profiling and assessing the energy efficiency of

Cloud infrastructure resources.

• Supporting analysis of how the output of the proposed system architecture can

enhance the decision making of Cloud application developers when creating and

configuring new applications.

2 Energy Efficiency in Cloud Computing

For the Cloud Computing stack, energy efficiency has been extensively studied in the

literature and has focused on a large number of different topics, like virtualisation,

requirement engineering, programming models, and resource management.

In terms of virtualisation, a number of studies proposed different approaches

for allowing resource utilisation, server consolidation and live migration of virtual

machines [3,4,5], which all can offer significant energy and costs savings [6].

With the advancement of software-intensive systems to self-adaptive systems to

meet the growing needs for autonomic computing [7], requirements engineering for

self-adaptive software systems ensuring energy aspects has received less attention

[8]; as that can be justified with the challenges to encounter when dealing with

uncertainties associated with the operating environment [9].

In terms of programming models, there are a number of platforms used for the

development and deployment of Cloud applications and services, like Hadoop [10],

Windows Azure [11], Microsoft Daytona [12], Twister [13], Manjrasoft Aneka [14],

and Google App Engine [15]. Yet, these platforms lack consideration for energy

efficiency, whereas a work presented in [16] proposed a general-purpose programing

2

Alzamil et al

environment to simplify and help the developers make energy-efficient decisions for

constructing energy-aware applications.

Most of the attention in the literature has focused on enhancing the energy ef-

ficiency of Cloud Computing through better resource management to avoid some

issues like excessive power consumption and SLAs violation reliability [17]. There-

fore, many developments have been introduced like, DVFS and Dynamic Power

Management (DPM) techniques to control the power consumption of servers in ac-

cordance with the workload [18], virtual machine consolidation policies to optimise

the hosts by migrating VMs from one host to another [17], some models for better

prediction of the power consumption for the servers [19], task consolidation model

for maximising resource utilisation [20], a holistic framework called Mistral for op-

timising the power consumption for the physical hosts [21], a CPU re-allocation

algorithm that combines both DVFS and live migration techniques to reduce the

energy consumption and increase the performance in Cloud datacentres [22].

However, there is a lack of research that tackles the issue of properly ensuring

energy awareness from the design stage and not only through resource management

of the Cloud Infrastructure. So, there is still a need for modelling the energy

efficiency of Cloud infrastructures to gain a better understanding of energy efficiency

and to feed the decision-making at the service design stage, which will be discussed

in the following section.

3 Energy Efficiency Modelling

It is important to model energy profiling techniques and introduce new metrics to

inform the providers how energy efficient their infrastructure is to make strategic

decisions, such as creating and configuring energy-aware application and forming

new energy-aware pricing mechanism, accordingly.

3.1 Profiling

Having such tools that would help understand how the energy has been consumed in

a system is essential in order to facilitate software developers to make energy-aware

programming decisions. Schubert et al [23] state that the developers lack the tools

that indicate where the energy-hungry sections are located in their code and help

them better optimize their code for enhancing energy consumption more accurately

instead of just relying on their own intuitions. In their work, they proposed eprof,

which is a software profiler that narrates energy consumption to code locations;

therefore, it would also help developers make better energy-aware decisions when

they re-write their code [23]. For example, with storing data on a disk, software

developers might choose between storing the data in an uncompressed format or

a compressed format, which would require more CPU resources. Compressed data

has been commonly suggested as a way to reduce the amount of I/O needed to

be performed and therefore reducing the energy based on the hypothesis that the

CPU can process the task of compression and decompression with less energy than

the task of transferring large data from and to the disk [24]. However, that would

depend on the data being processed. In fact, some conducted experiments in [23]

with eprof profiling tool show that the process of compressing and decompressing

3

Alzamil et al

the data consumes significantly more energy than the process of transferring large

amount of uncompressed data because the former would use more CPU resources

than the latter. So, it can be a controversial issue depending on the application

domain. Thus, having such tools identifying where the energy has been consumed

would help software developers to make more energy-aware decisions.

Moreover, a new framework called Symbolic Execution and Energy Profiles

(SEEP) has been recently introduced in [25] as an approach to help software devel-

opers make well informed decisions for energy optimisation from early stages at the

code level. To illustrate, SEEP is designed to provide the developers with energy

estimations to make them more energy-aware while they are programming.

3.2 Metrics

Energy efficiency in Clouds can be assessed by different metrics. In terms of Cloud

infrastructure, the well-known Power Usage Effectiveness (PUE) metric has been

introduced by the Green Grid organisation to help the providers assess and improve

the energy efficiency of their data centres [26]. However, despite the fact that the

PUE metric has been successful and widely used, Grosskop [27] argues that it is

restricted as an indicator for energy efficiency to the infrastructure management only

and not considering the optimisation at the software levels to enhance the efficiency

of the whole stack. Also, as stated by Wilke et al [28], analysing software’s energy

consumption is considered an important requirement for such optimisations. So,

Grosskop proposed a new metric called the Consumption Near Sweet-Spot (CNS)

that identifies how well the system’s energy efficiency optimum and its utilisation

are allied by calculating the ratio between the average consumption and optimum

consumption for a system to deliver a particular unit of work [27].

Moreover, other works have looked at other metrics for energy efficiency mea-

surements, like utilisation percentage and SLA violation percentage. For example,

in the work conducted by Beloglazov et al [17], they evaluate the efficiency and

performance of their proposed algorithms by using some metrics, namely the total

energy consumption, the average number of SLA violations, and the number of VM

migrations.

Recently, some work has started to measure the energy consumption in more

details, like measuring energy consumption for each VM in a physical machine.

Research conducted by [29] introduces a VM power model to measure the estimated

power consumption of VM with using performance events counter. They argue that

the results of their proposed model can get on average about 97% accuracy.

Nonetheless, as mentioned earlier, there is a lack of metrics to measure the energy

efficiency of Clouds from different layers other than the infrastructure only. In terms

of fine-grain measurement, there are a limited number of researches conducted to

map the energy consumption for each single VM in a server, which indicates the

need to fill this gap by introducing new suitable metrics for measuring and mapping

the energy consumption to each VM.

4

Alzamil et al

4 Energy-Aware Profiling

Ensuring energy efficiency from different layers in Cloud Computing has become

inevitable, especially with the unstable energy costs. We propose in this paper

to have energy-aware profiling for the Cloud infrastructure to better understand

how the energy has been consumed and assess its energy efficiency in order to help

the software developers from the application layer enhance their decision-making

in terms of energy-awareness when optimising their applications and services. The

proposed system architecture will be discussed in the following subsection.

4.1 Proposed System Architecture

The scope of this proposed system architecture would be in the IaaS layer where

the operation of services takes place. The main components of this model consist

of Resource Monitoring Unit (RMU), Energy Profiling Unit (EPU), Reporting and

Analysis Unit, as can be shown in Figure. 1.

	

Service	
Creation	

Service	
D
eploym

ent	
Service	 O

peration	

IaaS	
PaaS	

SaaS	

	

Application	 Development	 Tools	

Service	 Deployment	 Environment	

VM	 Management	

CPU	 /	 Memory	 /	 Other	
Components	 EPU	 RMU	

	
Reporting	 and	
Analysis	 Unit	

Fig. 1. Proposed System Architecture

This proposed system architecture would have the RMU to dynamically collect

the energy consumed by the hardware components and observe the number of as-

signed VMs. After that, EPU would have appropriate algorithms to calculate the

energy consumed by each VM and hardware components, and it would then profile

and populate these measurements as KPIs to a database. This data can be further

analysed by the Reporting and Analysis Unit to provide the software developers

energy-aware reports in order to enhance their awareness of the energy consump-

tion when making programming decisions. For example, it might be interesting to

know whether the CPU or the memory of the hardware component would consume

more energy, so that the developer can create applications that would depend more

5

Alzamil et al

on components with less energy consumption, without compromising performance.

4.2 Illustration

An application can run on the Cloud to deliver services for the end users. These ser-

vices can consist of a number of tasks, like data-intensive or computation-intensive

tasks. Data-intensive tasks would depend more on using disk storage for process-

ing large amounts of data and data retrieval or update, which would require high

disk I/O bandwidth to maintain performance, whereas computation-intensive tasks

would depend more on using the processors to perform more computation [30].

When the service is configured in the application development tool with descrip-

tions of the allocated software and hardware resources, and is deployed in the service

deployment environment and goes through VM management, the proposed system

would then start with the RMU to capture and monitor the energy consumed by

the infrastructure that underpins and operates that service. The captured data

(as input to the system) will be dynamically collected by the EPU for appropriate

measurements and profiling in terms of energy efficiency. Next, EPU would pop-

ulate the profiled data as KPIs to a database. Hence, these KPIs (as output of

the system) can be further analysed and reported in a meaningful format to the

application developers to enhance their energy-aware decisions when making and

configuring new services.

The next section provides early exploration into the energy efficiency measure-

ments that will be supported by the proposed architecture.

5 Early Exploration

5.1 Experiment 1

The overall objective of this experiment is to evaluate the variation of the energy

consumption when running memory-intensive software and CPU-intensive software

to find out whether CPU or memory would consume more energy.

Currently, the experiment is conducted using Windows 7 OS with 2GB of RAM

and Intel Core 2 Duo 2.26GHz processor. Also, WattsUp? meter [31] is used

and set to get actual measurement of energy consumption per second. The used

measurements include energy consumption in watts, memory utilisation, and CPU

utilisation. This experiment is limited that it has not been set in a real Cloud

environment, but it still can give an indication of how the CPU and memory would

consume energy.

Memory-intensive software has been created and used to generate high workload

and keep the memory fully occupied by initiating an array of string and continually

adding values to that array and setting the thread to sleep continually to reduce the

load on the CPU. CPU-intensive software has been created and used to generate

high workload to keep the CPU busy by doing pi computation continually.

Each one has been set to run for a minute to have enough time for observing

the behaviour of the energy consumption.

The implementation of the experiment is designed to firstly start with collecting

measurements (energy consumption in watts, CPU utilisation, and memory utilisa-

6

Alzamil et al

tion) for 20 seconds in order to observe how the system would normally consume

energy just before running any software. Then, it runs memory-intensive software

for a minute and then goes into idle again for 20 seconds to set everything back

in normal state. Then, it runs cpu-intensive software for a minute, and finally it

goes into idle again for 20 seconds and ends the execution. The following Figure.

2, Figure. 3, and Figure. 4 show the results of this experiment.

Fig. 2. Memory Utilisation

Fig. 3. CPU Utilisation

As depicted on Figure. 2 and Figure. 3, during the execution of memory-

intensive software, the memory utilisation increases to the maximum, and the CPU

mostly varies with low utilisation and gets very high only when starting and ending

that software, which can be justified as the CPU is processed only to start and end

7

Alzamil et al

Fig. 4. Energy Consumption

that execution. When executing CPU-intensive software, the CPU utilisation gets

to the maximum and memory utilisation does not increase, as the memory is not

doing any job for that execution.

As shown in Figure. 4, the energy consumption during the execution of the

memory-intensive software does not increase and mostly is stabilised around 33

watts. But, there is a slight increase when starting the execution for the memory-

intensive software at 19:07:48, and when ending that execution at 19:08:48, and that

can be justified with the increase of CPU utilisation during these times. During the

execution of CPU-intensive software, the energy consumption increases dramatically

and stabilise around 41 watts.

The important finding of this experiment shows that the energy consumption

correlates with the CPU utilisation. It increases when the CPU is used regardless

of memory usage. Hence, CPU-intensive application would consume more energy

than memory-intensive application. In other words, the software developers can

reduce the energy consumption by creating and configuring applications that would

depend more on the memory rather than CPU.

5.2 Experiment 2

The overall objective of this experiment is to evaluate the variation of the energy

consumption when running both memory-intensive and CPU-intensive software and

when running only CPU-intensive software to find out which one would consume

more energy.

This experiment is conducted using the same environment used in Experiment

1. Memory and CPU-intensive software has been created and used to generate high

workload and keep the memory fully occupied by initiating an array of string and

continually adding values to that array without setting thread to sleep in order to

keep the CPU busy as well. The same CPU-intensive software used in Experiment

1 is used again here to generate high CPU-workload.

8

Alzamil et al

This experiment is designed and executed in the same way as Experiment 1,but

it differs only with the first executed software, which is in this experiment both

memory and CPU-intensive rather than memory only.

Fig. 5. Memory Utilisation

Fig. 6. CPU Utilisation

As shown on Figure. 5, and Figure. 6, during the execution of memory and

CPU-intensive software, the memory utilisation gets to the maximum, and the CPU

utilisation also gets to the maximum but it varies when starting and ending that

software. When executing CPU-intensive software, the CPU utilisation gets to the

maximum and memory utilisation does not increase.

As shown in Figure. 7 , the energy consumption during the execution of the

memory and CPU-intensive software increases over time and then it is mostly sta-

bilised around 41 watts. When the CPU-intensive software start executing, the

energy consumption increments dramatically and stabilise around 43 watts.

The findings of this experiment show that the energy consumption correlates

with the CPU utilisation. Even though both the memory and CPU gets to the

maximum utilisation, memory and CPU-intensive software interestingly consumes

9

Alzamil et al

Fig. 7. Energy Consumption

about 41 watts, which is slightly less than the CPU-intensive only software that

consumes about 43 watts. Thus, creating and configuring applications that balance

between using both memory and CPU rather than depending only the CPU can

reduce the energy consumption.

6 Conclusion and Future Work

This paper has proposed system architecture for Cloud Computing environment.

This system architecture can help software developers understand how their ap-

plications are using the infrastructure resources and consuming energy in order to

enhance their decision-making when creating and configuring new applications.

The conducted experiments in section V. revealed that the CPU is an energy-

hungry component that consumes more energy compared to memory. Hence, ap-

plications should be created and configured in a way that depend on memory or

balances between using memory and CPU rather than CPU only in order to gain

some energy savings.

Future work will overcome the limitation of the conducted experiments to be

implemented on a Cloud environment that consists of a number of machines linked

together over a network and runs many different Hypervisor technologies. It would

include using real Cloud application that is memory-intensive and another that is

CPU-intensive. Also, performance measurement will be considered and included to

show a trade-off between performance and energy consumption.

References

[1] P. Scheihing. Creating Energy-Efficient Data Centers. In Data Center Facilities and Engineering
Conference, Washington, DC, 18th May., 2007.

[2] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M. Q. Dang, and K. Pentikousis.
Energy-Efficient Cloud Computing. The Computer Journal, 53(7):1045–1051, August 2009.

[3] K. Ye, D. Huang, X. Jiang, H. Chen, and S. Wu. Virtual Machine Based Energy-Efficient Data
Center Architecture for Cloud Computing: A Performance Perspective. In Green Computing and
Communications (GreenCom), 2010 IEEE/ACM Int’l Conference on & Int’l Conference on Cyber,
Physical and Social Computing (CPSCom), pages 171–178, 2010.

10

Alzamil et al

[4] J. Hardy, L. Liu, N. Antonopoulos, W. Liu, L. Cui, and J. Li. Assessment and Evaluation of
Internet-Based Virtual Computing Infrastructure. In Object/Component/Service-Oriented Real-Time
Distributed Computing (ISORC), 2012 IEEE 15th International Symposium on, pages 39–46, 2012.

[5] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud Computing and Grid Computing 360-Degree Compared.
In Grid Computing Environments Workshop, 2008. GCE ’08, pages 1–10, 2008.

[6] T. Arthi and H. Hamead. Energy aware cloud service provisioning approach for green computing
environment. In Energy Efficient Technologies for Sustainability (ICEETS), 2013 International
Conference on, pages 139–144, 2013.

[7] H. Giese, H. Muller, M. Shaw, and R. De Lemos. 10431 Abstracts Collection – Software Engineering
for Self-Adaptive Systems. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008.

[8] N. Qureshi and A. Perini. Engineering adaptive requirements. In 2009 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, volume 2009, pages 126–131. IEEE, May 2009.

[9] J. Camara and R. De Lemos. Evaluation of resilience in self-adaptive systems using probabilistic
model-checking. In 2012 7th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), pages 53–62. IEEE, June 2012.

[10] Welcome to Apache, Hadoop! Available at http://hadoop.apache.org/, 2011.

[11] Windows Azure: Microsoft’s Cloud Platform — Cloud Hosting — Cloud Services. Available at http:
//www.windowsazure.com/en-us/, 2012.

[12] Daytona - Microsoft Research. Available at http://research.microsoft.com/en-us/projects/
daytona/, 2013.

[13] J. Ekanayake. Twister: Iterative MapReduce. Available at http://www.iterativemapreduce.org/,
2009.

[14] Manjrasoft - Products. Available at http://www.manjrasoft.com/products.html, 2008.

[15] Google App Engine - Google Developers. Available at https://developers.google.com/appengine/
?hl=en, 2014.

[16] C. Xian, Y. Lu, and Z. Li. A programming environment with runtime energy characterization for energy-
aware applications. In Low Power Electronics and Design (ISLPED), 2007 ACM/IEEE International
Symposium on, pages 141–146, 2007.

[17] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource allocation heuristics for efficient
management of data centers for Cloud computing. Future Generation Computer Systems, 28(5):755–
768, May 2012.

[18] D. Kliazovich, P. Bouvry, and S. Khan. DENS: Data Center Energy-Efficient Network-Aware
Scheduling. In 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l
Conference on Cyber, Physical and Social Computing, pages 69–75. IEEE, December 2010.

[19] R. Basmadjian, F. Niedermeier, and H. De Meer. Modelling and analysing the power consumption of
idle servers. Sustainable Internet and ICT for Sustainability (SustainIT), 2012, pages 1–9, 2012.

[20] Y. Lee and A. Zomaya. Energy efficient utilization of resources in cloud computing systems. The
Journal of Supercomputing, 60(2):268–280, March 2010.

[21] G. Jung, M. Hiltunen, K. Joshi, R. Schlichting, and C. Pu. Mistral: Dynamically Managing Power,
Performance, and Adaptation Cost in Cloud Infrastructures. 2010 IEEE 30th International Conference
on Distributed Computing Systems, pages 62–73, 2010.

[22] W. Chawarut and L. Woraphon. Energy-aware and real-time service management in cloud computing.
In Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON), 2013 10th International Conference on, pages 1–5, 2013.

[23] S. Schubert, D. Kostic, W. Zwaenepoel, and K. Shin. Profiling software for energy consumption. Green
Computing and Communications (GreenCom), 2012 IEEE International Conference on, pages 515–
522, 2012.

[24] A. Kansal and F. Zhao. Fine-grained energy profiling for power-aware application design. ACM
SIGMETRICS Performance Evaluation Review, 36(2):26, August 2008.

[25] T. Honig, C. Eibel, W. Schroder-Preikschat, and B. Kapitza. Proactive Energy-Aware System Software
Design with SEEP. In Porceedings of 2nd Workshop on Energy-Aware Software-Engineering and
Development (EASED@BUIS), 2013.

[26] The Green Grid. Harmonizing Global Metrics for Data Center Energy Efficiency. Technical report,
The Green Grid, 2012.

11

http://hadoop.apache.org/
http://www.windowsazure.com/en-us/
http://www.windowsazure.com/en-us/
http://research.microsoft.com/en-us/projects/daytona/
http://research.microsoft.com/en-us/projects/daytona/
http://www.iterativemapreduce.org/
http://www.manjrasoft.com/products.html
https://developers.google.com/appengine/?hl=en
https://developers.google.com/appengine/?hl=en

Alzamil et al

[27] K. Grosskop. PUE for end users-Are you interested in more than bread toasting? In Porceedings of
2nd Workshop on Energy-Aware Software-Engineering and Development (EASED@BUIS), 2013.

[28] C. Wilke, S. Gotz, and S. Richly. JouleUnit: A Generic Framework for Software Energy Profiling and
Testing. In Proceedings of the 2013 Workshop on Green in/by Software Engineering, GIBSE ’13, pages
9–14, New York, NY, USA, 2013. ACM.

[29] W. Chengjian, L. Xiang, Y. Yang, F. Ni, and Y. Mu. System Power Model and Virtual Machine Power
Metering for Cloud Computing Pricing. In Intelligent System Design and Engineering Applications
(ISDEA), 2013 Third International Conference on, pages 1379–1382, 2013.

[30] F. Chen, J. Schneider, Y. Yang, J. Grundy, and Q. He. An energy consumption model and analysis
tool for Cloud computing environments. 2012 First International Workshop on Green and Sustainable
Software (GREENS), pages 45–50, June 2012.

[31] Watts Up? Plug Load Meters. Available at www.wattsupmeters.com.

12

www.wattsupmeters.com

 1

Abstract— The growing demands of business and the
competition in the provision of services has led to many
enterprises outsourcing IT provision using cloud
computing to handle business processes and data
management. Ideally, the benefits that are offered by cloud
computing technology can accommodate the rapidly
increased demands of the organizations and individual
customers. However, the usage of cloud computing has
potential security concerns. The proposed research will
put forward an approach for investigating the cost of
security in cloud computing. The proposed method is
based on a multi-level security model, which uses the
distribution of partitioned workflows upon hybrid c louds.
Furthermore, the PEPA Eclipse plug-in tool will be used to
create a cost model that uses the valid deployment choices
that generated by the multi-level security model. The
outcomes that can be obtained by means of implementing
this research will used to describe the evaluation of the
performance. Thus, predictions of the performance can be
derived as well as the potential cost of deployment under
different options and scenarios.

Index Terms — Cloud computing, Cost model, Cloud
computing security, PEPA.

I. INTRODUCTION

Over the last few years cloud computing has become a
valuable option for a considerable number of organizations.
The reasons behind this move are the growing capability of
outsourced solutions and the high cost of buying and
maintaining infrastructure. This allows organizations to
exploit the advantages offered by cloud computing such as:
high performance, availability, scalability and the low cost
(i.e. pay on demand).

According to NIST1 [3], the definition of cloud computing
is “a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction” .
These features are attracting organizations to migrate toward
cloud computing to cope with their rapidly increased
processes and related data.

Services offered by an organization are often business
processes presented as workflows. The deployment of
workflows on internal resources (i.e. private cloud) can affect
the performance of services where the resources are limited

1 National Institute of Standards and Technolo

[4]. On the other hand, cloud computing (i.e. public cloud) can
overcome the limited resources problem that is facing
enterprises and can offer high performance with cost-saving.

Using cloud computing has highlighted several security
concerns, for instance where the organizations data will be
stored and how ensure the confidentiality and privacy of
information. Correspondingly, the security aspects are one of
the main concerns for many organizations [5], [6]. Moreover,
according to surveys that conducted by IDC [7] in 2008 and
2009, security is still the top challenge for cloud services.
Thereby, some companies tend to use a combination of public
and private clouds based on the sensitivity of data; private
cloud as they perceive more secure and public clouds to gain
the benefit of high performance, scalability and availability.

Corporations can obtain many significant improvements in
security by using cloud computing [8]. Based on the multi-
level security model presented by Watson [1], this research
will investigate the cost of security for the deployment of the
partitioned workflow in cloud competing. Moreover, the
PEPA Eclipse plug-in tool will be used to create a cost model
that relies on the valid selections generated by means of
Watson’s approach. Furthermore, a new cost model will be
developed to evaluate the variety of distribution possibilities,
where each option has its characteristic to deploy partitioned
workflow on federated clouds.

The expected results will help to answer the following
questions: how many resources are needed for specific
deployment?; which better to deploy on private cloud or
public clouds based on the sensitivity of data and the resources
that organizations have? This work is taking into account the
security requirements that should be met.

This paper is structured as follows. Section II presents a
motivating example of a cloud workflow drawn from the
literature. In section III we will discuss some other approaches
to analysis. Section IV will introduce a set of PEPA models
representing different cloud deployment options. In section V
we will present some results and finally draw some
conclusions and outline some further work.

II. MOTIVATING EXAMPLE

A considerable amount of research has addressed cloud
computing and its associated concerns of security in addition
to the trade-off of the cost of deployment on private cloud and
public cloud and the partitioning of workflow onto clouds in
terms of security concerns. Our research has adopted the
multi-level security model of Watson [1] that originally
extends the Bell-LaPadula security model [9]. The example in
this paper is a Healthcare Data Analysis example that

Said Naser Said Kamil Nigel Thomas
School of Computing Science

Newcastle University, UK.

A case study in inspecting the cost of security in
cloud computing

introduced by Watson. As can be seen in Figure 1. patient data
that would be analyzed is shown as a workflow, which
originally is a medical research application. In the first place,
it reads data as input which includes the patient n
his/her measurements of heart rates. Then, the service
anonymize takes off the name producing anonymized data.
Consequently service named analyze starts to analyze the data.
As a result, a summary of analyzed heart rates measurements
will be created as output.

Figure 1: Workflow of health care data analysis

The primary workflow that is shown in Figure 1 and
introduced by Watson [1]; has been modelled as a directed
graph, where data and services are represented as nodes and
the data dependencies denoted as edges. The
security conditions (no read-up and no write
applied on the workflows and extended to include the cloud
properties. Furthermore, a security level is assigned for each
service as well as data which are consumed and produced by
services. The model is extended to include clouds that will
accommodate service and data of workflow, where a security
level is assigned to a cloud. Additionally, the security scheme
of transferring data and services between clouds has been
addressed, through insuring the security level assigned to the
source besides the destination. As well as to this, a tool has
been developed by Watson [1] to generate valid distribution
choices automatically (see Figure 2) that complies with the
security constraints mentioned earlier. Finally, a very
cost model has been created to rank the deployment selections
that produced by the tool based on cost. While the calculation
of the cost in [1] is depending on three factories: Data storage
(size and time), CPU and Data transfer in and out.

III. APPROACHES TO EVALUATION OF CLO

Pearson and Sander [10] introduced an approach that
assisted customers to select the more appropriate cloud service

Option 1

Option 2

Option 3

Option 4

Figure 2: Valid Deployment Option, where boxe

referring to Private and Public Clouds respectively

2

Figure 1. patient data
that would be analyzed is shown as a workflow, which
originally is a medical research application. In the first place,
it reads data as input which includes the patient name and
his/her measurements of heart rates. Then, the service

takes off the name producing anonymized data.
starts to analyze the data.

As a result, a summary of analyzed heart rates measurements

: Workflow of health care data analysis [1].

shown in Figure 1 and
; has been modelled as a directed

graph, where data and services are represented as nodes and
the data dependencies denoted as edges. The Bell-LaPadula

up and no write-down) are
applied on the workflows and extended to include the cloud
properties. Furthermore, a security level is assigned for each
service as well as data which are consumed and produced by

ces. The model is extended to include clouds that will
accommodate service and data of workflow, where a security
level is assigned to a cloud. Additionally, the security scheme
of transferring data and services between clouds has been

nsuring the security level assigned to the
source besides the destination. As well as to this, a tool has

to generate valid distribution
choices automatically (see Figure 2) that complies with the
security constraints mentioned earlier. Finally, a very simple
cost model has been created to rank the deployment selections
that produced by the tool based on cost. While the calculation

is depending on three factories: Data storage
(size and time), CPU and Data transfer in and out.

TO EVALUATION OF CLOUD COMPUTING

introduced an approach that
assisted customers to select the more appropriate cloud service

provider through the decision support system that has been
developed. An overview of this approach can be seen in
Figure 3. Additionally, the outcomes of this system can give
an assessment to threats that may possibly arise through the
distribution of private information. As a consequence, the
costs of the selection of service provider will be lowered. The
approach of Pearson and Sander
potential cloud security threats and to reduce the risk.
However, our research will investigate the cost of the
distribution of workflows over clouds by way of a different
methodology with the aim of mitigate the cost

In a similar manner to the

Wenge et al [11] proposed a method for assessing a cloud
provider, particularly with respect security aspects and the
collaboration with other cloud providers.
be used to help customers to determine the most appropriate
services providers as well as to the provision of a solution for
the security risks associated.

Goettelmann et al [2]
partitioning a business process and deploying it on a set of
clouds that had been taken into account security conditions.
As can be seen in Figure 4, thi
decentralization algorithm that proposed a mechanism to
insure security constraints and quality of service. One
limitation of this approach is that, the method encountered
some problems in synchronization of messages.

It can be noticed that, there are some similarities between

the Watson scheme and the Goettelmann
through the manner of partitioning of workflows while
meeting security requirements and distribution process over
clouds. Nevertheless, the differenc

Figure 3: Overview of the approach of

Figure 4: Decentralization approach

: Valid Deployment Option, where boxes red and green

referring to Private and Public Clouds respectively [1].

provider through the decision support system that has been
developed. An overview of this approach can be seen in

ure 3. Additionally, the outcomes of this system can give
an assessment to threats that may possibly arise through the
distribution of private information. As a consequence, the
costs of the selection of service provider will be lowered. The

arson and Sander is concerned with the
potential cloud security threats and to reduce the risk.
However, our research will investigate the cost of the
distribution of workflows over clouds by way of a different
methodology with the aim of mitigate the cost.

In a similar manner to the Pearson and Sander scheme,
proposed a method for assessing a cloud

provider, particularly with respect security aspects and the
collaboration with other cloud providers. This technique can
be used to help customers to determine the most appropriate
services providers as well as to the provision of a solution for

 developed a methodology for

partitioning a business process and deploying it on a set of
clouds that had been taken into account security conditions.
As can be seen in Figure 4, this method utilized a
decentralization algorithm that proposed a mechanism to
insure security constraints and quality of service. One
limitation of this approach is that, the method encountered
some problems in synchronization of messages.

n be noticed that, there are some similarities between
the Watson scheme and the Goettelmann et al method,
through the manner of partitioning of workflows while
meeting security requirements and distribution process over
clouds. Nevertheless, the difference is that Watson considers

: Overview of the approach of Pearson and Sander.

: Decentralization approach [2].

 3

only sequential workflows tasks. Furthermore, [11] and [2] do
not investigate the cost of deployment choices over clouds and
[2] claims that the calculation of the cost will be time and
resource consuming.

Mach and Schikuta [12] introduced a new cost model,
where they stated that their economic cost model can provide
a beneficial information for cloud provider and consumer
based on the calculation of the server’s energy consumption.
They assume that a cloud cost model can be considered as a
traditional production process that has production factors and
produced goods. As well, the benchmark SPECpower ssj2008
that developed by SPEC2 is used to test performance and
power consumption. The produced information can be used to
make right decisions for the business strategies that might be
implemented and its impact. In spite of some similarities with
Watson method as well as to the work presented by Pearson
and Sander, Mach and Schikuta’s work lies in operational cost
that are related to power consumption, while our research is
concerned with deployment cost in cloud environments.

A novel tool has been developed by [13] for dynamic
exception handling, which extends the multi-level security
model of [1]. The authors indicate that the tool can discover
alternative partitions with low-cost paths to deal with
exceptions that may occur during run time. The work uses
dynamic exception handling for partitioned workflow on
federated clouds and has adopted Watson’s simple cost model
of multi-level security model. This means that, they have not
made changes to the method of calculation of deployment
cost, but they consider exceptions are handled to achieve fault
tolerance and to find another low cost paths for the
successfully completion of a deployed process.

From the side of security, Capgemeni [8] described the
cloud computing with associated risks, which are already
associated with other types of using outsourcing. Capgemeni
concentrates on multi-tenancy and required compliance, which
is assumed to be more relevant to cloud computing.
Capgemeni argued that, significant benefits in security can be
gained on adoption of cloud computing over traditional
outsourcing.

A further approach has been presented by Nada et al [15]
for partitioning BPEL, a workflow description language. A
program technique is used in order to partition automatically.
This approach states that the distribution of data brings several
improvements on performance for example reducing network
traffic. In addition, the method of Nada et al has attempted to
reduce the cost of communication between partitions.

From the consumers perspective Dillon et al [5] argue that,
numerous models of cost can be raised specially with the use
of hybrid cloud distribution model where, enterprise data
needs to be transferred from its source (private cloud) to its
destination (public cloud) and vice versa. The integration of
consumer data with the cloud providers is shown to add
additional cost. Likewise, Leinwand [16] also discusses the
cost of using cloud computing. The charge of an application
that generates a lot of bandwidth using Windows Azure
Platform has been presented as an example. Additionally, it
has been suggested that, if size of data in excess of 50
gigabytes the cloud consumer should buy his own bandwidth.

2 Standard Performance Evaluation Council

A new methodology is presented by [17], where it evaluates
the performance of clouds in order to ensure that a specific
service get its proper level. Also, their methodology is an
extension to ASTAR method, which defined as a method for
evaluation of configurations in the context of service-oriented
architectures [18]. An approach that has been developed to
consist of five steps: identify benchmark, identify
configuration, run tests, analyze and recommend. As a result
of the analysis, the recommendations is given for a specific
configuration, where the calculation of cost for each service is
used for optimization.

An experimental methodology is introduced by Cerotti et
al [19], where the performance of multi-core systems in the
cloud have been evaluated. Several types of benchmarks such
as: DaCapo3 and IOzone4 have been implemented on
VirtualBox5 and Amazon EC26 platforms. Hence, the obtained
outcomes are used to acquire estimations of the response time.
Although numerous of experiments are implemented on real
platforms, the cost only mentioned from the provider side,
whereas their findings show that the provision of many single-
core machines is more cost-effective than single machines
with many cores.

WORKFLOW MODELLING

The importance of modelling business processes is stated by
Adriansyah et al [20], through an approach that provides an
analysis of the performance. The techniques that have been
used in their work starting with create a process model via
YAWL language and then replay the developed event logs
framework against the model. Open source tool have been
used such as: Open Source framework process mining ProM7
and extensible event stream XES8. Some similarities to our
proposed approach can be observed in modelling the business
process and performance analysis. However, the aim is
different, as the proposed work will concentrate on the cost in
cloud taking into account the importance of evaluation of
performance of the modelled systems.

Workflows modelling languages acting essential role in
abstracting business processes, modelling and analyzing.
Therefore, several workflow modelling languages including
YAWL and BPEL will be investigated in order to create a new
cost model for the deployment of partitioned workflow over
hybrid clouds. In addition to this, extensive experiments will
be implemented to simulate the performance behaviour of
completion of workflow activities. Also, a comparison
between the results those will be obtained from the afore
mentioned modelling languages will take place.

YAWL 9 is a workflow language that was developed to
overcome the limitations of other workflow management
systems. Petri Nets have been chosen as a starting point, due
to their support to the most of the workflow patterns. The Petri
Nets structure is then extended to add higher abstraction level

3 http://dacapobench.org/
4 http://www.iozone.org/
5 https://www.virtualbox.org/
6 http://aws.amazon.com/
7 http://www.processmining.org
8 http://www.xes-standard.org/
9 http://www.yawlfoundation.org/

 4

patterns [26], [27]. One advantage of YAWL is that it supports
human actions. According to [28] the following are some of
features offered via YAWL: it can discover the dependencies
of control-flow; it can use XML, XQuery and XPath in order
to handle data; it can support dynamic workflow, thus can deal
with new changes; it provides an environment that can
straightforwardly make changes to particular requirements. On
the other hand, YAWL is not standard language and lacks
industry support.

BPEL is a workflow modelling language designed to
support the representation of business process specifically
with web services aspects and it is based on XML language.
BPEL is an orchestration language (i.e. identifies an
executable process, which involves exchange message with
other systems). BPEL is standardized by the Organization for
the Advancement of Structured Information
Standards (OASIS) and supported by numerous organizations
such as: IBM, Microsoft and Oracle. According to [29] BPEL
can be described in two ways: firstly, abstract business
process, secondly executable business process. In addition,
different versions of BPEL are available for instance
BPEL4WS and WS-BPEL. However, the BPEL language does
not offer enough support to patterns for example:
Synchronization and Advanced Branching [29].

IV. THE MODEL

Four simple PEPA models have been derived based on the
four main distribution choices that adopted from [1] and
illustrated in Figure 2. Option 1 is modelled as sequential
components of services. Additionally, the activities read and
anonymize will be distributed on a private cloud whereas
analyze and write will be deployed on public clouds. Also, the
co-ordination equation is modelled. Option 2 is modelled as
sequential components of services similar to option 1.
However, the sequential components of clouds are different,
where only write activity will be deployed on the public
clouds. Also, the system equation will be same as option 1.
Identically, Option 3 is modelled as a sequential components
of services same as option 1 and option 2. Nevertheless, the
consecutive components of clouds are different, where only
analyse activity will be deployed onto the public clouds.
Likewise, system equation will be same as option 1 and option
2. Even though option 4 has similar representation to the
previous workflow activities, it differs from the former
options, where will be only positioned over a private cloud.

In each model there is a component which represents the
workflow and components that represent the public and
private cloud services. The difference between each model is
only in the services offered by the public and private clouds.
By considering each option and investigating different
capacities of public cloud servers, it is possible to explore
which configuration offers the best overall performance.

The workflow component, which is identical in each
model, is specified as a simple sequential flow, as follows:

Service0 ≝ (readData, r).Service1

Service1 ≝ (anonymize, s).Service2

Service2 ≝ (analyze, t).Service3

Service3 ≝ (writeResult, r).Service0

The private and public cloud components are then
specified for each model as follows.

• Option 1

Private ≝ (readData, r).Private + (anonymize, s).Private

Public ≝ (analyze, t).Public + (writeResult, r).Public

• Option 2

Private ≝ (readData, r).Private + (anonymize, s).Private
+ (analyze, t).Private

Public ≝ (writeResult, r).Public

• Option 3

Private ≝ (readData, r).Private + (anonymize, s).Private
+ (writeResult, r).Private

Public ≝ (analyze, t).Public

• Option 4

Private ≝ (readData, r).Private + (anonymize, s).Private
+ (analyze, t).Private + (writeResult, r).Private

The system equation for options 1 to 3 is given as,

System ≝ Service0 [N1] (Private [N2] || Public [N3])
 L

Where the cooperation set L = {readData, anonymize,
analyze, writeResult}. For option 4, where the entire workflow
is deployed only on the private cloud, the system equations is
given by,

System ≝ Service0 [N1] Private [N2]
 L

It is important to note here that the rates of each action are
specified in both the workflow component (Servicei) and the
corresponding cloud component (Private or Public). In the
terminology of PEPA, this is referred to as active-active
cooperation. The reason for specifying the rates in this way is
because we wish to exploit the definition of the apparent rate
in such a way to investigate the scalability of the cloud
provision. In this way the apparent rate of the action
anonymize, for example, will be given by the product of s
multiplied by the minimum of the number of Service1 and
Private components currently enabled. That is, an individual
instance of the anonymize action will never be be served at a
rate greater than s, regardless of how many instances there are
or how many servers are available. This condition might not
always be preserved if we were to use passive actions in our
model.

V. EXPERIMENTAL RESULTS

The models introduced above were analysed using the PEPA
Eclipse Plug-in. We assume that the analyze action will be the
most computationally expensive (hence the rate t is relative
small) and that readData and writeResults are relatively fast.
We also assume that the rates of readData and writeResults
actions are the same (specified as r in the models above). Thus
we have focused our experiments in a number of scenarios
whose rates for readData, anonymize, analyze and
writeResults, are given in Table 1. In each of the models
representing options 1, 2 and 3 were have further considered
different capacities within the public cloud by varying N2,

 5

which represents the number of servers. For ease of
comparison, the number of servers in the private cloud, N3, has
been fixed as 1 and the number of workflow instances, N1, has
been fixed at 20.

Table 1: Activities rates (r, s and t) by using variety of
assumptions

 Rates

Assumption r s t

1 1 0.1 0.01

2 1 0.1 0.001

3 1 0.1 0.0001

4 1 0.01 0.0001

5 1 0.01 0.00001

In the first set of experiments we compute throughput
based on the direct continuous time Markov chain steady state
solution in the PEPA Eclipse Plug-in. This gives rise to a set
of models each with 1771 states whose results are shown in
Figures 5-9.

0.00000

0.02000

0.04000

0.06000

0.08000

0.10000

0.12000

5 10 15 20 25 30

T
hr

ou
gh

pu
t

Public Clouds

Option 1

Option 2

Option 3

Figure 5: Throughput of options (1, 2 and 3) by using rates
of assumption 1 from table 1.

0.00000

0.00500

0.01000

0.01500

0.02000

0.02500

5 10 15 20 25 30

T
hr

ou
gh

pu
t

Public Clouds

Option 1

Option 2

Option 3

Figure 6: Throughput of options (1, 2 and 3) by using rates of
assumption 2 from table 1.

0.00000

0.00050

0.00100

0.00150

0.00200

0.00250

5 10 15 20 25 30

T
hr

ou
gh

pu
t

Public Clouds

Option 1

Option 2

Option 3

Figure 7: Throughput of options (1, 2 and 3) by using rates of
assumption 3 from table 1.

0.00000

0.00050

0.00100

0.00150

0.00200

0.00250

5 10 15 20 25 30

T
hr

ou
gh

pu
t

Public Clouds

Option 1

Option 2

Option 3

Figure 8: Throughput of options (1, 2 and 3) by using rates of
assumption 4 from table 1.

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

5 10 15 20 25 30

T
hr

ou
gh

pu
t

Public Clouds

Option 1

Option 2

Option 3

Figure 9: Throughput of options (1, 2 and 3) by using rates of
assumption 5 from table 1.

 6

The first observation to make from this set of experiments
is that option 1 and option 3 perform almost identically in each
case. This is not surprising given that these options differ only
in whether the relatively fast writeResults action is performed
in the public or private cloud. A further observation is that
option 2 has a consistently lower throughput than either of the
other options. This is unsurprising given that the relatively
slow analyze action is being performed in the (non-scaled)
private cloud in option 2, whereas it is performed in the
(scalable) public cloud in options 1 and 3. In each case there is
no increase in throughput beyond 20 servers, because there are
only 20 workflow instances. In some cases the maximum
throughput is reached with fewer servers as the low capacity
of the private cloud means that actions performed there
become a bottleneck in the system.

Figure 10 shows the corresponding results for option 4,
where all actions are deployed on the single instance of the
private cloud. Here it is obvious that the throughput is the
same as the rate of the analyze action, as this becomes the
bottleneck.

In Figure 11 we further investigate the behaviour of

options 1 and 3 by introducing a different rate for the

writeResults action, which has been given the label w. We
investigated a number of different combinations of rates and in
many situations there was very little difference between the
performance of each option. However, under certain
circumstances, such as that shown in Figure 11, the overhead
of writeResults in the private cloud is sufficient to limit the
throughput of option 3.

Clearly the experiments presented here are on a limited
scale and in many practical circumstances we might wish to
consider greater volumes of both workload and service
capacity. In general this becomes problematic when using a
direct solution of a continuous time Markov chain as the
underlying state space rapidly becomes prohibitively large. A
state space in the order of 1 million states can be solved
directly with standard methods given sufficient memory to
store the large sparse matrices required, although such a
capacity is well beyond most users of the PEPA Eclipse Plug-
in. Hence if we wish to investigate larger systems than the one
explored above, we need to utilise other methods.

The PEPA Eclipse Plug-in is equipped with two scalable
analysis approaches, stochastic simulation (via Gillespie’s
method) and fluid flow approximation by means of ordinary
differential equations [25]. These techniques not only allow
much larger systems to be considered, but they also facilitate
transient analysis which provides further insight into the
system behaviour.

Figures 12 and 13 show the transient evolution of the
system under option 1 before steady state is reached. In both
instances the number of workflow instances, N1, is 20 and the
rates employed are those given by assumption 1 in Table 1. In
Figure 12 the number of public instances, N3, is 5 and in
Figure 13 the number of public instances is 10. The graphs
show the populations of each service type, i.e. the number of
workflows that are doing each action at any given time. The
two graphs look fairly similar and certainly the populations of
Service0 and Service3 appear indistinguishable. However, the
populations of Service1 and Service2 are subtly altered by the
increase in service capacity. In Figure 12 the population of
Service1 is decreasing steadily over time as anonymize actions
are completed, with the population of Service2 increasing
correspondingly. Recall from Figure 5 that the throughput here
is fairly low, so very few workflow instances are completing.
However, when the service capacity is doubled in Figure 13
the situation changes due to the significant increase in
throughput. Now the Service3 population is levelling off as
more workflow instances complete. Thus the system is
approaching steady state much more rapidly than in Figure 12.

A more dramatic effect can be observed if we increase the
number of workflow instances to 2000, as in Figure 14 and 15.
Here we observe the evolution of the system under option 3
over a much longer period. Even with a long period of
observation the small capacity system in Figure 14 (N3=5)
fails to reach steady state. However, when we double the
service capacity in Figure 15 (N3=10), steady state is reached
relatively quickly. The importance of these observations in a
practical setting is to illustrate that increasing the service
capacity not only has a significant effect on throughput, but
also means that the deployment is more stable and the
predicted (steady-state) performance is more likely to be
observed at any given instant of time.

0.00000

0.00200

0.00400

0.00600

0.00800

0.01000

0.01200

T
hr

ou
gh

pu
t

Private

Figure 10: Throughput of option 4 on a private cloud

0.00000

0.02000

0.04000

0.06000

0.08000

0.10000

0.12000

5 10 15 20 25 30

T
hr

ou
gh

pu
t

Public Clouds

Option 1

Option 3

Figure 11: Throughput of options 1 and 3, where r=1, s=0.1,
t=0.01 and w=0.1.

 7

Figure 12: ODE transient analysis for 20 workflows instances in option 1 model using assumption 1 from Table 1 with 5
public instances.

Figure 13: ODE transient analysis for 20 workflows instances in option 1 model using assumption 1 from Table 1 with 10
public instances.

 8

Figure 14: ODE analysis for 2000 workflows instances in option 3 model using assumption 1 from table 1 with 5 public
instances

Figure 14: ODE analysis for 2000 workflows instances in option 3 model using assumption 1 from table 1 with 10 public
instances

 9

VI. CONCLUSIONS AND FURTHER WORK

In this paper we have presented some initial work in
modelling workflow deployment using PEPA. The aim of this
work is to explore the costs associated with different security
decisions. This paper has been motivated through an example
of a healthcare application. We have shown that a simple form
of model with standard analysis tools can provide insight into
the behaviour of the system in question.

The system we have explored in this paper is clearly very
simple. The application we have studied has a linear flow,
whereby there is a fixed sequence of actions with no choice or
deviation. It will therefore be interesting to explore more
complex workflows, for example those involving choice and
loops, to investigate model behaviours that may arise in such
scenarios. In addition it would be interesting to consider
different sets of public cloud servers deployed for different
actions.

The model we have developed to study this application
also has some limitations. The most significant of these is that
we have not modelled any data transfer costs. Clearly it would
be a simple matter to add some network delays between
actions being undertaken in different locations. This would
enable a clearer comparison between the performance of
different deployment options in public and private clouds
where different transfer costs will be evident.

We have considered servers to belong to a homogeneous
set. A consequence of this assumption is that an action will
occur at the same rate wherever it is executed (in the private
cloud or on any of the public cloud servers). In practice there
are a wide range of service levels which can be purchased
within clouds and within those options there is wide range of
performance that might be experienced. Predicting exactly
what a provider will offer on any specification is not generally
possible in the current evolution of cloud systems. However it
would be relatively straight forward to give different
performance characteristics for different systems (at least
public and private) and compute the average performance at
different service levels.

Clearly to have practical value approaches such as the one
described here need to be validated against real
implementations. Performing such experiments in a rigorous
way is a difficult and time-consuming business. Our aim
therefore is to further develop the modelling approach to show
the potential of this line of investigation before undertaking
work to validate the results.

VII. ACKNOWLEDGEMENTS

The authors would like to take this opportunity to thank Prof
Paul Watson of Newcastle University for taking time to
explain his approach and the example used in this paper, as
well as providing the authors with a copy of his analysis tool.

REFERENCES

[1] P. Watson, "A multi-level security model for
partitioning workflows over federated clouds,"
Journal of Cloud Computing, vol. 1, pp. 1-15,
2012/07/28 2012.

[2] E. Goettelmann, W. Fdhila, and C. Godart,
"Partitioning and Cloud Deployment of Composite
Web Services under Security Constraints," in Cloud
Engineering (IC2E), 2013 IEEE International
Conference on, 2013, pp. 193-200.

[3] P. Mell and T. Grance, "The NIST Definition of
Cloud Computing," U.S. Department of Commerce,
National Institute of Standards and Technology2011.

[4] J. C. Mace, A. Van Moorsel, and P. Watson, "The
case for dynamic security solutions in public cloud
workflow deployments," in Dependable Systems and
Networks Workshops (DSN-W), 2011 IEEE/IFIP 41st
International Conference on, 2011, pp. 111-116.

[5] T. Dillon, W. Chen, and E. Chang, "Cloud
Computing: Issues and Challenges," in Advanced
Information Networking and Applications (AINA),
2010 24th IEEE International Conference on, 2010,
pp. 27-33.

[6] Y. Chen, V. Paxson, and R. H. Katz, "What’s New
About Cloud Computing Security?," UCB/EECS-
2010-5, 2010.

[7] F. Gens. (2009, 31 July). New IDC IT Cloud Services
Survey: Top Benefits and Challenges. Available:
http://blogs.idc.com/ie/?p=730

[8] Capgemeni, "Putting Cloud security in perspective,"
Tech. rep.,Capgemeni2010.

[9] D. E. Bell, L. J. La Padula, and C. Mitre, Secure
computer systems. Bedford, Mass.; Springfield, Va.:
Mitre Corp.; Distributed by National Technical
Information Service, 1973.

[10] S. Pearson and T. Sander, "A mechanism for policy-
driven selection of service providers in SOA and
cloud environments," in New Technologies of
Distributed Systems (NOTERE), 2010 10th Annual
International Conference on, 2010, pp. 333-338.

[11] O. Wenge, M. Siebenhaar, U. Lampe, D. Schuller,
and R. Steinmetz, "Much Ado about Security Appeal:
Cloud Provider Collaborations and Their Risks," in
Service-Oriented and Cloud Computing. vol. 7592, F.
Paoli, E. Pimentel, and G. Zavattaro, Eds., ed:
Springer Berlin Heidelberg, 2012, pp. 80-90.

[12] W. Mach and E. Schikuta, "A Consumer-Provider
Cloud Cost Model Considering Variable Cost," in
Dependable, Autonomic and Secure Computing
(DASC), 2011 IEEE Ninth International Conference
on, 2011, pp. 628-635.

[13] W. Zhenyu and P. Watson, "Dynamic Exception
Handling for Partitioned Workflow on Federated
Clouds," in Cloud Computing Technology and
Science (CloudCom), 2013 IEEE 5th International
Conference on, 2013, pp. 198-205.

[14] Y. Zhao and N. Thomas, "Efficient solutions of a
PEPA model of a key distribution centre,"
Performance Evaluation, vol. 67, pp. 740-756, 8//
2010.

[15] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, et al., "Above the Clouds: A
Berkeley View of Cloud Computing," EECS
Department, University of California, Berkeley
UCB/EECS-2009-28, February 10 2009.

 10

[16] A. Leinwand. (2009). The Hidden Cost of the Cloud:
Bandwidth Charges. Available:
http://gigaom.com/2009/07/17/the-hidden-cost-of-
the-cloud-bandwidth-charges/

[17] V. Stantchev, "Performance Evaluation of Cloud
Computing Offerings," in Advanced Engineering
Computing and Applications in Sciences, 2009.
ADVCOMP '09. Third International Conference on,
2009, pp. 187-192.

[18] V. Stantchev, Architectural Translucency. Berlin:
GITO-Verlag, , 2008.

[19] D. Cerotti, M. Gribaudo, P. Piazzolla, and G. Serazzi,
"End-to-End Performance of Multi-core Systems in
Cloud Environments," in Computer Performance
Engineering. vol. 8168, M. Balsamo, W. Knottenbelt,
and A. Marin, Eds., ed: Springer Berlin Heidelberg,
2013, pp. 221-235.

[20] A. Adriansyah, B. F. van Dongen, D. Piessens, M. T.
D. Wynn, and M. Adams, "Robust Performance
Analysis on YAWL Process Models with Advanced
Constructs," Journal of Information Technology
Theory and Application (JITTA), vol. 12, 2012.

[21] J. Hillston, A compositional approach to
performance modelling. Cambridge; New York:
Cambridge University Press, 1996.

[22] M. Tribastone, A. Duguid, and S. Gilmore, "The
PEPA eclipse plugin," SIGMETRICS Perform. Eval.
Rev., vol. 36, pp. 28-33, 2009.

[23] J. Hillston and L. Kloul, "A Function-Equivalent
Components Based Simplification Technique for
PEPA Models," in Formal Methods and Stochastic
Models for Performance Evaluation. vol. 4054, A.
Horváth and M. Telek, Eds., ed: Springer Berlin
Heidelberg, 2006, pp. 16-30.

[24] D. Radev, V. Denchev, and E. Rashkova. (May 2005,
Steady-state solutions of Markov chains.

[25] J. Hillston, "Fluid flow approximation of PEPA
models," in Quantitative Evaluation of Systems,
2005. Second International Conference on the, 2005,
pp. 33-42.

[26] W. M. P. van der Aalst and A. H. M. ter Hofstede,
"YAWL: yet another workflow language,"
Information Systems, vol. 30, pp. 245-275, 6// 2005.

[27] W. P. van der Aalst, L. Aldred, M. Dumas, and A. M.
ter Hofstede, "Design and Implementation of the
YAWL System," in Advanced Information Systems
Engineering. vol. 3084, A. Persson and J. Stirna,
Eds., ed: Springer Berlin Heidelberg, 2004, pp. 142-
159.

[28] (6 June 2014). YAWL (Yet Another Workflow
Language). Available:
http://www.yawlfoundation.org/

[29] M. Vasko and S. Dustdar, "A view based analysis of
workflow modeling languages," in Parallel,
Distributed, and Network-Based Processing, 2006.
PDP 2006. 14th Euromicro International Conference
on, 2006, p. 8 pp.

[30] Arthur H. M. Hofstede, Wil M. P. van der Aalst,
Michael Adams, and N. Russell, "Modern Business
Process Automation YAWL and its Support

Environment," ed. Springer-Verlag Berlin Heidelberg
2010, pp. 241-242.

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

LINE: Efficient Reliability and Performance
Analysis of Layered Queueing Models

[Extended Abstract]

Juan F. Pérez, Giuliano Casale1,2

Department of Computing
Imperial College London

London, UK

In this paper we introduce Line, a software tool for evaluating Layered Queue-

ing Network (LQN) models. LQNs are a class of stochastic models well-suited for

the performance evaluation of complex software systems [3]. LQNs are particularly

popular in model-driven engineering, where the generation of LQNs can be auto-

mated from high-level software specifications such as UML MARTE [6,8], PCM

[1,5], or CBML [9]. LQNs provide great flexibility as they are able to represent

a number of features relevant for software applications, such as resource pooling,

synchronous calls between components, admission control, among others. Further,

efficient methods and tools exist to automatically solve LQN models and compute

relevant performance measures, e.g., the mean-value analysis approximations in the

LQN solver (LQNS) [4].

In spite of these advantages, LQNs also have some limitations. For instance, the

LQN framework lacks a mechanism to specify the reliability of the hardware and

software resources used by a software system. In addition, the efficient solution of

LQN models rely on methods that are very effective to compute mean performance

measures, but do not provide information such as response time distributions or

higher-order moments of performance and reliability metrics.

To overcome these limitations, we present Line, a tool that relies on a fluid

multi-class queueing network (QN) model to efficiently evaluate LQNs. The advan-

tage of relying on a fluid model lies in its ability to make the analysis of large-scale

models tractable The fluid approach also provides approximations of the response-

time distribution of requests processed by the application, a key metric to assess

percentile-based service level objectives. In addition, Line offers the ability to ex-

1 The research of Giuliano Casale and Juan F. Pérez leading to these results has received funding from the
European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no. 318484.
2 Email: j.perez-bernal@imperial.ac.uk, g.casale@imperial.ac.uk.

c©2014 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:j.perez-bernal@imperial.ac.uk
mailto:g.casale@imperial.ac.uk

Pérez and Casale

plicitly model reliability aspects through the specification of a random environment,

i.e., a stochastic model of the operational environment the software system evolves

in. With Line it is thus possible to model software applications in the presence of

resource failures, servers breakdown and repairs, start-up delays, and interference

due to multi-tenancy, an increasingly important issue for cloud applications. Line

also supports Coxian distributions for the processing times, a class of distributions

that can be used to approximate empirical data more flexibly than with exponential

distributions.

The modeling framework implemented in Line combines and generalizes early

results obtained in [7] and [2] to assess the reliability and performance of complex

software system subject to reliability risks. Compared to these early works, Line

relaxes the assumptions on the processing times, allowing them to follow Coxian

distributions. Further, Line extends the blending methodology, necessary to in-

corporate the random environments, to handle multi-class and processor sharing

resources, instead of the single-class and first-come first-serve resources considered

in the original method.

Line has been developed to allow different usage types. Being developed in

MATLAB, it can be used as a library of methods to solve LQN models and compute

performance metrics. Further, its binary distribution can directly interact with the

Palladio Bench tool [1] to evaluate Palladio Component Models (PCMs). As a result,

the use of Line from Palladio Bench only requires the user to specify Line as its LQN

solver. Line is readily available for download at http://code.google.com/p/line/.

Example

We now illustrate the potential of Line with an example based on the Media Store

application presented in [1]. A PCM of this application is provided as part of the

Palladio Bench distribution. The application consists of a web GUI, a store manager

component, a watermaking component, and a mySQL database. The database is

deployed on a database server, while the other components are deployed on the

application server. The main resources to consider are the CPU of both servers,

and the disk (HDD) of the DB server. The application serves two classes of requests,

Download and Upload, submitted by a closed population of N users. Compared to

the PCM distributed with Palladio Bench, we have eliminated the connection pool

associated to the database, as this creates a finite capacity region in the QN model

that the current version of Line cannot handle. The QN model obtained from the

Media Store PCM has 5 stations: a delay station that models the users think times,

the App. Server CPU station, the DB CPU station, the DB HDD station, and a

station that models the network between the App. Server and the DB Server.

To illustrate the effect of the processing time distribution on the request re-

sponse time (RT) distribution we set all the processing times to be exponentially-

distributed, except for the Upload requests at the DB HDD, where we assume a

Coxian distribution with SCV equal to 5. The baseline case assumes all the stations

have a single server, and its results are shown in Figure 1 with the label m = 1. The

remaining cases are generated by increasing the number of servers in the DB HDD

station to m, and at the same time reducing the mean think time of both request

2

Pérez and Casale

0 1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

t [s]

R
es

po
ns

e
tim

e
C

C
D

F

95%

99%

m=1 m=2 m=4 m=8

(a) RT CCDF - Upload

0 1 2 3 4 5 6
10

−3

10
−2

10
−1

10
0

t [s]

R
es

po
ns

e
tim

e
C

C
D

F

95%

99%

m=1
m=2
m=4
m=8

(b) RT CCDF - Download

Fig. 1. Response time Varying number of servers

types by a factor m, with m = 2, 4, 8. Figures 1(a) and (b) show how increasing the

number of servers, while facing a similar load, reduces the RT faced by all the re-

quests. Here we display the RT Complementary Cumulative Distribution Function

(CCDF) for each request class, and mark the 95% and 99% percentiles for clarity.

Although the impact is significant for both Upload and Download requests, we

observe that the actual RT distribution differs due to the different processing time

distributions. The results reveal that while m = 3 servers is enough to offer a RT of

less than to 2 s to 99% of the Download requests, this only guarantees a 4 s RT to the

same proportion of the Upload requests. The RT distribution obtained with Line

can thus be used to evaluate percentile-based service-level objectives. We further

observe how the multi-class assumption in Line, with differentiated processing times,

reveals different RT distributions for different request classes. This information

allows the analysis at the request class level, which can be valuable as some design

decisions can have a very different impact for different request classes.

References

[1] Becker, S., H. Koziolek and R. Reussner, Model-based performance prediction with the palladio
component model, in: Proceedings of the 6th WOSP, 2007, pp. 54–65.

[2] Casale, G. and M. Tribastone, Modelling exogenous variability in cloud deployments, SIGMETRICS
Performance Evaluation Review 40 (2013), pp. 73–82.

[3] Franks, G., T. Al-Omari, M. Woodside, O. Das and S. Derisavi, Enhanced modeling and solution of
layered queueing networks, Software Engineering, IEEE Transactions on 35 (2009), pp. 148–161.

[4] Franks, G., P. Maly, M. Woodside, D. C. Petriu, A. Hubbard and M. Mroz, “Layered Queueing Network
Solver and Simulator User Manual,” Carleton University (2013).

[5] Koziolek, H. and R. Reussner, A model transformation from the palladio component model to layered
queueing networks, in: Performance Evaluation: Metrics, Models and Benchmarks, Lecture Notes in
Computer Science 5119, Springer, 2008 pp. 58–78.

[6] Object Management Group (OMG), A UML profile for MARTE: Modeling and analysis of real-time
embedded systems, beta 2, Technical Report OMG Document Number: ptc/2008-06-09, OMG (2008).

[7] Pérez, J. F. and G. Casale, Assessing SLA compliance from palladio component models, in: Proceedings
of the 15th SYNASC, 2013.

[8] Tribastone, M., P. Mayer and M. Wirsing, Performance prediction of service-oriented systems with
layered queueing networks, in: Proceedings of ISoLA 2010, 2010, pp. 51–65.

[9] Wu, X. and M. Woodside, Performance modeling from software components, in: Proc. 4th International
Workshop on Software and Performance (WOSP), 2004.

3

UKPEW 2014

Performance Analysis of Collective Adaptive
Behaviour in Time and Space

Cheng Feng1,2

School of Informatics
University of Edinburgh

Edinburgh, UK

Marco Gribaudo3

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

Milan, Italy

Jane Hillston1,4

School of Informatics
University of Edinburgh

Edinburgh, UK

Abstract

Many systems, both natural and engineered, exhibit collective adaptive behaviour. Natural examples are
swarming animals and insects, and man-made examples include swarm robots and sensor networks. Indeed
many systems have both human and ICT-based agents in play, distributed over some geographical region:
an informatics environment as defined by Milner. Over recent years there has been increased interest in
modelling these systems in order to understand their dynamic behaviour. Here we consider the subsequent
issue of how to define useful performance measures for such systems, based on consideration of a simple,
intuitive example.

Keywords: Spatio-temporal modelling, performance modelling, collective adaptive behaviour

1 Introduction

Systems which exhibit collective behaviour have many interesting properties. Exam-

ples from the natural world such as swarming animals and insects are often studied

1 This work is partially supported by the QUANTICOL project 600708.
2 Email: s1109873@sms.ed.ac.uk
3 Email: marco.gribaudo@polimi.it
4 Email: jane.hillston@ed.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:s1109873@sms.ed.ac.uk
mailto:marco.gribaudo@polimi.it
mailto:jane.hillston@ed.ac.uk

Feng, Gribaudo and Hillston

for their emergent behaviour, patterns which become apparent at the population-

level but which were not readily apparent from the described behaviour of individ-

uals. In engineered systems this emergent behaviour constitutes the performance of

the system.

Increasingly large-scale, geographically distributed ICT systems are being devel-

oped to support human endeavour in a variety of ways. This can be considered to

be the realisation of the informatics environment predicted by Milner and Weiser

[10,13]. Such systems operate with human agents interacting almost transparently

with computing elements. Examples include smart city applications such as smart

transportation, smart grid and many modern automotive systems.

In such systems, their transparency and pervasiveness mean that it is perhaps

more important than ever to investigate their behaviour from both a qualitative

and quantitive point of view prior to deployment. Work is currently underway, for

example in the QUANTICOL project [6] to develop modelling formalisms to capture

the behaviour of these systems [5,9]. Here we start a complementary investigation

into the types of measure that can be derived from spatio-temporal systems. Classic

performance measures assume that there is a single locus of operation. When there

is a (limited) spatial aspect to behaviour, state annotations are usually used to

syntactically distinguish the different locations and regular performance measures

are applied. We seek to take a more radical approach to support modelling in which

space is modelled explicitly and exploited fully when characterising the behaviour

of the system.

2 Leader and Follower Scenarios

We consider a simple scenario in which agents are moving in a two-dimensional grid,

as shown in Figure 1. We assume that the grid is finite and that the boundaries are

Leader

Follwers

dmin

Leader’s
path

Fig. 1. The Leader-Follower scenario.

wrapped, meaning that essentially we are considering movement on a torus. Each

2

Feng, Gribaudo and Hillston

agent moves one step at a time and at each step can move in any direction: north,

east, south or west. We assume that there is one distinguished agent, the Leader

who moves autonomously, performing a random walk over the grid. Any other agent

is a Follower . The objective of a Follower is to mimic the movement of the Leader .

However, there is a restriction that the Follower should keep a minimum distance

dmin from the Leader and should definitely avoid collisions.

In the following we consider a number of scenarios of increasing complexity to

illustrate our points. In particular, the model will be specified in PALOMA [5],

a new process algebra that is designed for the modelling of spatially distributed

collective and adaptive systems. Before describing the scenarios, we first give a

brief introduction to PALOMA. For more details the interested reader is referred

to [5].

2.1 PALOMA

PALOMA is novel stochastic process algebra that allows the expression of models

representing systems comprised of populations of agents distributed over space. In

PALOMA each agent is a finite state machine and the language is conservative in

the sense that no agents are spawned or destroyed during the evolution of a model

(although they can cease to change state). The language has a two level grammar:

X(`) ::= !(α, r).X ′(`′) | ?(α, p).X ′(`′) | X(`) +X(`)

P ::=X(`) | P ‖ P
Agents are parameterised by a location, here denoted by `. Agents can undertake

two types of actions, spontaneous actions, denoted !(α, r), and induced actions,

denoted ?(α, p). When an agent performs a spontaneous action, it does so with a

given rate r, which is taken to be the parameter of an exponential distribution, where

1/r is the expected duration of the action. Spontaneous actions are broadcast to the

entire system, and can induce change in any other agent which enables an induced

action with the matching type α. An induced action has an associated probability

p, which records the probability that the agent responds to a spontaneous action

of the same type. In the style of the Calculus of Broadcasting Systems [11], this

can be thought of as the probability that the agent listens as opposed to simply

hearing. Alternative behaviours are represented by the standard choice operator,

+. A choice between spontaneous actions is resolved via the race policy, based on

their corresponding rates. We assume that there is never a choice between induced

actions of the same type.

A model, P , consists of a number of agents composed in parallel. There is no

direct communication between agents, for example in the style of shared actions

in PEPA [7]. Instead, all communication/interaction is via spontaneous/induced

actions. When an action is induced in an agent the extent of its impact is specified

by a perception function, u(α, `,X, `′, X ′) where α is the action type, ` and X are

the location and state of the receiver agent whereas `′ and X ′ are the location and

state of the sender agent. This is a further probability which, given the locations

of the two agents, their current states and action type involved, determines the

likelihood that the induced action occurs. For example, the perception function

might have value 1 when the two agents are within a communication radius r of

3

Feng, Gribaudo and Hillston

each other, but a value of 0 whenever the distance between them is greater than r.

Obviously this gives a rich set of possible styles of interaction, but note that each

agent with an induced action chooses independently whether to respond or not.

2.2 Scenario 1: Passive Followers

In this scenario, we assume the Leader can either choose to take a rest with rate

rrest, or to move a step along a random direction at the rate of rmv. Moreover, we

use pn, ps, pw, pe to represent the probability to move north, south, west and east,

respectively. Thus, the Leader agent can be described as follows:

L(x, y) ::= !(rest, rrest).L(x, y) + !(n, rmvpn).L(x, y + 1) +

!(s, rmvps).L(x, y − 1) + !(w, rmvpw).L(x− 1, y) +

!(e, rmvpe).L(x+ 1, y)

where !(rest, rrest) denotes the Leader taking a rest spontaneously at the rate of

rrest, and when it does this, it remains in its current position. !(n, rmvpn) denotes

the Leader moving a step north by doing an spontaneous action n at the rate of

rmv × pn.

Furthermore, we assume the Follower can only move passively when the Leader

informs it to do so. Thus, we define the Follower agent as:

F (x, y) ::= ?(n, pl).F (x, y + 1) + ?(s, pl).F (x, y − 1) +

?(w, pl).F (x− 1, y) + ?(e, pl).F (x+ 1, y)

where the Follower agent can move a step in a direction via an induced action, and

pl encodes the probability for the Follower to respond to the Leader ’s movement

action which means that the Follower may not obey the command from the Leader

with probability 1− pl.
The perception functions for actions n, s, w and e are simply defined as:

u(n, `,X, `′, X ′) = 1

u(s, `,X, `′, X ′) = 1

u(w, `,X, `′, X ′) = 1

u(e, `,X, `′, X ′) = 1

which means that the Follower will definitely perceive the command from the

Leader .

2.3 Scenario 2: Active Followers

In this scenario, we allow the Follower to be a little bit smarter. More specifically,

we introduce an internal Clock agent which allows the Follower to move actively

instead of just listening to the Leader ’s command. The Clock agent is simply defined

as:

Clock(x, y) ::= !(cn, rc).Clock(x, y) + !(cs, rc).Clock(x, y) +

!(cw, rc).Clock(x, y) + !(ce, rc).Clock(x, y)

which means that the Clock agent will perform each self-jump action cn, cs, cw and

ce spontaneously at the rate of rc.

4

Feng, Gribaudo and Hillston

Then, the Follower agent becomes:

F (x, y) ::= ?(n, pl).F (x, y + 1) + ?(s, pl).F (x, y − 1) +

?(w, pl).F (x− 1, y) + ?(e, pl).F (x+ 1, y) +

?(cn, pc).F (x, y + 1) + ?(cs, pc).F (x, y − 1) +

?(cw, pc).F (x− 1, y) + ?(ce, pc).F (x+ 1, y)

where pc encodes the probability for the Follower to listen to a clock instruction.

Then, we define the associated perception function for actions n and cn as:

u(n | cn, `,X, `′, X ′) ==

1 if ((dist(`.x, `.y + 1,L.x,L.y) < dist(`.x, `.y,L.x,L.y)

∧ dist(`.x, `.y + 1,L.x,L.y) > dmin)

∨((dist(`.x, `.y + 1,L.x,L.y) > dist(`.x, `.y,L.x,L.y)

∧ dist(`.x, `.y,L.x,L.y) < dmin))

0 otherwise

which can be interpreted in the following way: the Follower will only perceive the n

or cn action from the leader or the internal clock if a step north will let the Follower

become closer to the Leader and the distance to the Leader is still larger than dmin
(Figure 2a), or it will be farther from the Leader but the current distance to the

Leader is less than dmin (Figure 2b). To save space, we will not show the perception

functions for other actions as they are defined in a similar way.

dmin

OK

No

dmin

OK

No

a) b)

Fig. 2. Behaviour of the follower: a) dist(`.x, `.y+ 1,L.x,L.y) > dmin, b) dist(`.x, `.y+ 1,L.x,L.y) < dmin.

2.4 Scenario 3: Multiple Followers

Here, we put multiple Followers in the system in order to observe some interesting

collective behaviour. We assume that Followers always try to avoid bumping into

each other. Thus, we add a simple protocol to Followers by modifying the perception

functions. For example, the perception functions for n and cn are modified as

5

Feng, Gribaudo and Hillston

follows:

u(n | cn, `,X, `′, X ′) ==

1 if (|F (`.x, `.y + 1)| = 0∧

((dist(`.x, `.y + 1,L.x,L.y) < dist(`.x, `.y,L.x,L.y)

∧ dist(`.x, `.y + 1,L.x,L.y) > dmin)

∨((dist(`.x, `.y + 1,L.x,L.y) > dist(`.x, `.y,L.x,L.y)

∧ dist(`.x, `.y,L.x,L.y) < dmin)))

0 otherwise

where |F (`.x, `.y + 1)| denotes the number of Followers in location (`.x, `.y + 1).

This means that a Follower will only take a step north when there are no other

Follower agents in that location. Again, we will not show the modified perception

functions for other actions as they are changed in a similar way.

3 Performance Measures

Traditionally, performance measures derived from probability distributions can be

broadly divided into three categories:

State-based: an expectation over the states of the system. In its simplest form

this is the probability that a certain property holds (Boolean values attributed

to states). Utilisation is an example of this type. But such measures can also be

based on more meaningful values for states, such as queue length where the value

for each state is the number of customers in a queue. When the probability distri-

bution is the steady state distribution the derived values will the average values,

where at other times they will be transient, based on the transient probability.

When spatial information is also represented in the system, the states of interest

may be those in which certain spatial conditions are satisfied. Thus we might

think of a form of spatial utilisation, the percentage of time that a particular

location or set of locations are occupied.

Rate-based: an expectation over the rates of the system. Typical examples are

throughput, loss probabilities, collision probability etc. Essentially these are also

calculated as expectations over the states but the rewards associated with the

states are now the rate at which events occur within the given state. Again

either the transient or the steady state probability distribution may be used in

the calculation of the expectation. Here again spatial conditions may be used to

identify the states of interest. For example, a collision relies on the state condition

that two agents are in the same location at the same time.

Time-based: an average time, or a probability distribution with respect to time

with respect to some behaviour. The classic example is perhaps response time

which, via Little’s Law can be expressed in terms of throughput (a rate-based

measure) and average number (a state-based measure). For non steady state

measures, a passage time calculation will usually be required.

6

Feng, Gribaudo and Hillston

It is reasonable to expect that in spatio-temporal systems we will also be able to

define space-based measures, analogous to time-based ones, which are derived from

state and rate-based ones.

3.1 Performance measures of the Leader-Follower Scenarios

When we come to measuring our leader-follower system there are multiple different

dimensions to consider and we may choose to abstract one of more either through

projection or by averaging.

• The first dimension is state. This is the fundamental record of the behaviour

of the system. We assume that the behaviour of the agents is characterised by

random variables which range over the state space. In this simple example the

agents do not have any logical state beyond their current position. But in general

we can imagine that agents are also fulfilling some other role in addition to their

motion and so they may have other characterisations of state, orthogonal to their

location.

• The second dimension is time. In the simplest performance analysis we consider

the behaviour of a single system or agent with respect to time. This may be tran-

sient or elapsed time, or abstract time, in the sense that consideration of steady

state behaviour essentially removes the time dimension by assuming stationarity.

In this dimension it makes sense to consider the rate at which events occur, the

probability of an event occurring within a time bound, the cumulative probability

of events, etc.

• The third dimension for our systems is space. Here we do not have an abstraction

equivalent to steady state, but we do have the possibility to take average values

over all space; for example, this is often done in ecological models. If there are dif-

ferent types of agents competing over space (e.g. predators and prey) the system

may be characterised at a certain time by the total number of each type present

disregarding spatial placement, even though interaction is location aware. This

form of spatial abstraction, does not seem appealing from a performance per-

spective, but is often carried out as a mathematical expediency as more detailed

representation is computationally expensive or intractable.

• The fourth dimension, for a collective system, is the population of individuals.

Here we again typically make an abstraction by shifting to a count or proportion

of individuals exhibiting certain characteristics rather than retaining full informa-

tion about each individual. Thus we may wish to record the number of agents at

a given location at a given time, or calculate averages either with respect to time

or with respect to location. Or we may consider the behaviour only at steady

state when time is abstracted.

• Finally, when we analyse our system through discrete event simulation we have

a fifth dimension which is the instances or trajectories of our system on which

measurements are based.

7

Feng, Gribaudo and Hillston

3.2 Basic measures

Here we are particularly interested in spatio-temporal properties that incorporate

both the second and third dimension. The simplest way of doing this is to consider

a measure over one dimension at all points in the other. At the state level we can

define for any agent A, loc(A, t) be the the location of A at time t as the projection of

the spatial dimension onto the time dimension. Conversely, we can define visit(A, l)

to be the set of time instants in which agent A was at location l. Measures loc and

visit are complementary in the sense that:

t ∈ visit(A, l) =⇒ loc(A, t) = l

and

loc(A, t) = l =⇒ t ∈ visit(A, l)
Note that there is a big difference in the codomain of the two measures, since loc

returns a single point in space, while visit is a relation that returns a set of locations.

The difficulty lies in the fact that while an agent can only have one location at a

time, it can be at that location multiple times. To define a simpler function we can

for example restrict to the last visit or the first visit, and define firstVisit(A, l) =

min{visit(A, l)} and lastVisit(A, l) = max{visit(A, l)}. This however might not be

a proper function, since location l might not be visited by agent A in the considered

scenario. An alternative would be define functions over the relation. For example,

we can express the age of an agent with respect to a location,

age(A, l) = |visit(A, l)|

where for a relation R, |R| is the size of the relation. In effect, this counts the

number of times that agent A has visited location l.

We can use simulation to derive a large number K of trajectories and use it to

estimate the probability that any of the previous properties hold. We can regard

this as projecting the measure onto the fifth dimension, the space of trajectories.

For example, we can express the probability that an agent A was at location l at

time t as:

P(A is in l@t) =

∑K
i=1 1(loc(A, t) = l ∈ traji)

K
and the probability that a location l is visited by agent A exactly n times as:

P(A visits l exactly n times) =

∑K
i=1 1(age(A, l) = n ∈ traji)

K

where 1(predicate) is an indicator function which has the value 1 when the predicate

is true and the value 0 otherwise.

Figure 3 shows for every location l the probability of the leader being there at

times t = 10, 100, 500s. In this case the leader performs a step in one of the four

directions on average every 4s (rmv = 0.25) and never rests (rrest = 0). The four

directions are all equally probable (pn = pe = ps = pw = 1/4). The grid is 50× 50

and the leader starts in position (27, 27). The number of simulation runs used is

K = 200, 000. Note that the distribution tends to a bivariate normal distribution

8

Feng, Gribaudo and Hillston

centered in the initial position of the leader, with the variance that increases with

time. This is natural since the leader moves according to a pure random walk in

the four directions.

 0 5 10 15 20 25 30 35 40 45 50 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14

pr.

T = 10s

x

y

pr.

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14

 0 5 10 15 20 25 30 35 40 45 50 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014

pr.

T = 100s

x

y

pr.

 0
 0.002
 0.004
 0.006
 0.008
 0.01
 0.012
 0.014

 0 5 10 15 20 25 30 35 40 45 50 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

 0
 0.0005

 0.001
 0.0015

 0.002
 0.0025

 0.003

pr.

T = 500s

x

y

pr.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

T = 10s T = 100s T = 500s

Fig. 3. Cell occupancy probability for the leader at different time instants.

Figure 4 shows the distribution of the age for four different locations l1 =

(26, 26), l2 = (28, 28), l3 = (25, 25) and l4 = (24, 24). Since the leader starts at

(27, 27), locations l1 and l2 are at the same distance. Since the movement of the

leader is not biased in any direction, they are identical. Locations l3 and l4 are

at increasing distance: as can be clearly seen, the probability of not entering that

location n = 0 increases whilst the probability of entering it a larger number of

times decreases with the distance from the initial position.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10

p
r.

n

(26,26)
(28,28)
(25,25)
(24,24)

Fig. 4. Distribution of age, the number of passages at different positions, for the leader starting at (27,27).

Let us now focus on the probability that a given location l is first/last visited

by agent A at time t as:

P(A first/last visits l@t) =

∑K
i=1 1([first/last]Visit(A, l) ≤ t ∈ traji)

K

This measure allows us to analyze another peculiarity: temporal distributions, when

computed via simulation, are always affected by the finite duration of the considered

9

Feng, Gribaudo and Hillston

trace. In particular, visit(A, l) will always correspond to the set of time instants in

which location l was visited during the time horizon spanned by the simulation. If

agent A will visit location l after the end of the simulation cycle, this will not be

included into visit(A, l). Figure 5 shows the probability distribution of the time at

which a fixed location l = (26, 26) is either first visited or last visited. Two different

temporal horizon lengths are considered for the simulations. It is interesting to see

that the first and last visit to a location tend to coincide at the end of the simulation

period: this occurs because if the agent passes over the target cell only once during

the considered time horizon, we have firstVisit(A, l) = lastVisit(A, l). It can also be

clearly seen that the distribution of the last passage time is a measure that clearly

depends on the simulation interval, while the first passage time is less influenced, as

long as the time horizon is large enough to allow the agent to reach the considered

location.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

p
r.

t

first, ST=1000s
last, ST=1000s
first, ST=2000s
last, ST=2000s

Fig. 5. Distribution of the time of the first and the last visit to location (26, 26) for two different simulation
horizons ST = 1000s and ST = 2000s.

3.3 Derived measures

From these basic measures we can construct more interesting ones such as distance,

dist:

dist(A1, A2, t) = ‖loc(A1, t)− loc(A2, t)‖
e.g. dist(F,L, t) is the distance between agent F and agent L at time t. Thus when

we have a single follower we can plot dist(F,L, t) with respect to time to see how

the distance between the follower and the leader evolves over time. Again, in a

simulation study, the distance can be averaged across all the trajectories to have

a global idea of the system behaviour. This is reported in Figure 6 for different

behaviours of the leader and of the follower. In particular, both a random movement

(Figure 6a) and a fixed route (Figure 6b) for the leader are considered, for different

internal clock speed. In all cases, the follower always perceives the clock message,

even if this is performed at a different rate (pc = 1). A very noisy channel is

considered, with the probability of missing the direction message sent by the leader

equal to 95% (pl = 0.05). The target minimum distance between the leader and

10

Feng, Gribaudo and Hillston

the follower is 2.1. For the random walk case, the distance from the leader becomes

too high only when the follower does not perform any action to catch the leader

(rc = 0). When the clock is considered, the follower can always maintain a good

distance from the leader for the two considered speeds of rc = 1/16 and rc = 5/32.

This is because the random motion confines the leader to an area that is always

relatively close to its initial position. For the follower it is enough to perform some

infrequent check to catch up with the leader. If instead a fixed route is followed,

the messages sent by the leader become of paramount importance. In this case, the

follower is not able to catch up with the leader, unless it performs clock actions at

a rate much larger than the speed at which the leader is moving.

 2

 4

 6

 8

 10

 12

 14

 16

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

d
is

t

t

rc = 0

rc = 1/16

rc = 5/32

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400 450 500

d
is

t

t

rc = 0

rc = 1/16

rc = 5/32

a) b)

Fig. 6. Average distance between the leader and the follower for different clock rates: a) random walk,
b) leader with a predetermined route.

We also assume that we can detect collision. Two agents A1 and A2 are said to

collide if there exists t such that loc(A1, t) = loc(A2, t). In the simple scenarios, 1

and 2, which have only a single follower, we are then interested in the cases where

loc(F, t) = loc(L, t). Again, we can use simulation to calculate the probability of a

collision at a particular time. We can estimate the probability of collision at time t

as

P(collision@t) =

∑K
i=1 1(loc(F, t) = loc(L, t) ∈ traji)

K

This is shown in Figure 7 for the same cases considered before. For the random

movement, the case in which the follower does not perform any recovery action has a

large hit probability at the beginning, and rapidly reduces with time. This however

is caused by the fact that the leader tends to go far away from the follower thus

reducing the hit probability. This is even more visible in the route based movement

case, where the hit probability is zero due to the fact that the follower starts losing

the leader from the beginning. In the other cases, it is clear that the hit probability

converges to a limit value, that is a characteristic of the follower’s behaviour, and

depends on his parameters. For the route based movement, this is observed only

for the case in which the follower reacts at a very high speed, since that is the only

one where it is able not to lose the leader.

11

Feng, Gribaudo and Hillston

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

p
r.

t

rc = 0
rc = 1/16
rc = 5/32

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0 50 100 150 200 250 300 350 400 450 500

p
r.

t

rc = 0
rc = 1/16
rc = 5/32

a) b)

Fig. 7. Hit probability between the leader and the follower for different clock rates: a) random walk, b)
leader with a route.

Collision may be generalised to being within the minimal distance dmin:

P(too close@t) =

∑K
i=1 1(dist(F,L, t) < dmin ∈ traji)

K

Figure 8 shows such probabilities for different values of dmin for the case with

rc = 5/32. As can be seen, while the hit probability can be very low, by enlarging

the distance, the probability of the follower being at the considered contour becomes

more tangible.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

p
r.

t

d=0
d=1
d=2
d=3
d=4
d=5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

p
r.

t

d=0
d=1
d=2
d=3
d=4
d=5

a) b)

Fig. 8. Probability of the follower being within a given distance from the leader for: a) random walk, b)
leader with a route.

3.4 Temporal distance measures

We could also calculate a temporal distance tdist between the agents at a specific

location l, comparing their first visit times:

tdist(A1, A2, l) =

|firstVisit(A1, l)− firstVisit(A2, l)| if age(A1, l) > 0

∧ age(A2, l) > 0

+∞ otherwise

12

Feng, Gribaudo and Hillston

Note that considered temporal distance is meaningful only if both agents have vis-

ited location l. We have set the temporal distance to +∞ if either of the agents has

not passed through the considered location.

When we consider trajectories, we can use the previous definition to compute

characteristics with respect to space rather than time. For example, we can define

the probability that the passage of two agents in a location l is too close in time as:

P(too close@l) =

∑K
i=1 1(tdist(F,L, l) < tmin ∈ traji)

K

where tmin is some minimal separation in time that we seek to enforce. Note that

by definition of tdist, this probability will be zero if the both agents have not passed

through l. Figure 9 shows the probability that the temporal distance is less than

tmin = 5s, tmin = 10s and tmin = 15s, for the case with rc = 5/32 and random

movement for all the locations l = (x, y) ∈ [21, 31]×[21, 31]. Although the maximum

is in all cases for the initial location of the leader l = (27, 27), the shapes tend to be

less symmetric as the threshold increases. This reflects the fact that the protocol

tends to keep the initial displacement between the leader and the follower.

 22
 24

 26
 28

 30
 22

 24
 26

 28
 30

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008

pr.

Tmin = 5s

x

y

pr.

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008

 22
 24

 26
 28

 30
 22

 24
 26

 28
 30

 0
 0.005

 0.01
 0.015

 0.02
 0.025

 0.03

pr.

Tmin = 10s

x

y

pr.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 22
 24

 26
 28

 30
 22

 24
 26

 28
 30

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

pr.

Tmin = 15s

x

y

pr.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

tmin = 5s tmin = 10s tmin = 15s

Fig. 9. Probability that the temporal distance for the cells in the range [21, 31] × [21, 31] is less than the
considered thresholds tmin.

3.5 Multiple followers

When we have multiple followers we can think of defining the same measures for

each of the followers, but what we would really like is some measure that reflects

the collective behaviour.

Thus thinking of the distance from the leader, when there are N followers we

can define d̂ist as the average distance at time t as follows:

d̂ist(L, t) =
1

N

N∑
i=1

dist(Fi, L, t)

The problem with this is that it can have the same value for very different distri-

butions of followers over space.

Instead we might think of some form of contours recording the number, or

proportion of agents that are within increasing distances from a given location at

a given time. Thus at time t, if there are N agents, the contour C(l, 1, t) would be

13

Feng, Gribaudo and Hillston

defined as

C(l, 1, t) =
1

N

N∑
i=1

1(‖loc(Ai, t)− l‖ ≤ 1)

and in general

C(l, n, t) =
1

N

N∑
i=1

1(‖loc(Ai, t)− l‖ ≤ n)

In the specific case of the followers and the leader we can define

C(loc(L, t), n, t) =
1

N

N∑
i=1

1(‖loc(Fi, t)− loc(L, t)‖ ≤ n)

Figure 10 shows the contour values with 4 and 8 followers. As can be seen from

the figure, in the simulation with 4 followers, followers are less likely to break the

minimum distance but more likely to keep a good distance from the leader than

in the simulation with 8 followers. This is because followers always try to avoid

bumping into each other. Thus with more followers, the probability of not perceiving

the movement action is also higher (see the perception function in Section 2.4).

(a) n < dmin (b) n > dmin

Fig. 10. The contour C(loc(L, t), n, t) with different number of followers, where dmin = 2.1

Analogously we can think of time contours,

C(t, δ, l) =
1

N

N∑
i=1

δ∑
j=0

1(loc(Ai, t+ j) = l)

or

C(t, δ, l) =
1

N

N∑
i=1

1(loc(Ai, t+ δ) = l)

depending on whether we consider the time contours cumulatively or not.

4 Conclusions and future work

In this paper we have made an initial study of the types of measures that it can be

interesting to study in systems in which there are both temporal and spatial aspects

14

Feng, Gribaudo and Hillston

of behaviour. These are important characteristics in many collective adaptive sys-

tems (CAS), which are geographically distributed systems comprised of interacting

but autonomous agents. We have illustrated the ideas with a simple leader-follower

system studied in a number of different scenarios via simulation.

Whilst our example system is simple, it is sufficient to highlight the rich forms of

information that can be derived from models of CAS, and it is easy to see how the

measures we investigated could be adapted to real-life systems. For example, smart

transportation systems are examples of CAS [12], where regulatory requirements

impose spatial-temporal conditions. Bus operators are subject to the headway re-

quirement on frequent routes, which can be regarded as a special case of our leader-

follower scenario. Here the timetable would play the role of the leader whilst buses

providing the service are the followers. The headway requirement imposes condi-

tions on the spatial and temporal separation of the followers in order to ensure that

there is a regular service for the users. In this case the behaviour of the leader is

deterministic but the behaviour of the followers, the buses, is subject to stochastic

factors, such as traffic and weather conditions as well as human interaction.

In future work we will investigate our identified measures further to see how

well they match to the user and operator performance requirements for CAS. In the

current work we have worked from first principles, assessing the data available from

our simple scenario and the spatio-temporal measures that can be built. An alterna-

tive approach would be to work with a spatio-temporal logic to define properties of

interest. The use of temporal logic in the context of Markovian-based performance

models is well-established [2] and supported by tools such as PRISM [8]. Spatial

Logics have also been studied for many years [1] but to the best of our knowledge

has yet to be applied in the quantitative context of CTMCs, although recent ap-

plications include data verification for CAS [4]. There is little formal treatment of

the combination of spatial and temporal logic although it has been considered in

a informal way in the analysis of video sequences [3]. Here spatial until formulae

were interleaved with temporal until formulae to express conditions on the relative

positions of objects in an image as time progressed. In quantified spatio-temporal

logic we would seek to attribute a value to such properties, just as probabilities are

associated to temporal properties expressed in CSL.

References

[1] Aiello, M., I. Pratt-Hartmann and J. van Benthem, editors, “Handbook of Spatial Logics,” Springer,
2007.

[2] Baier, C., B. R. Haverkort, H. Hermanns and J.-P. Katoen, Model-checking algorithms for continuous-
time markov chains, IEEE Trans. Software Eng. 29 (2003), pp. 524–541.

[3] Bimbo, A. D., E. Vicario and D. Zingoni, Symbolic description and visual querying of image sequences
using spatio-temporal logic, IEEE Trans. Knowl. Data Eng. 7 (1995), pp. 609–622.

[4] Ciancia, V., S. Gilmore, D. Latella, M. Loreti and M. Massink, Data verification for collective adaptive
systems: spatial model-checking of vehicle location data, in: Proceedings of the 2nd FoCAS Workshop
on Fundamentals of Collective Adaptive Systems, London, England, 2014, to appear.

[5] Feng, C. and J. Hillston, PALOMA: A process algebra for located markovian agents, 11th International
Conference on the Quantitative Evaluation of Systems (2014), to appear.

[6] FET Proactive FOCAS Project 600708, QUANTICOL: A quantitative approach to management and
design of collective and adaptive behaviours, www.quanticol.eu.

15

Feng, Gribaudo and Hillston

[7] Hillston, J., “A Compositional Approach to Performance Modelling,” CUP, 2005.

[8] Kwiatkowska, M. Z., G. Norman and D. Parker, PRISM 4.0: Verification of probabilistic real-time
systems, in: Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings, Lecture Notes in Computer Science 6806 (2011), pp. 585–591.

[9] Latella, D., M. Loreti, M. Massink and V. Senni, Stochastically timed predicate-based communication
primitives for autonomic computing, Technical report, QUANTICOL project (2014).

[10] Milner, R., “The Space and Motion of Communicating Agents,” Cambridge University Press, 2009.

[11] Prasad, K., A calculus of broadcasting systems, Science of Computer Programming 25 (1995), pp. 285–
327.

[12] Reijsbergen, D. and S. Gilmore, Formal punctuality analysis of frequent bus services using headway
data, in: Proceedings of the 11th European Performance Engineering Workshop, Florence, Italy, 2014,
to appear.

[13] Weiser, M., The computer for the 21st century, Scientific American 265 (1991), pp. 94–104.

16

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Development of a Smart Grid Simulation
Environment 1

J. Delamare , B. Bitachon, Z. Peng, Y. Wang
B. R. Haverkort, M.R. Jongerden 2

DACS
University of Twente

Enschede, The Netherlands

Abstract

With the increased integration of renewable energy sources the interaction between energy producers and
consumers has become a bi-directional exchange. Therefore, the electrical grid must be adapted into a
smart grid which effectively regulates this two-way interaction. With the aid of simulation, stakeholders
can obtain information on how to properly develop and control the smart grid. In this paper, we present
the development of an integrated smart grid simulation model, using the Anylogic simulation environment.
Among the elements which are included in the simulation model are houses connected to a renewable
energy source, and batteries as storage devices. With the use of the these elements a neighbourhood model
can be constructed and simulated under multiple scenarios and configurations. The developed simulation
environment provides users better insight into the effects of running different configurations in their houses
as well as allow developers to study the inter-exchange of energy between elements in a smart city on
multiple levels.

Keywords: smart grid, simulation, renewable energy

1 Introduction

Over the last decades, there has been an increase in the availability and affordability

of renewable energy sources in households, such as wind mills and, primarily, solar

panels. In addition, the capacity of electricity storage devices has risen considerably.

As a consequence, renewable energy production will potentially make up a large

portion of the energy in the electrical grid system. The traditional electrical grid

needs to be upgraded into a smart grid system, which is able to effectively and

1 This work was realized as part of the e-balance project that has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n◦ [609132].
2 Email: j.s.r.delamare@student.utwente.nl,
b.bitachon@student.utwente.nl,
z.peng-1@student.utwente.nl,
y.wang-6@student.utwente.nl,
b.r.h.m.haverkort@utwente.nl,
m.r.jongerden@utwente.nl

c©2014 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:j.s.r.delamare@student.utwente.nl
mailto:b.bitachon@student.utwente.nl
mailto:z.peng-1@student.utwente.nl
mailto:y.wang-6@student.utwente.nl
mailtob.r.h.m.haverkort@utwente.nl
mailto:m.r.jongerden@utwente.nl

Delamare, Bitachon, Peng, Wang

efficiently regulate the bi-directional energy flow and the interaction between the

various devices on the grid. The electrical energy can flow to, or from the main grid,

depending on the time of the day, weather condition and electricity prices. The

algorithms which control different functions in a smart grid are complex and need

to be studied through simulation before actual implementation to ensure proper

operation in all scenarios.

In this paper we present a simulation model which describes the various elements

within a smart grid such as user-demand, centralized and decentralized energy pro-

duction, storage elements, etc. The final overall model simulates a smart grid at

neighbourhood level involving several houses with a set of typical smart grid sce-

narios. Each house can be fitted with solar panels, a battery and its individual

demand profile. The model gives insight in how the energy flows within a house,

and between the houses in the neighbourhood, and thus can help in smart grid

design. Furthermore, due to the modular set-up of the model, the simulation model

can be easily extended to incorporate other devices and scenarios.

The Anylogic software [8] is used for the design of the simulation model. The

simulation methods supported are system dynamics, agent-based and discrete event.

The programming and setup is done using graphical components along with code

based on the JAVA language. The software used is flexible and allows for the

implementation of the multiple simulation methods within the model. For the inner

operation of the model system dynamics is used as it effectively describe the flow of

energy through the various components. Each component is then represented as an

agent which then allows them to interact and exchange data with each other, this

is done using the agent-based approach within the program.

The rest of this paper is structured as follows. Section 2 describes the function-

ality of the different model components. In Section 3 some simulation results of a

number of example scenarios are given. In Section 4 a short overview of related

work is given. Finally, we conclude in Section 5.

2 Model components

A smart neighbourhood consists of a number of connected smart houses. Each

such house will be built up out of several components which will have configurable

parameters to make each house have its own characteristic behaviour. In Figure

1 the overall model of an individual residential unit can is displayed with all the

designed components connected which are able to communicate together through

the ports found on each. In the following, the functionality of each component will

be presented.

2.1 House

The House model is the main element which allows interaction between the other

component models. All other components are connected to the house via ports

which enable communication between them. The way which the produced and

imported power is used and stored is determined by the settings of the house. For

example, one can set that the battery is only charged by locally generated energy.

2

Delamare, Bitachon, Peng, Wang

Fig. 1. Residential Unit

2.2 Demand

In the Demand module, the electricity demand profile of the house is defined. The

profile gives the average power drawn over a given period of time, which may be

dependent on the time of day and the day of year. Standardized demand profiles can

be found on the internet, for example, EDSN [9] provides standard profiles for the

Netherlands. With smart meters one could measure personalized demand profiles,

in order to create fully customized simulations.

2.3 Weather

The Weather module provides the necessary weather data for computing the gen-

erated renewable energy. Since the model, for now, is limited to solar panels only

irradiation data is used. However, this can easily be extended to include wind speed

data for wind generation. For locations in the Netherlands, the weather data is

readily available via the Royal Netherlands Meteorological Institute (KNMI) [12].

It provides Global Horizontal Irradiance (GHI) data, which can be used for the

computation of the generated solar energy. The GHI consists of the Direct Normal

Irradiance and Diffuse Normal Irradiance [10], and is measured over a horizontal

plane, 0 degree tilting.

2.4 Solar Panel

The Solar Panel module converts part of the solar irradiance into electrical power

[2]. The output power is highly dependent on the position of the panel with respect

to the sun. However, to incorporate this fully it would require many input parame-

ters from the user. So, in order to keep the model easily configurable and limit the

involvement of the user, the relation between the GHI and the output power (P) is

3

Delamare, Bitachon, Peng, Wang

Fig. 2. Example of Neighbourhood model

given by the following approximate relation:

P = ε×A×GHI,

where ε is the efficiency of the solar panels and A is the area of the panels.

2.5 Battery

The Battery is a component to be modelled as it is likely to be used as a storage

element in a smart grid system. The battery model should be user-friendly, which

means the battery specification can be adjusted by the users. Many different types

of battery models have been developed for various applications over the years [3].

There are two crucial requirements for the battery model. The first is a small num-

ber of parameters which makes the model simple and easy to configure. The second

is a high accuracy. In most cases, a trade-off between the number of parameters

and accuracy are exist [4]. The battery is chosen to be modelled using the Kinetic

Battery Model (KiBaM) [5]. Within this simulation the usage algorithm depends

on the availability of power from the solar panel. The battery is used as a buffer

when the panels are not able to deliver sufficient power.

2.6 Pricing Module

The Pricing module allows the user to keep track of the amount of money paid for

the energy used as well as the amount credited when selling energy back to the grid.

Different suppliers can be compared to show which packages are most convenient

for the user’s smart grid setup. Also, the financial data can be used to estimate the

return of investment of a future setup.

2.7 Neighbourhood

By configuring multiple houses, a neighborhood can be created within the model,

as visualized in Figure 2. For each house the different modules can be uniquely

defined, to fit to the individual demand profiles and available battery capacity and

solar panels. It is also possible to create multiple instances of identical houses to

4

Delamare, Bitachon, Peng, Wang

create a larger population of houses. In this way, one can easily study the effect of

an increase of the penetration of solar panels on the interaction of a neighborhood

with the grid.

3 Simulation studies

3.1 Set-up

The simulation is run on two levels, the Neighbourhood and residential level, to

observe the operation of the designed model. These simulation results will show

how the requirements listed are met in the designed smart grid environment. At

the neighbourhood level 14 residential units are simulated with the setup as shown

in Table 1. The 14 residential units are build-up from 8 differently configured units,

with different solar panel size and battery capacity. For five of these configura-

tions multiple instances are used in the neighbourhood. The size of the household

determines the demand profile of each house. The weather profile is the same for

all houses. All of the following results are obtained by simulating one month in

Summer.

Family Group House A House B

Units Panel m2 Battery Ah Units Panel m2 Battery Ah

Single 2 7 60 3 5 50

Couple 1 9 70 1 13 65

Family, 1 Child 2 16 80 1 18 80

Family, 3 Children 2 25 90 2 21 94

Table 1
Smart Grid Residence Setup Scenario

3.2 Neigbourhood level

At the neighbourhood level, cumulative data of all the residential units can be

gathered which allows for the study of the interaction between the neighbourhood

and the portion of the grid it is connected to. In Figure 3, we display the energy

trade figures for the given scenario. It shows how much energy is imported from the

grid by the whole neighbourhood, and how much of the generated energy is exported

to the grid. In the simulated period, approximately 4000 kWh has been generated

by the solar panels. Nearly 2500 kWh has been used in the neighbourhood, either

directly or by storing it in the batteries. The rest, approximately 1600 kWh, is

delivered to the grid.

In Figure 4 the ratio of the energy supplied by the sources and storage to the

demand can be seen. With the implementation of the above configuration nearly

50% of the energy required for the neighbourhood can be supported directly by the

solar panels. Another 18% of the demand is supplied in directly by solar energy,

through the batteries.

The user can study relations such as the effect of an increase of the number of

solar panels on the amount of energy imported from and exported to the grid by

the neighbourhood. Thus, one can investigate to what extend the neighbourhood

could operate autonomously from the central grid.

5

Delamare, Bitachon, Peng, Wang

Fig. 3. Distribution of Neighbourhood Energy

Fig. 4. Energy Source Distribution

6

Delamare, Bitachon, Peng, Wang

Fig. 5. Power Supplied by Sources and Power Usage

Fig. 6. Power distribution from panel production

3.3 Residential level

Within the same simulation run the effects for the individual houses can be studied

as well. The shown results are from a household of a family with 3 children, with

house type A. All the shown results can easily be obtained for the other household

types as well.

At the residential, level data similar to that on the top level can be viewed, such

as the distribution of the sources that are used to meet the demand. In addition to

that data can be gathered and displayed for the power usage profile as can be seen

in Figure 5. The usage profiles shown is for a period of 24 hours (hours 695 to 720 in

7

Delamare, Bitachon, Peng, Wang

Fig. 7. Hourly Credit and Debit

our simulation) from the different sources. From such graphs the switching between

energy sources can be carefully studied, especially when implementing complex

control algorithms. Furthermore, in Figure 6 one can see the distribution on the

total generated power from the solar panels to the various elements in the system.

Within the Pricing Module the user can keep track of the debit and credit, due

to reselling excess back to the utility companies. Figure 7 shows the hourly sales

for the chosen configuration, while in Figure 8 the total exchange over a period is

shown, in this case one month. With these results users can get estimates about the

net cost effects when using particular energy companies. Other algorithms could

be implemented which could regulate energy use based on pricing models from the

utility companies.

4 Related Work

The importance of smart energy distribution is stressed by organisations such as

the Joint Research Centre at the Institute for Energy and Transport [11], which

advices the European Commission on energy policy. The organisation promotes

and encourages research in various areas of smart grid systems.

In [1] the authors develop a model of a gas station micro grid which is connected

to PV panels as well as storage devices. The model is implemented in Anylogic

and follows a similar methodology as that used in this paper. The energy flow

within the system is determined using system dynamics and the elements of the

gas station are built as components which communicate with each other. The gas

station includes models for the car traffic which would visit a comparable station.

Different configurations could be modelled to find the optimal energy balance for

the system.

The Smart Grid Simulator [7] focuses on lowering the energy bill for the cus-

tomers. It uses data regarding hourly energy consumption, energy prices, as well

8

Delamare, Bitachon, Peng, Wang

Fig. 8. Total money exchanged in a one month period

self-produced energy circumstances, in order to predict the amount of energy bought

for the next day, lower the cost of electricity, optimize the utilization of the elec-

tricity, compare assortment of prices, run a brokering algorithm that dictates when

energy is being bought, stored, or sold and predicting the renewable energy produc-

tion.

In [6], an overview is given of the features and the capability of a smart energy

city, one of which is lower energy consumption. The advantages of a smart city are

demonstrated using Anylogic. The model is based on Demand Response (DR). The

author argues that the DR based system will reduce the overall energy consumption

of a city because the peak demand level can be lowered. In addition to DR the model

also employs load control to decrease the energy consumption even further. There

are two levels in the model. The first level is a smart building, modelled as an

agent, the second level is the environment for the smart building agent. The first

level of the model uses a price signal as the input, the price signal will then affect the

decision making process inside the building, for instance to determine whether to

use the energy from the battery, or whether some appliances need to be turned off.

The main level of the model acts as the utilities company. The model assumes that

the occupants of the building signed a contract that allows the utilities company

to control a predefined load. This is done by using an algorithm that allows the

utilities company to reduce and restore energy consumption level at any given time.

The model, which has four buildings, was tested using a sequence of scenarios. The

results show that the model does indeed lower the overall energy consumption level

of the houses. The results also show that demand response with an addition of load

control results in a further reduction of the energy consumption.

5 Conclusion

A smart grid simulation tool has been developed which can model residential units

which have solar panels and batteries which are able to store excess energy. Differ-

9

Delamare, Bitachon, Peng, Wang

ent living situations are available for the residential unit to allow for a more diverse

data set when scaling the model to neighbourhood level. The model is able to use

statistical data from local meteorological sources to represent the weather patterns

and influence the solar panel output power. With the combination of the various

elements a vast amount of data can be gathered which shows the interactions be-

tween the elements. Data can be gathered on both the financial level and the energy

level which can be useful for both consumers and researchers.

The program was developed using the Anylogic simulation software which al-

lowed for a flexible environment to implement the desired models. System dynamics

and agent-based modelling were the methods primarily used in making the models.

The agent-based approach allowed the residential units to be scalable and allow for

multiple instances which adds diversity to the neighbourhood simulation.

The current model can be further expanded upon by incorporating other el-

ements such as stationary electric vehicles as additional storage units, as well as

other renewable sources. Algorithms can be implemented to study the behaviour in

different scenarios, such as purchase/sell of power according to market price. Other

algorithms could control the usage of the connected battery.

References

[1] Bazan, P. and R. German, Hybrid simulation of renewable energy generation and storage grids, in:
Simulation Conference (WSC), Proceedings of the 2012 Winter, 2012, pp. 1–12.

[2] Duffie, J. A. and W. A. Beckman, “Solar engineering of thermal processes,” John Wiley & Sons, 2006
p. 747.

[3] Jongerden, M. and B. Haverkort, Which battery model to use?, Software, IET 3 (2009), pp. 445–457.

[4] Jongerden, M. R., “Model-based energy analysis of battery powered systems,” Ph.D. thesis, University
of Twente (2010).

[5] Manwell, J. F. and J. G. McGowan, Lead acid battery storage model for hybrid energy systems, Solar
Energy 50 (1993), pp. 399 – 405.

[6] Morvaj, B., L. Lugaric and S. Krajcar, Demonstrating smart buildings and smart grid features in a
smart energy city, in: Energetics (IYCE), Proceedings of the 2011 3rd International Youth Conference
on, IEEE, 2011, pp. 1–8.

[7] Ursachi, A. and D. Bordeasu, Smart grid simulator, International Journal of Civil, Architectural,
Structural and Construction Engineering 8 (2014), pp. 519–522.

[8] Anylogic, 5 September 2014.
URL http://www.anylogic.com/

[9] EDSN demand profiles, 5 September 2014.
URL http://www.edsn.nl/verbruiksprofielen/

[10] Global horizontal irradiance, 5 September 2014.
URL http://pvpmc.org/modeling-steps/irradiance-and-weather-2/irradiance-and-insolation/
global-horizontal-irradiance/

[11] Joint research centre at the institute for energy and transport, 5 September 2014.
URL http://iet.jrc.ec.europa.eu/

[12] Uurgegevens van het weer in nederland, 5 September 2014.
URL http://www.knmi.nl/klimatologie/uurgegevens/

10

http://www.anylogic.com/
http://www.edsn.nl/verbruiksprofielen/
http://pvpmc.org/modeling-steps/irradiance-and-weather-2/irradiance-and-insolation/global-horizontal-irradiance/
http://pvpmc.org/modeling-steps/irradiance-and-weather-2/irradiance-and-insolation/global-horizontal-irradiance/
http://iet.jrc.ec.europa.eu/
http://www.knmi.nl/klimatologie/uurgegevens/

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Validation of automatic vehicle location data
in public transport systems

Stephen Gilmore and Daniël Reijsbergen

Laboratory for Foundations of Computer Science
University of Edinburgh
Edinburgh, Scotland

Abstract

Performance metrics for public transport systems can be calculated from automatic vehicle location (AVL)
data but data collection subsystems can introduce errors into the data which would invalidate these calcu-
lations, giving rise to misleading conclusions. In this paper we present a range of methods for visualising
and validating AVL data before performance metrics are computed. We illustrate our presentation with
the specific example of the Lothian Buses Airlink bus, a frequent service connecting Edinburgh city centre
and Edinburgh airport. Performance metrics for frequent services are based on headways, the separation
in space and time between subsequent buses serving a route. This paper provides a practical experience
report of working with genuine vehicle location data and illustrates where care and attention is needed in
cleaning data before results are computed from the data which could incorrectly reflect the true level of
service provided.

Keywords: Public transport measurement and modelling, data cleaning, headway computation

1 Introduction

Modern engineered systems are reflexive. Through instrumentation and sensors,

they collect data on their function and performance which is used to assess their

progress and safe operation. Transport systems work in this way: a modern bus fleet

has richly-instrumented vehicles which report their latitude and longitude, speed

and heading. This data is streamed back over a data connection to an automatic

vehicle location tracking system which feeds other systems such as real-time arrival

prediction for bus passengers.

Judging by recent advances in the field of adaptive systems, it would seem

that the future offers us a vision of self-organising, self-healing systems regulated

and kept in check by their data-collection subsystems. Unfortunately, these data-

collection subsystems are themselves often complex systems, with their own faults

and problems, and intrinsic limitations to their engineering. It is not until one

starts working with such subsystems that some of these problems begin to become

evident. These problems increase in significance when regulators begin to calculate

performance metrics for public transport services from historical Automatic Vehicle

Location (AVL) data traces.

c©2014 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

Gilmore and Reijsbergen

Determining service performance has until recently been done by human ob-

servers in place by the side of the road recording vehicle departures and applying

intelligence and experience to interpret and record events. This approach has the

benefit of ensuring that data is scrutinised before performance measures are calcu-

lated. In contrast, in the context where human intelligence is not applied (as in

automated processing of historical AVL data traces), errors of interpretation can

occur, and it is these errors which are our concern here.

In this paper, we present an experience report on the use of AVL data for

obtaining headway and frequency measurements. The AVL data is provided to us

by the Lothian Buses company, based in Scotland and operating an extensive bus

network in Edinburgh. We consider the specific example here of the Airlink bus

service, connecting Edinburgh city centre and Edinburgh airport. An undesirable

feature of a frequent service is clumping, where two or more buses remain close to

each other for an extended period. For this reason headway, the separation between

successive buses, is an important metric for regulations and service operators.

In particular, we discuss the computation of headway measurements to evaluate

the performance of bus routes in terms of specific measures of punctuality. We use

a range of methods to visually represent both the data and the computed head-

ways, including a visualisation tool that uses the Google Maps API and which was

developed at the University of Edinburgh [1].

The AVL data which is made available to us records the position of each bus

in the fleet in terms of Ordnance Survey of Great Britain eastings and northings

measurements, which can be easily converted to more familiar latitude and longitude

coordinates. The AVL data is specific to a particular bus, as determined by a unique

bus identifier called a fleet number. The assignment of buses to routes is captured

in a schedule which is drawn up before the bus service begins for the day, but may

change without notice during the day in response to operational problems. This

uncertainty about which buses are in service and which are not gives rise to part of

the problems of interpreting the AVL data before metrics are computed.

The remainder of this paper is structured as follows. We first discuss the visual-

isation of AVL data in Section 2, before moving on to the isolation and removal of

data errors in Section 3. We discuss the visualisation of headway data in Section 4

and the use of headway measurements in service level agreements in Section 5. We

discuss related work that uses the same data or tools in Section 6, and conclude the

paper in Section 7.

2 The value of data visualisation

One vitally important sub-task in undertaking a modelling exercise which is strongly

rooted in data is to make all efforts possible to understand the data, its scope, and its

limitations. In our work with the Lothian buses data we have created a visualisation

tool to allow us to literally view the data in geographical context, against a map of

the city of Edinburgh. This visualisation tool, shown in Figures 1, 2 and 3 allows us

to revisit historical trace data on bus movement and to play or single-step through

the data, visualising only those bus services which are of interest.

This tool has no predictive power, it can only render measurement data. Neither

2

Gilmore and Reijsbergen

Fig. 1. The user interface allows the user to select bus routes of interest and dates and times of interest and
step through the data to see events which occurred in the selected part of the city of Edinburgh.

has it any logical, inferential, deductive or verification capacity. Nonetheless, it was

very valuable in allowing us to find some significant errors in the data, which we

then set about removing in a systematic process of data cleaning.

Fig. 2. The data can be accurate enough to confirm the direction of the bus by inspecting visually the side
of the road on which it is driving.

Fig. 3. A heat map representation of Edinburgh city centre showing the patches along Princes Street where
buses have the longest sojourn time.

In working with data on bus movement from Lothian Buses we are fortunate to

have useful domain knowledge about what buses can and cannot do. For example,

we know that buses cannot teleport, so when we see that some Edinburgh buses

appear to visit Wales (as in Figure 4) we know that this is only a phantom GPS result

from the data-collection subsystem which we can discard. Similarly, Edinburgh

3

Gilmore and Reijsbergen

Fig. 4. The visualisation tool can be used to identify buses that appear in a peculiar place, such as a field
near the Anglo-Welsh border.

buses are not amphibious, so measurement data which has them swimming about

in the Firth of Forth is also to be discarded. Finally, Edinburgh buses cannot fly,

so when we see data which when rendered on the map seems to show them flying

over the rooftops like Ron Weasley’s magical car, we know not to believe this. Our

visualisation helps us to make sense of this kind of erroneous data by showing that

it is a straight line between the final stop on a vehicle’s last journey of the night

and the bus depot where they are housed overnight.

These erroneous position reports come from vehicles which are not in service,

or from measurement sensors which have not been powered down as completely as

they should have been, or they are artefacts caused by interpolation in the system

trying to fill in data points to compensate for the gap in the data caused by the

location-tracking subsystem being switched off at the end of the day’s use for a

vehicle. However, the data does not record which buses are in service and which

are not, so if using the data for purposes other than those for which it was being

collected – as we are here – then we need to interpret with care and attention and

clean the data to remove erroneous measurements such as these before calculating

any measures of interest.

2.1 Visualisation of single bus trajectories

The validation of the service provision which we will conduct depends fully on the

data, its quality and completeness, and our interpretation of the data. In order to

provide ourselves with as thorough an understanding of the data as possible, we

developed different views on the data, each of which had value in establishing some

understanding of the data and bringing us insights which we found useful.

Our first visualisation, shown in Figure 5, rendered the data in a conventional

map view. This was useful in helping us to see that this bus was providing the

Airlink service on the day of interest, but it did not use the time content of the

measurement trace.

Our second visualisation, shown in Figure 6, represented time in the abstract

sense of subsequency in that we used different colours to represent phases of the

journey which happen successively. From this visualisation we can see that the bus

4

Gilmore and Reijsbergen

55.935

55.940

55.945

55.950

55.955

-3.375 -3.350 -3.325 -3.300 -3.275 -3.250 -3.225 -3.200 -3.175

La
tit

ud
e

Longitude

Map for bus number 937, 28/Jan/2014

data

Fig. 5. Sample AVL data from one bus from the airport to the city centre, rendered in the conventional
map view which plots latitude against longitude. This view abstracts from both the timing of events and
their relative ordering in time.

is travelling from the airport in the west to the city centre in the east, but not at

what time of the day (or night) this journey occurred.

Fig. 6. A visualisation of the airport bus route showing buses on the route from Edinburgh airport in
the west to Edinburgh city centre in the east. This visualisation represents sample AVL data from one bus
from the airport to the city centre. The colouring imposed on points allows us to determine the direction
of the journey.

To allow us to see the journey more clearly it is sometimes helpful to fill in the

route in a little more detail by interpolating between the data points. Figure 7

presents such an interpolation. Depending on the use to which this interpolation is

put, the measurement errors which are introduced by “cutting corners” as we see

in Figure 7 might or might not be problematic.

Fig. 7. Some simple interpolation is computed, but naively. The placement of these interpolation points
suggests that the bus made the transition from Eastfield Road to Glasgow Road by driving across a field
instead of navigating the roundabouts and joining via the slip road, as it of course did.

Finally, Figure 8 shows the AVL data as a time series. In this view, latitude and

longitude are plotted separately against time. This has the advantage of allowing

us to see when the bus journey happened and to identify positions where it is

stationary for long periods of time, which was much more difficult to see in the map

view. Against this, our intuitions about where in the city the bus is at any point in

time are lost, because we have moved away from the map view.

Different views on the data have given us different insights but the identification

of collective behaviour remains elusive. In a scenario where events depend not on

5

Gilmore and Reijsbergen

 55.935

 55.94

 55.945

 55.95

 55.955

11:35 11:40 11:45 11:50 11:55 12:00 12:05 12:10 12:15 12:20 12:25 12:30 12:35
-3.4

-3.35

-3.3

-3.25

-3.2

-3.15

La
tit

ud
e

Lo
ng

itu
de

Time of day

Data for bus number 937, 28/Jan/2014

data
data

interpolation
interpolation

Fig. 8. Sample AVL data from one bus from the airport to the city centre, rendered as a time series. The
bus is stationary when neither latitude nor longitude are changing as in this graph between 12:13 and 12:25.
The stationary point at 55◦57′05.5′′N, 3◦11′30.3′′W is the Airlink bus stop on Waverley Bridge.

the behaviour of individuals, but on the behaviour over the long run, or a collection

of observations, then representing a single individual trace is of little interest. More

profound insights come from aggregating individual behaviours to look for trends

and patterns.

2.2 Visualisation for collective systems

If we wished to learn the topology of the Airlink bus route in order to identify how

and where it turns in order to execute the return journey then this collective view

is much more helpful than the individual views which we have seen previously. If

we simply plot all observations of a bus location which we are given, as we do in

Figure 9, then this maps out the route without interpolation or approximation (up

to the resolution of the GPS data available).

Deviations from the planned route can be seen in this view. In this view it is

possible to determine that some roads are travelled relatively infrequently (in this

case, once per day, the journey from the bus depot to the start of the route, and once

per day the journey from the end of the route to the bus depot at night). Occasional

diversions from the planned route would also show up in this view, provided that

the deviation from the route is long enough that the position of the bus is recorded

during the deviation.

Another long-run collective view of the data would be a heat map, allowing

us to identify where in the city buses spend most of their time (as detected by

noting more observations in this area than in others). To achieve this, we place a

regular grid over the map of the city with a counter for each square in the grid.

We increment the counter every time we see a GPS measurement placing a bus in

this square, up to a ceiling of 100 observations per square. Mapping these numbers

to a colour spectrum, we see that more-frequently-occupied squares will show up

as being hotter than the less-frequently-occupied squares. This might confirm (or

refute) our expectations about where delays occur along the route. Figure 10 shows

6

Gilmore and Reijsbergen

 55.925

 55.95

 55.975

-3.375 -3.35 -3.325 -3.3 -3.275 -3.25 -3.225 -3.2 -3.175

La
tit

ud
e

Longitude

Map for fleet numbers 937-950, 28-30/Jan/2014

937
938
939
941
942
943
944
945
946
949
950

Fig. 9. Latitude and longitude data from eleven buses for two days

such a view for our data.

From this we can see that the least-frequently travelled part of the route is the

journey to the depot in Annandale Street (in the top right-hand corner) because

there are very few observations of buses in this region: only one or two observations

for each bus over a two day period. We can also infer that the faster part of

the route is on the Glasgow Road leading to the airport (in the bottom left-hand

corner). There are more observations here than for the depot, and there is no

possible branching off the route here so fewer observations in this region much come

from the buses travelling faster here.

Fig. 10. Heatmap data from eleven buses for two days

7

Gilmore and Reijsbergen

3 Isolating errors in data

GPS data can contain both errors of omission and errors of inclusion. Figure 11

demonstrates both of these. The GPS data misses observations on Market Street

because this street falls under the GPS shadow of tall buildings on the Mound,

a steep hill climbing upwards from Princes Street. This is seen at the bottom of

Figure 11 near the centre where there are no data points on Market Street until the

roundabout with Cockburn Street and Waverley Bridge.

Fig. 11. GPS data for the Airlink bus showing Princes Street, Waverley Station and the Lothian Buses
garage in Annandale Street.

Figure 11 also contains spurious data points which appear to have been generated

by interpolation of observations between Waverley Bridge and the Lothian Buses

garage on Annandale Street (note that these are reported data points given to us

by the bus company, not like the interpolated data points which we introduced in

Figure 7). These manifest themselves as a straight line on the map with interpolated

points cutting across York Place and East London Street with no apparent regard

for road layout.

The timestamps associated with these data points are either all from the early

morning (04:30) when the service starts or last thing at night (12:00) when the

8

Gilmore and Reijsbergen

service ends. Because of this we believe that these data points are an artefact of

cold starts or powering down of the GPS tracking hardware.

Once identified and isolated, erroneous GPS data can be conveniently removed

using a GPS track editor such as GPSprune [2], as shown in Figure 12. The ap-

plication shows derived statistics on the GPS track as well as showing the track in

context in a map view, and relating positions on the route to their height.

Fig. 12. GPS data being edited in the GPSprune application.

Using this tool we can conveniently eliminate the erroneous early-morning and

late-night interpolated data points. This is a manual editing process, but it is made

much more convenient because we can see the data points conveniently in context

in a standard map view. We can define a region geometrically and then eliminate

all of the points which fall within that region. Once this process is complete we are

left with a clean data set where all of the erroneous data which we could identify has

been eliminated, allowing us to progress on to considering the performance measure

of interest (headway). As before, we use visualisation to help us to gain greater

insights into the data.

4 Visualising headway

To allow us to approach the computation of headway-based metrics we can begin to

look at the collection of eleven buses serving the Airlink bus route. Focusing in on

a period of one hour between 11:30 and 12:30, and considering only longitude data

as a proxy for progress along the route (because the journey from the city centre to

the airport is mostly roughly east-to-west) we can obtain from Figure 13 a sense of

headway as separation in time between successive buses.

Looking at the same eleven buses serving the Airlink route over a different

granularity of two days, a different pattern emerges. We begin to obtain a sense

from Figure 14 of days of service for this collection of buses in the fleet punctuated

by overnight absences from service when the buses are stored in the garage.

Note that it is not obvious from published timetable information that the bus

operation should follow a day-night pattern. The Airlink bus service runs 24 hours

a day and in principle any of the buses from the fleet could be used at any time of

day.

9

Gilmore and Reijsbergen

-3.400

-3.350

-3.300

-3.250

-3.200

-3.150

11:30 11:40 11:50 12:00 12:10 12:20 12:30 12:40

Lo
ng

itu
de

Time of day

Average longitude data

937
938
939
941
942
943
944
945
946
949
950

Fig. 13. Average longitude data from eleven buses for one hour

-3.400

-3.350

-3.300

-3.250

-3.200

-3.150

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00

Lo
ng

itu
de

Time of day

Average longitude data

937
938
939
941
942
943
944
945
946
949
950

Fig. 14. Average longitude data from eleven buses for two days

Understanding whether or not a bus is in service is another important aspect of

data cleaning when computing headways. Being widely-separated from a bus which

is not in service is much less important than being widely-separated from a bus

which is in service.

It is only when we appreciate the day-night pattern that we can notice buses

which are not following the pattern. Isolating the data for bus number 950 in the

fleet in Figure 15 we can see that it does not follow the established pattern because

its second day of service is punctuated by an absence (from approximately 09:30 to

16:00) where it was not serving the Airlink bus route. (We can discover separately

that the bus was taken to the garage for an unknown reason such as some kind of

mechanical repair to the vehicle, or perhaps a routine service.)

10

Gilmore and Reijsbergen

55.935

55.940

55.945

55.950

55.955

55.960

55.965

08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00
-3.400

-3.350

-3.300

-3.250

-3.200

-3.150

La
tit

ud
e

Lo
ng

itu
de

Time of day

Data for fleet number 950

average
average

Fig. 15. Average latitude and longitude data from bus number 950 in the fleet over two days. During its
absence from service in the middle of the second day this bus is in the Lothian Buses garage on Annandale
Street.

4.1 Spatial separation of service instances

As an alternative to considering headway as separation in time, we could consider

headway as separation on route, or at least separation in GPS position. We used

the Haversine function to calculate the spatial distance of one bus from another, as

determined by their latitude and longitude, giving their great-circle distances, as

commonly used in navigation and spherical trigonometry.

In Figure 16 we present the Haversine distances in miles from fleet number 937,

as a function of time across three days of observation data. This has the benefit of

providing a succinct summary of relative bus movement. We can see for each of the

three days of data presented that bus number 937 is not close to one of the other

buses for an extended period. In each day it moves close to and away from other

buses as they make their journeys to and from the airport. The bus which remains

closest to fleet number 937 is fleet number 945 which is rarely more than three miles

away from fleet number 937 on our second day of observation. Nonetheless, even

in this case we can see that the buses are not ‘clumping’ as the relative distance

between the two buses oscillates between zero and three miles throughout the day.

The overall result which we would hope to see for a well-running service is spatio-

temporal separation where buses are not often close to each other for an extended

period. Such a metric has some merits. It allows for reasonable adaptation to

problems in service delivery (so that, for example, buses can on some occasions be

close to others for an extended period, as can happen). However, it is not one of

the metrics which has been defined by the regulators in this instance.

5 Headway-based service-level agreements

We now consider the service-level agreements which have been identified by the

regulators for the service, as published by the Scottish Government. Firstly, there

are two classes of bus service identified by regulators: frequent and non-frequent.

Frequent buses depart at least every 10 minutes. Our concern in this paper is only

11

Gilmore and Reijsbergen

 0

 1

 2

 3

 4

 5

 6

 7

 8

06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00

Running mean distances between bus number 937 and 938

raw data
running mean over previous 5 points

 0

 1

 2

 3

 4

 5

 6

 7

 8

06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00

Running mean distances between bus number 937 and 939

raw data
running mean over previous 5 points

 0

 1

 2

 3

 4

 5

 6

 7

 8

06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00

Running mean distances between bus number 937 and 941

raw data
running mean over previous 5 points

 0

 1

 2

 3

 4

 5

 6

 7

 8

06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00

Running mean distances between bus number 937 and 943

raw data
running mean over previous 5 points

 0

 1

 2

 3

 4

 5

 6

 7

 8

06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00

Running mean distances between bus number 937 and 944

raw data
running mean over previous 5 points

 0

 1

 2

 3

 4

 5

 6

 7

 8

06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00

Running mean distances between bus number 937 and 945

raw data
running mean over previous 5 points

Fig. 16. Time series running mean distances in miles between fleet number 937 and fleet numbers 938, 939,
941, 943, 944, and 945.

with frequent services. The Airlink bus service is a frequent service departing at

least every ten minutes between 04:00 and midnight.

A key characteristic of frequent services is that regulators are not primarily in-

terested in timetable adherence, but rather in the amounts of time between bus

arrivals — the headways. We focus on two of the three punctuality metrics for fre-

quent services identified in the guidance document on Bus Punctuality Improvement

Partnerships by the Scottish Government [3]; all three are related to headways.

(i) Six or more buses will depart from the starting point within any period of 60

minutes on 95% of occasions.

(ii) The interval between consecutive buses departing from the starting point will

not exceed 15 minutes on 95% of occasions.

12

Gilmore and Reijsbergen

The first of these is a requirement on the frequency of departures, the second specifies

the maximum allowable headway between buses.

These service-level agreements are themselves statements about collective be-

haviour. They do not specify that particular individual instances of the service

must be correct, but that, viewed as a collection of observations, a large percentage

of this collection (in this case, 95% of it) must be satisfactory according to the

regulations.

Punctuality is important for regulators but it is of great value to passengers

too. The importance of punctuality is such that it has been observed that the

negative impact on passenger satisfaction of a decrease in punctuality can outweigh

the positive effects of increasing the number of departures per day [4].

5.1 Determining satisfaction of service-level agreements

Through visualisation we have been able to explore various aspects of the available

data and investigate problems with the data which need to be resolved but the most

important collective system metrics of frequency and headway have not yet been

fully explored.

A modelling tool such as Traviando [5] allows us to process trace data and to

compute measures of interest over the trace. The primary purpose of Traviando is

to act as a post-mortem simulation trace debugger, diagnosing problems with sim-

ulation models through statistical, structural, invariant-based and model-checking

analysis of output traces. However, because Traviando works with timed trace

output, it is possible to invoke it on measurement data such as our time series of

GPS observations of bus positions, even before a simulation model is constructed.

Figure 17 shows headway observations which have been obtained in this way.

Fig. 17. Headway observations plotted using Traviando as time differences

The linear regression across this time series is centred on 476.13 secs, which is

approximately 8 minutes, and comfortably less than the 15 minute interval between

consecutive buses which is required by the regulator. Furthermore, we observe in

Figure 17 that headways of over 15 minutes (900 seconds) are rarely observed, in

this case only once in 90 observations.

13

Gilmore and Reijsbergen

We define a finite-state process to convert the departure data into a form where

we can compute the frequency requirement that at least six buses should depart

every hour. The process represents a forgetful observer, who counts departures, but

forgets departures which happened more than one hour ago, as in Figure 18.

0 1 2 . . .

d++

t

d++

t

d++

t

t + 1

d--

t + 1

d--

t + 1

d--

Fig. 18. Observers counting departures should note the times of departures and forget departures which
are more than one hour old.

That is, the observer notes the occurrence of each departure of a bus from the

start of the journey and records the time that this event occurred. An hour after any

observed departure the departure event is discounted as being outside the relevant

window as defined by the Traffic Commissioner regulations. This – not altogether

straightforward – process is a reactive system which changes state in response to

two types of events: bus departures and clock expiration.

This process allows us to track the frequency metric relating to bus departures,

as seen in Figure 19 plotted as a counter value-event trace using Traviando. During

the day the observations lie between 6 (the minimum allowable value) and 10. The

low period on the second day corresponds to the time when bus number 950 in the

fleet was in the garage. Time is abstracted away in this view although the relative

ordering of events is maintained. This has determined that regulation (i) above has

been satisfied across this observation period.

Fig. 19. The frequency metric of buses in the past hour.

6 Related work

The presented data analysis and visualisation methods have been used in several

recent papers. In [6], the model checking tool Traviando was used to perform

correctness checks on bus journey time data obtained by scraping the Edinburgh

Bus Tracker website. In [7], the AVL dataset of this paper was used to obtain bus

14

Gilmore and Reijsbergen

sojourn time distributions of land patches in the Edinburgh city centre, which were

then used to carry out ‘what-if’ analysis involving the introduction of trams. In

[8], several statistical analysis techniques were used to evaluate the performance of

several frequent services in Edinburgh (including the Airlink) in terms of the service

level agreements discussed in Section 5, using the same AVL dataset.

7 Conclusions

In contrast to the results from a high-level model, measurement data has enormous

authority. It is full of detail and quirks and seems to represent physical truth but as

we have seen in examples above, it is not the whole truth, and it is not nothing but

the truth either. In our experience so far in working with data on the QUANTICOL

project we have always needed to use human intelligence to clean the data before

any automated processing could begin. An outlier only becomes an outlier when an

interpretation is placed on the other data points.

What we saw in this example was that our understanding was enhanced by pro-

cessing the data in a range of ways before any reflection and consequential adapta-

tion took place. Further, there were complex collective percentile-based performance

metrics to satisfy which required some ingenuity for us even to compute.

In some respects, our smart transport case study is relatively easy to work

with. Data is readily available, and latitude and longitude data is relatively easy

to interpret and visualise, allowing us to see problems in the data and apply data

cleaning. We have intuitions about buses and transport, and local knowledge of

what happens in practice. Further, we have access to the personnel in the Lothian

Buses company who operate the system in practice. We can ask them what are

the problems which are of concern to them. We have the potential to have some

influence on the practice of the company, even if only a slight influence. Based

on our calculations and more detailed reasoning [8], our belief at this point is that

Lothian Buses are meeting the Traffic Commissioner’s regulatory instruments.

In the future, we hope to use heat maps similar to the one in Figure 10 to

automatically learn the bus routes, using a variant of the algorithm described in [9].

Using a representation of the routes in the form of a graph, we would be able to

detect and remove outliers by removing measurements that are too far away from

the edges on their route. This would allow us to automate the data filtering process,

which at the moment is largely done manually.

Acknowledgements

This work is supported by the EU project QUANTICOL: A Quantitative Ap-

proach to Management and Design of Collective and Adaptive Behaviours, 600708.

The authors thank Bill Johnston of Lothian Buses and Stuart Lowrie of the City

of Edinburgh council for providing access to the data which was used for the case

study. We would also like to thank Allan Clark for helpful comments on a draft

version of this paper.

15

Gilmore and Reijsbergen

References

[1] Shao Yuan. Simulating Edinburgh buses. Master’s thesis, The University of Edinburgh, 2013.

[2] Tim Pattinson. Pruning GPS data with GPSprune. Lulu, 2012.

[3] Smarter Scotland: Scottish Government. Bus Punctuality Improvement Partnerships (BPIP), March
2009.

[4] Margareta Friman. Implementing quality improvements in public transport. Journal of Public
Transportation, 7(4), 2004.

[5] Peter Kemper and Carsten Tepper. Automated trace analysis of discrete-event system models. IEEE
Trans. Software Eng., 35(2):195–208, 2009.

[6] Ludovica Luisa Vissat, Allan Clark, and Stephen Gilmore. Finding optimal timetables for Edinburgh bus
routes. In Proceedings of the Seventh International Workshop on Practical Applications of Stochastic
Modelling (PASM’14), 2014.

[7] Daniël Reijsbergen, Stephen Gilmore, and Jane Hillston. Patch-based modelling of city-centre bus
movement with phase-type distributions. In Proceedings of the Seventh International Workshop on
Practical Applications of Stochastic Modelling (PASM’14), 2014.

[8] Daniël Reijsbergen and Stephen Gilmore. Formal punctuality analysis of frequent bus services using
headway data. In Proceedings of the 11th European Performance Engineering Workshop, Florence,
Italy, September 2014. To appear.

[9] Jonathan J. Davics, Alastair R. Beresford, and Andy Hopper. Scalable, distributed, real-time map
generation. Pervasive Computing, IEEE, 5(4):47–54, 2006.

16

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Dynamic Subtask Dispersion Reduction in
Heterogeneous Parallel Queueing Systems

Tommi Pesu and William J. Knottenbelt1,2

Department of Computing, Imperial College London, South Kensington Campus, SW7 2AZ

Abstract

The Fork-Join and Split Merge queueing systems are mathematical abstractions of parallel task processing
systems where entering tasks are split into N subtasks and each of the N subtasks has its own service time
distribution. The original task is considered completed once all the subtasks associated with it have been
serviced. Performance of Split Merge and Fork-Join systems are often quantitatively analysed with respect
to two metrics: the dispersion of subtasks and response time of tasks. The technique presented in this paper
reduces subtask dispersion by delaying tasks that have a short average service time and starting the service
of subtasks with long average service time straight away. Dynamic in our context refers to the ability to
change subtask delay at any point in time before service is begun. However once the subtask has entered
service it will continue service uninterrupted until it has finished.
This paper presents a new technique for minimising subtask dispersion. For example when comparing the
new technique against currently existing methods using the same examples as described in their publications
it is able to get an improvement of around 66%. The improvements are a result of a correction to an earlier
technique. The previous research did not take into account the dynamic nature of the system. Therefore
expected subtask dispersion of the system diverged with actual subtask dispersion of the system.

Keywords: dynamic dispersion reduction, fork-join, split merge, queueing networks

1 Introduction

Due to an ever increasing demand for performance and speed in the modern world

and the eventual exhaustion of possible optimisations to single process systems

more and more of the world is turning towards parallel and distributed systems.

This trend is especially apparent in the IT world where companies are building

distributed storage facilities, multi-core processors, RAIDs [11,10] and huge dis-

tributed computing platforms. However IT is not the only area where such demand

is needed. In finance equities are nowadays traded lightning fast on a growing

amount of exchanges and high dispersion and response time lead to monetary losses,

manufacturers are making complex products with ever growing supply chains and

even hospitals in hospitals patient care is being improved with queueing models [1].

1 Email: ttp09@imperial.ac.uk
2 Email: wjk@doc.ic.ac.uk

c©2014 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
ttp09@imperial.ac.uk
mailto:wjk@doc.ic.ac.uk

Pesu and Knottenbelt

Queueing network models are a mathematical tool to describe task flow in par-

allel networks. The completion of one big process is split into a number of subtasks

which each must be completed for the whole task to be completed. This paper

investigates how to reduce the Dispersion of subtasks and response time of tasks in

fork-join and split merge systems. The results are then compared against existing

research that has been done on subtask dispersion reduction in fork-join and split

merge systems.

Subtask dispersion is the difference in time that it takes for the first and last

subtask to finish. Task response time on the other hand is the time it takes from

the point when a task enters the queue to be processed to the point it has been

fully serviced. Due to split merge systems being synchronous they tend to have low

dispersion, but high task response time. On the other hand fork-join systems are

asynchronous and tend to have smaller response time but higher subtask dispersion.

This paper examines split merge and fork-join systems that use delays on the

processing of subtasks to reduce subtask dispersion. This paper makes a distinction

between two types of delay adjusting systems that in the past have not be clearly

distinguished. In the first type of system once a delay is set, it cannot be changed.

The processing of the subtask is begun once the delay has run out. In the second

class of systems, it is possible to preemptively modify the delay of a subtask at any

time before it has begun service. However, once service has begun it is not possible

to change it. We assume the system is notified instantaneously when any subtask

finishes service.

This paper then proceeds to define a new way to calculate dispersion for split

merge and fork-join systems that is able to take into account the fact that subtasks

are interrupted and delays are cut short if its sibling task finishes service. The paper

explores 2-server exponential and deterministic split-merge systems to offer some

intuition behind the dispersion reduction technique. It then proceeds to a 3-server

test case to demonstrate that it is able to deliver substantial reduction in dispersion

compared to existing methods.

2 Preliminaries

This section contains a brief introduction to terms that are fundamental to the

understanding of this paper. The section includes an introduction to split-merge

and fork-join systems. Both systems are queueing network models for describing

the processing of a set of subtasks in parallel. In addition it describes related

quantitative metrics, including response time, subtask dispersion and a trade-off

metric. The trade-off metric can be used to make decisions when both subtask

dispersion and task response time are regarded as important.

2.1 Parallel Queueing Systems

2.1.1 Split Merge

In the split merge system considered in this paper arriving tasks have an interarrival

rate that is exponentially distributed with a rate of λ. The system structure is shown

in Figure 1. If no task is currently in service an arriving task enters service straight

2

Pesu and Knottenbelt

Fig. 1. A split merge system [12].

Fig. 2. A fork-join system [12].

away. Otherwise it enters a queue to wait for its turn. When a task completes

service it leaves the system. Next the task first in the queue enters service, if there

are no tasks in the queue the process is idle.

When a task enters service it is split into N subtasks. Each of these subtasks

is then processed by its own server. The subtasks have their own unique service

probability distribution times. The task is considered to be done with service once

all N subtasks have been serviced by their respective servers.

2.1.2 Fork-Join

As shown in Figure 2, the fork-join system is quite similar in structure to the split

merge system, but buffering of incoming tasks takes place at subtask-level instead

of at task-level. The tasks again have an interarrival rate that is exponentially

distributed with a rate of λ. Arriving tasks are immediately split into N subtasks.

Each individual server serving the subtasks then has its own queue. The subtask

servers independently process all subtasks waiting in their own queue. Once all

the subtasks of a task have been serviced by their corresponding server the task is

considered complete.

2.2 Performance Metrics

2.2.1 Task Response Time

Task Response time is the length of time it takes for a task to get processed. The

clock is started when the task first enters the system. Once all the subtasks belong-

ing to that task have been completely serviced the clock stops. Response time has

been a very intensively researched topic in queueing systems over the last 50 or so

years, see e.g. [2,8,9].

For split merge systems it is possible to calculate response time analytically with

3

Pesu and Knottenbelt

the Pollaczek–Khinchine formula (1) that is defined for M/G/1 queues:

E[Rλ(t)] =
ρ+ µλV ar[X(N)]

2(µ− λ)
+ µ−1 (1)

Here µ is the service rate, λ is the arrival rate and ρ = λ/µ is the utilization of

the server. The split merge system can be thought of as an M/G/1 queue where

the probability distribution for task service time is defined by the probability dis-

tribution of last subtask’s finishing time. With the theory of heterogeneous order

statistics it is possible to calculate the probability distribution of all the tasks being

finished at time t. The cumulative probability distribution is given by Equation (3).

From the distribution it is then possible to calculate the mean and variance of the

distribution, which are needed for the Pollaczek–Khinchine formula.

For fork-join systems there currently exists no analytical formula to calculate

response time except for simple cases [4,5]. In the case of a fork-join system the

response time needs to be calculated quantitatively by simulating the system.

2.2.2 Dispersion

Subtask dispersion is the time difference between the finishing times of the first and

last subtasks. With N subtasks the expected times of first and last subtask finishing

times can be calculated by using the theory of heterogeneous order statistics [3].

The cumulative distribution function for the first subtask to finish is given by Equa-

tion (2) and last by Equation (3). The research on subtask dispersion of parallel

processing systems is quite recent and although some literature does exist [14,15,13].

F1(t) = Pr{X(1) < t} = 1−
N∏
i=1

[1− Fi(t)] (2)

FN (t) = Pr{X(N) < t} =

N∏
i=1

[Fi(t)] (3)

Heterogeneous order statistics be used to define subtask dispersion in the fol-

lowing way, which is shown in Equation (4) and (5).

E[D(t)] =

∫ ∞
0

F1(t)− FN (t)dt (4)

E[D(t)] =

∫ ∞
0

1−
N∏
i=1

(1− Fi(t))−
N∏
i=1

Fi(t)dt (5)

The way dispersion is calculated here has been successfully used to calculate

subtask dispersion of a split-merge systems [15,13] and for analysing instantaneous

configurations of fork-join systems [14]. In the case of the fork-join algorithm in [14]

subtasks are set to start processing immediately after a sibling task finishes if they

have not started already. However the equation 5 does not take this into account

and therefore is unable to minimise the dispersion of a dynamic parallel system

correctly. In Section 3.1 a new formula is derived that is able to take into account

tasks being put into service immediately after a sibling task finishes service.

4

Pesu and Knottenbelt

2.2.3 Trade-Off Metric

Sometimes both dispersion and response time of the system are equally important.

In these cases it is possible to measure the effectiveness of the system with the

trade-off metric. [15] The trade-off metric is defined as the product of dispersion

and response time, i.e.

T (λ, t) = E[D(t)]E[Rλ(t)] (6)

A similar metric has been explored in the context of the energy–response time

product analysis of power policies for server farms [6,7]. For split merge systems

the trade-off equation can be expressed as:

T (λ, t) =

[∫ ∞
0

1−
N∏
i=1

(1− Fi(t))−
N∏
i=1

Fi(t)dt

][
ρ+ µλV ar[X(n)]

2(µ− λ)
+ µ−1

]
(7)

For fork-join systems the trade-off metric has to be quantitatively measured through

simulations, since – to the best of our knowledge – there are no closed form solutions

for either subtask dispersion or task response time.

3 Method

This section introduces a way to calculate dispersion of a split merge system where

a start work signal is sent to sibling subtasks once service of a subtask is completed.

The model assumes that a delay applied to a subtask can be arbitrarily preempted

at any point before service of the subtask has begun. However, once a subtask has

begun service it will be serviced uninterrupted until it completes service. The start

work signal is sent, because removing delays after the first sibling subtask finishes

service reduces both subtask dispersion and task response time.

3.1 Calculating subtask dispersion in dynamic split merge system

It is explained here how the minimum subtask dispersion of a dynamic split merge

system can be found by choosing an appropriate delay vector d. Equation (8)

displays the formula that is minimised in order to find the minimal delay vector

d. The formula is split into two parts: T (i, t,d) and Er(i, t,d). The last two

conditions on d guarantee that delays are non negative and that no unnecessary

delays are added.

The first function T (i, t,d) calculates what is the probability that server i is the

first server that finishes servicing its subtask at the time t, with the given delays d.

This result is calculated by multiplying the probability density function of server i

finishing at time t with the probability of all the other servers not finishing before

time t. The mathematical formulation of this can be seen in Equation (9).

The second function Er(i, t,d) calculates how long the rest of the servers will

take to complete their service, with the given delays d. The average time for the

rest of the servers to complete service is computed with the help of heterogeneous

order statistics presented in [15].

Gj(t, t
′, dj) represents the probability distribution function of the jth server. If

t′ < dj then the jth server has not yet begun service of its subtask and servicing is

5

Pesu and Knottenbelt

begun immediately. Otherwise the server has already started servicing its subtask.

In this case the service time is renormalised to take into account that some service

has already been performed and the service of the subtask has not been completed.

The two part G-function is the key difference compared to previous work presented

in [14,15,13]. We seek:

dmin = arg min
d

N∑
i=1

∫ ∞
0

T (i, t,d)Er(i, t,d)dt (8)

where

T (i, t,d) = fi(t− di)
∏
j 6=i

[1− Fj(t− dj)] (9)

and

Er(i, t
′,d) =

∫ ∞
0

[1−
∏
j 6=i

Gj(t, t
′, dj)]dt (10)

with

Gj(t, t
′, dj) =

Fj(t) if t′ < dj

Fj(t− (t′ − dj)|t > 0) otherwise
(11)

subject to conditions
N∏
i=1

di = 0 (12)

and

∀i di ≥ 0 (13)

3.2 Deterministic 2 server example

The concept of a split merge system was explained in Section 2.1.1. In this section

we will apply the dispersion reduction formula above to a split merge system with

2 servers. The service times of the servers are 1 and 2 as shown below:

X1 ∼ Det(1)

X2 ∼ Det(2)

Due to the deterministic function causing problems with integration our exam-

ple will use uniform functions with a small range to approximate it as shown in

Equation (14).

Det(n) ≈ Uni(n− 0.001, n+ 0.001) (14)

The results of the experiment can be seen in Figure 3. The optimal delay is

naturally d = (1, 0) and when set delays deviate from the optimal solution dispersion

grows. Increasing server 1 delay past optimal delay causes an increase that caps at

1. The capping is due to the dynamic delay interruption. Server 2 behaves similarly

with the delay capped at 2. Figure 4 demonstrates how the system works when the

first queue is delayed by 1 time unit at the beginning of each processed task.

6

Pesu and Knottenbelt

0.0 0.5 1.0 1.5 2.0 2.5
Delay

0.0

0.5

1.0

1.5

2.0

2.5

Di
sp

er
si

on

Delay vector effect on dispersion

delay (X,0)
delay (0,X)

Fig. 3. Demonstration of how the delays affect dispersion in the two server deterministic example.

Fig. 4. Demonstration of how the deterministic two server case processes its tasks.

3.3 Exponential 2 server example

In this section a split merge system with exponentially distributed subtask service

times are analysed. The exponential distribution has a parameter λ which is the

inverse of average service time. For the first server λ = 1 and second server λ = 2.

Therefore the average service times of the two servers are 1 and 0.5. The details of

the servers are shown below:

X1 ∼ Exp(λ = 1)

X2 ∼ Exp(λ = 2)

The results of the experiment can be seen in Figure 5. Intuition says that

when a delay is set on the server 1 the dispersion should increase towards 1.0.

This is, because then the probability of server 2 finishing first increases towards 1.

This is due to server 1 average completion time after server 2 completes is 1. A

similar argumentation can be done for setting delays on server 2 instead. As the

delay grows towards infinity chance of server 1 completing service first grows. The

average service time of server 2 is 0.5. Therefore dispersion with infinite delay on

7

Pesu and Knottenbelt

0 1 2 3 4 5
Delay

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Di
sp

er
si

on

Delay vector effect on dispersion

delay (X,0)
delay (0,X)

Fig. 5. Demonstration of how the delays affect dispersion in the two server exponential example.

Fig. 6. Demonstration of how the exponential two server case processes its tasks.

server 2 is 0.5. The optimal delay that minimises dispersion is d = (0,∞), as infinite

delay on the server 2 guarantees that the server 1 will always finish first. Figure 6

demonstrates how the delays are applied in the two server exponential case. It can

be seen that server 1 completes its service before service on server 2 is begun.

3.4 Fork-join systems

The throughput of a parallel system is maximised when at least one of the servers

is performing work on a subtask throughout the time a task is being processed.

If this is not the case as is in the exponential case in Figure 6 it is possible to

decrease response time by removing idle time from the processing of each subtask.

This however will increase subtask dispersion. The effect of removing idling time

on subtasks servicing can be observed in Figure 7.

8

Pesu and Knottenbelt

Fig. 7. An example of how delays can be removed from a split merge system when processing as a fork-join
system

4 Results

In this section we present results of existing methods for subtask dispersion reduc-

tion in fork-join and split merge systems and compare them against the algorithms

described in this paper. The example uses the same probability distributions as

the paper [14]. Split merge results will be evaluated analytically. The fork-join

systems will be simulated with a benchmark that will include 5 repetitions of 5

million tasks each. For each run the average task response time, subtask disper-

sion and trade-off penalty will be noted. The probability distribution setups of the

servers are shown below. The interarrival time of new tasks entering the system is

exponentially distributed with λ = 0.78 tasks per time unit.

X1 ∼ Exp(λ = 1)

X2 ∼ Exp(λ = 5)

X3 ∼ Exp(λ = 10)

4.1 Existing methods from previous publications

The five methods described here are the same as in the paper [14]. Methods 1-4

do not use interrupt to begin service immediately after a sibling task has finished

while Method 5 uses it.

Method 1 is a vanilla split merge system where no delays are applied. The

tasks are processed one at a time. The service of next task does not begin before

all the previous task’s subtasks have finished. Corresponding performance metrics

are:

Task response time: 5.195 time units

Subtask dispersion: 0.976 time units

Trade-off: 5.069 (time units)2

Method 2 [15] is a split merge system where dispersion is minimised with the

formula described in Section 2.2.2. The resulting delays for subtasks are: d =

(0, 0.524, 0.585). Corresponding performance metrics are:

Task response time: 33.638 time units

Subtask dispersion: 0.783 time units

Trade-off: 26.345 (time units)2

Method 3 [13] is a split merge system where trade-off is minimised with the

formula described in Section 2.2.3. The resulting delays for subtasks are: d = (0,∼

9

Pesu and Knottenbelt

0, 0.068). Corresponding performance metrics are:

Task response time: 5.286 time units

Subtask dispersion: 0.946 time units

Trade-off: 4.999 (time units)2

Method 4 is a vanilla fork-join system with no delays applied between subtasks.

Each task is split into 3 subtasks which then each individually queue for their

respective servers. Corresponding performance metrics are:

Task response time: 4.555 time units

Subtask dispersion: 4.480 time units

Trade-off: 20.406 (time units)2

Method 5 is a fork-join system with a dynamic subtask reduction algo-

rithm [14]. This algorithm uses interruptions to start processing of sibling subtasks

once a subtask finishes. The system uses definition of dispersion from Section 2.2.2.

Corresponding performance metrics are:

Task response time: 4.675 time units

Subtask dispersion: 0.768 time units

Trade-off: 3.590 (time units)2

4.2 New methods presented in this paper

The methods described here are described in Section 3 of this paper. They all

use the interrupt to begin service immediately after a sibling task has finished. The

results have been calculated with the same simulation setup as the fork-join systems

in the previous subsection.

Method 6 is a split merge system that uses the new dispersion calculation in

Section 3.1 to calculate delays. This algorithm uses interruptions to start processing

of sibling tasks once a task finishes. The resulting delays for subtasks are: d =

(0,∞,∞). Corresponding performance metrics are:

Task response time: 6.333 time units

Subtask dispersion: 0.257 time units

Trade-off: 1.628 (time units)2

Method 7 is a fork-join system that uses Method 6 to establish a minimally

dispersed split merge system. idling time is then squeezed according to the principles

of Section 3.4. Corresponding performance metrics are:

10

Pesu and Knottenbelt

Task response time: 4.818 time units

Subtask dispersion: 0.269 time units

Trade-off: 1.296 (time units)2

5 Conclusions

Three main conclusions can be drawn from the results. First the start work interrupt

that removes delays on other subtasks preemptively once the first sibling subtask

finishes is able to reduce both task response time and subtask dispersion greatly.

This can be seen when the task response times of Methods 1–3 and Method 6 are

compared. In addition, Method 6 is able to greatly decrease subtask dispersion,

with only a slight increase in the task response time of Methods 1 and 2. Against

Method 3 it is able to produce improved results on both metrics.

The second observation regarding the results is that the traditional method

for calculating expected subtask dispersion is not valid for systems where subtask

delay preemption is applied. In our case studies, the new method was able to reduce

subtask dispersion by a factor of 3, which is a major improvement.

Finally a more subtle conclusion is that even though response time of the Method

7 is slightly worse compared to Method 5 its throughput is just as much or slightly

better. As tasks 2 and 3 are serviced after task 1 finishes the response time grows.

However only server 1 is a bottleneck of the process. Therefore it is able to process

just as many tasks. A demonstration of this can be seen in Figure 7. By the time the

response time timer for the task finishes, the bottleneck server has been servicing

the bottleneck subtask of the next task for some time already.

References

[1] S. W. M. Au-Yeung, P. G. Harrison, and W. J. Knottenbelt. Approximate queueing network analysis
of patient treatment times. In Proceedings of the 2nd International Conference on Performance
Evaluation Methodologies and Tools, ValueTools ’07, pages 45:1–45:12, ICST, Brussels, Belgium,
Belgium, 2007. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering).

[2] François Baccelli, Armand M. Makowski, and Adam Shwartz. The fork-join queue and related systems
with synchronization constraints: Stochastic ordering and computable bounds. Advances in Applied
Probability, 21(3):pp. 629–660, 1989.

[3] Herbert A. David and H. N. Nagaraja. Wiley Series in Probability and Statistics. John Wiley & Sons,
1980.

[4] L. Flatto and S. Hahn. Erratum: Two parallel queues created by arrivals with two demands I. SIAM
Journal on Applied Mathematics, 45(1):168–168, 1985.

[5] Leopold Flatto. Two parallel queues created by arrivals with two demands II. SIAM Journal on
Applied Mathematics, 45(5):pp. 861–878, 1985.

[6] Anshul Gandhi, Varun Gupta, Mor Harchol-Balter, and Michael A. Kozuch. Optimality analysis of
energy-performance trade-off for server farm management. Performance Evaluation, 67(11):1155 –
1171, 2010.

[7] Anshul Gandhi, Mor Harchol-Balter, and Ivo Adan. Server farms with setup costs. Performance
Evaluation, 67(11):1123 – 1138, 2010.

[8] Peter Harrison and Soraya Zertal. Queueing models of {RAID} systems with maxima of waiting times.
Performance Evaluation, 64(78):664–689, 2007.

11

Pesu and Knottenbelt

[9] P. Heidelberger and K.S. Trivedi. Analytic queueing models for programs with internal concurrency.
IEEE Transactions on Computers, C-32(1):73–82, Jan 1983.

[10] Abigail Lebrecht, Nicholas J. Dingle, and William J. Knottenbelt. Modelling Zoned RAID Systems
using Fork-Join Queueing Simulation. In 6th European Performance Engineering Workshop (EPEW
2009), volume 5652 of Lecture Notes in Computer Science, pages 16–29, July 2009.

[11] Abigail S. Lebrecht, Nicholas J. Dingle, and William J. Knottenbelt. Analytical and simulation
modelling of zoned raid systems. Comput. J., 54(5):691–707, May 2011.

[12] Iryna Tsimashenka. Reducing Subtask Dispersion in Parallel Queueing Systems. PhD thesis, Imperial
College London, 2014.

[13] Iryna Tsimashenka, William Knottenbelt, and Peter Harrison. Controlling variability in split-merge
systems. In Khalid Al-Begain, Dieter Fiems, and Jean-Marc Vincent, editors, Analytical and Stochastic
Modeling Techniques and Applications, volume 7314 of Lecture Notes in Computer Science, pages 165–
177. Springer Berlin Heidelberg, 2012.

[14] Iryna Tsimashenka and William J. Knottenbelt. Reduction of subtask dispersion in fork-join systems.
In Simonetta Balsamo, William J. Knottenbelt, and Andrea Marin, editors, Computer Performance
Engineering, volume 8168 of Lecture Notes in Computer Science, pages 325–336. Springer Berlin
Heidelberg, 2013.

[15] Iryna Tsimashenka and William J. Knottenbelt. Trading off subtask dispersion and response time
in split-merge systems. In Alexander Dudin and Koen De Turck, editors, Analytical and Stochastic
Modeling Techniques and Applications, volume 7984 of Lecture Notes in Computer Science, pages
431–442. Springer Berlin Heidelberg, 2013.

12

1

A Hybrid Simulation Framework

for the Analysis of Petri Nets and Queueing Networks

Esmaeil Habibzadeh, Demetres D. Kouvatsos (University of Bradford, UK),

Guzlan M.A. Miskeen (University of Sebha, Libya)

Abstract The dynamic behaviour and properties of discrete flow systems could be captured by

employing suitable stochastic modelling tools, such as Petri Nets (PNs) and Queueing Networks

(QNs), incorporating flexible and powerful features; such tools, however, suffer from some inherent

limitations. Specifically, the applicability of PNs may be hindered due to their state space explosion

problem as the number of tokens or size of the system increases whilst QNs are not generally suited to

effectively model system dynamic features as concurrency, synchronization, mutual exclusion and/or

conflict. To overcome some of these constraints and exploit the best attributes of both PNs and QNs

modelling paradigms, this work reports the current state of progress into design and development of

the HPQNS (Hybrid Petri Queueing Networks Simulation) framework. This computational tool has

shown to improve the credibility and efficiency of performance related security modelling and

evaluation studies based on discrete event simulations.

Keywords Performance, security, simulation, stochastic models, queueing networks (QNs), Petri nets

(PNs)

Summary

1. Introduction

Petri nets (PNs) and queueing networks (QNs) have long been used as powerful modelling paradigms

for performance analysis of a wide range of discrete flow systems such as computer systems and

communication networks (c.f., [1-14]). Nevertheless, these formalisms have shown to suffer from

some inherent limitations. PNs, for instance, are associated with the state-space explosion problem

(or, ‘largeness’ problem), which arises when either the number of tokens or the size of the model

grows is increasing progressively whilst that they have no scheduling strategies to maintain the order

of arrival tokens in places (e.g., [1,4,6]). QNs, on the other hand, are suitable tools for capturing the

security processing (e.g., encryption/decryption times) and transmission end-to-end delays of multiple

classes of packets. However, they are unable to effectively model some important system dynamics

such as concurrency, synchronization, mutual exclusion and/or conflict (e.g., [3-6]). To overcome or

alleviate some of these constraints, a hybrid modelling framework needs to be developed by

2

combining the expressiveness and modelling power of QNs and extensions of PNs, where sub-models

of PNs and QNs are allowed to coexist and interact with one another.

This work reports the progress that has been made so far towards the design and development of the

Hybrid Petri Queueing Networks Simulation (HPQNS), a new software framework for the

performance related security of high speed networks that has a number of advantages over above-

mentioned and combinations (especially in the field of computer science) of the aforementioned

conventional modelling techniques. In addition to the adoption of hardware contention and scheduling

disciplines, the HPQNS framework facilitates the modelling and evaluation of software contention,

synchronization, asynchronous processing and blocking, just to name a few. In other words, it enables

the integration of both hardware and software aspects of system behaviour into the same model.

The explicit modelling of software aspects of system behaviour alone has demonstrated significant

improvement in accuracy and efficiency of the performance models. Another major advantage of

HPQNS framework is that, due to its object-oriented design and development, it helps render tractably

the simulation of models of larger and more complex systems.

2. The HPQNS Framework

The present version of the HPQNS tool was designed and developed using Java programming

language and as with all other Java applications, it is platform independent. The framework facilitates

the implementation and configuration of a variety of system models; it enables us to run the

simulations for as many times as required for the results to fit within certain confidence intervals. For

data presentation purposes, the HPQNS tool provides suitable graphical curves so that brief

summaries of simulation outcomes can easily be reviewed and analysed. At this stage, the statistics

being collected as well as jobs/events tracking information are all stored in the system’s main memory

(RAM) throughout the simulation process; this is done to speed up and keep simulation runtimes

reasonably low.

Unlike the development process of a software package, which usually involves a bottom-up approach

to implementation (from smaller objects to bigger ones), it is much more straightforward to take a top-

down approach (from the bigger components to smaller ones) to build the model – the class

hierarchical structure of HPQNS can be seen in Fig. 1. As such, in its highest level, the HPQNS

framework needs an empty virtual network object (environment) to be created first, which should

include the individual nodes, the inter-arrival processes, the random number generators and the

routing information matrix.

3

Fig. 1 The Class Hierarchy of HPQNS

3. Building Blocks

The individual nodes, also known as building blocks, are assumed to be homogeneous and virtually

based inside the network object and are associated with a number of modelling levels. At the first

level, the arrival traffic process should be specified and declared. This process is one of the most

important role players in the model whether there is only one class of jobs or multiple job classes with

different levels of priority. At the second level, the inter-arrival patterns should be clearly defined in

terms of parameters of the selected probability distribution. At this level of model design, the HPQNS

requires a mechanism by which the existing nodes will interact by exchanging group information.

This interconnection is governed by a routing matrix called “InterNodeComm”; it is important that the

entries of the routing matrix are appropriately set at this stage so jobs departing from nodes consult it

4

about the possible destination(s) to go to next. In addition, this matrix is responsible for ensuring that

each node is receiving its own share of arrival traffic, if any.

The next level of modelling process takes place within the nodes by implementing a detailed model in

either pure PN, pure QN or hybrid PN and QN to represent the dynamic behaviour of each node

internally. At this level, the servers and their corresponding service times, queues and the scheduling

mechanisms, etc. will clearly be defined and created. To manage all these features smoothly, the

HPQNS heavily exploits the standard matrices commonly used in PNs and/or QNs, such as I, O, H, C

matrices in PNs and NTM, CNTM ones in QNs. While these matrices are only responsible for routing

jobs within their respective modelling paradigm, the HPQNS requires yet another matrix, which

would manage the interactions between PN and QN sub-models; so-called “IntraNodeComm”, the

matrix determines the routing rules between PN and QN sub-models within each building block.

The applicability of the HPQNS tool is illustrated in Kouvatsos et al [15].

References

1. Kounev, S., & Buchmann, A. (2006). SimQPN- a tool and methodology for analyzing queueing

Petri net models by means of simulation. Performance Evaluation, 63(4), 364-394.

2. Kounev, S. (2006). Performance modeling and evaluation of distributed component-based systems

using queueing petri nets. Software Engineering, IEEE Transactions on, 32(7), 486-502.

3. Kounev, S., & Buchmann, A. (2008). On the use of queueing petri nets for modeling and

performance analysis of distributed systems. In V. Kordic (Ed.), PetriNet, Theory and Application

(Vol. Petri Net, Theory and Applications, pp. 149-178). Vienna, Austria.

4. Balbo, G., Bruell, S. C., & Ghanta, S. (1988). Combining queueing networks and generalized

stochastic petri nets for the solution of complex models of system behavior. IEEE Transactions on

Computers, 37(10), 1251-1268.

5. Bause, F. Queueing petri nets-a formalism for the combined qualitative and quantitative analysis of

systems. In Proceedings of 5th International Workshop on Petri Nets and Performance Models, 1993

(pp. 14-23): IEEE. Balbo, G., & Chiola, G. Stochastic petri net simulation. In 1989 Winter Simulation

Conference Proceedings, 1989 (pp. 266-276): ACM

6. Marsan, M. A., Bobio, A., & Donatell, S. (1998). petri nets in performance analysis: an

introduction. In W. Reisig, & G. Rozenberg (Eds.), (Vol. LNCS1491, pp. 211–256). Berlin

(Germany): Springer-Verlag.

7. Jensen, K. (1997). A brief introduction to coloured Petri Nets. In E. Brinksma (Ed.), Tools and

Algorithms for the Construction and Analysis of Systems (Vol. 1217, pp. 203-208, Lecture Notes in

Computer Science): Springer Berlin Heidelberg.

5

8. Bause, F. (1993). "QN+ PN= QPN"-combining queueing networks and petri nets. (pp. 1-15).

Germany: University of Dortmund.

9. Kouvatsos, D., & Awan, I. (2003). Entropy maximisation and open queueing networks with

priorities and blocking. Performance Evaluation, 51(2), 191-227.

10. Kouvatsos, D. D. (1994). Entropy maximisation and queueing network models. Annals of

Operations Research, 48(1), 63-126.

11. Kouvatsos, D. D., Alanazi, J. S., & Smith, K. (2011). A Unified ME algorithm for arbitrary open

QNMs with mixed blocking mechanisms. Numerical Algebra, Control and Optimization (NACO)The

American Institute of Mathematical Sciences (AIMS), 1 (4), 781 – 816,

doi:doi:10.3934/naco.2011.1.781.

12. Becker, M., & Szczerbicka, H. (1999). PNiQ: Integration of queuing networks in generalised

stochastic petri nets. IEE Proceedings, Software, 146(1), 27-32, doi:10.1049/ip-sen:19990153.

13. Becker, M., & Szczerbicka, H. Integration of multi-class queueing networks in generalized

stochastic petri nets. In IEEE International Conference on Systems, Man, and Cybernetics, 2001

(Vol. 2, pp. 1137-1142): IEEE. doi:10.1109/icsmc.2001.1309629.

14. Szczerbicka, H. (1992). A combined queueing network and stochastic Petri net approach for

evaluating the performability of fault-tolerant computer systems. Performance Evaluation, 14, 217-

226, doi:10.1016/0166-5316(92)90005-2.

15. Kouvatsos D. D., E. Habibzadeh & Miskeen G.M.A. Performance Modelling and Evaluation of

Secure Dynamic Group Communication Systems in RANETs, Paper Summaries of UKPEW 2014

Proceedings, Sept. 2014.

Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

A Case Study in Capacity Planning for PEPA
Models with the PEPA Eclipse Plug-in

Christopher D. Williams and Allan Clark1,2,3

LFCS, School of Informatics
University of Edinburgh

Edinburgh, United Kingdom

Abstract

We report on the addition of Capacity Planning facilities to the PEPA Eclipse Plug-in, a software tool for
analysing performance models written in the PEPA language. The PEPA language allows the compositional
description of complex systems consisting of different kinds of processes. The capacity planning addition
allows modellers to automatically search for the populations of processes that allows for an optimal trade-off
between the performance of the system and the cost of acquiring or operating the components of the system
under the modeller’s control.

Keywords: PEPA, Capacity Planning, Optimisation, Performance Evaluation, Modelling

1 Introduction

In this paper we report on the capacity planning framework for Performance Eval-
uation Process Algebra (PEPA)[8] implemented in the PEPA Eclipse Plug-in[16].
PEPA is a language in which modellers can compositionally describe complex sys-
tems. Generally modellers define several different kinds of processes which interact
with each other by sharing activities. Once the model is defined, it can be numeri-
cally evaluated via a suite of techniques to obtain performance metrics. If the model
is accurate enough then these translate to, and provide insight to, the real system
under investigation.

Typically a process is defined with several possible states. The performance
metrics in the first instance are the long-term probabilities of a process being in
each of its possible states. Where the model contains many copies of the same
process, this is equivalent to asking the long-term populations of each state.

Generally, the populations, will provide the modeller with utilisation informa-
tion. For example in a Server-Client model, a server process may have a set of

1 Special thanks to Mirco Tribastone who contributed the case study
2 Email: blasedefgmail.com
3 Email: a.d.clark@ed.ac.uk

c©2014 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:blasedef\spacefactor \@m gmail.com
mailto:a.d.clark@ed.ac.uk

Williams

possible states, some of which correspond to a state in which the server is busy
processing a particular kind of response and other states will correspond to a state
in which the server is idle waiting for a client to make a request. Knowing the
proportion of servers which are generally busy may tell the modeller if the service is
over-provisioned, in that we have many servers which are idle because the number
of servers is enough to satisfy the expected (and modelled) demand.

From the model and the long-term/steady-state population distributions we can
derive performance measures which may more directly determine whether the ser-
vice would be over or under provisioned. Two important measures are the through-
put of particular actions or the time a particular component can expect to remain
in a particular set of states. Again in a Server-Client setting, the throughput may
tell us how many requests are responded to per unit of time, or it may tell us the
rate at which requests must be dropped.

However the throughput of requests is commonly also dependent upon the rate
at which requests are made, and hence may not be a reliable indicator of whether
the system has enough performance for a given demand. For this we can calculate
the expected time a given component is in a given set of states. Typically we would
calculate the expected time a single client is in a state in which they have made
their request and are waiting for that request to be responded to by the service.
This gives us the response-time as observed by a typical consumer of the service.

Being able to predict the performance of a proposed service by modelling the
service and calculating the response-time under a given client-load is clearly useful.
However when designing the system we still have some flexibility around the number
of components that we may deploy. In the simple case we may be able to deploy more
or fewer servers. In a more complex environment there are different components
that make up the service being offered. For example there may be web servers and
database servers as well as an external authentication service.

When designing such a system, we would like to know what configuration of the
system is optimal. So we wish to know what populations of server components meets
some required performance standard. One can often meet a performance standard
simply by deploying ever-increasing numbers of all server components. However,
there is generally some cost associated with acquiring and/or operating each server
and the costs may differ for different types of server. Hence we wish to find not
only a configuration of the system that will satisfy the performance demands but
also the cheapest such system configuration.

A modeller can always guess at a sufficiently low-cost configuration that might
satisfy the performance demands and simply evaluate that configuration through
their model. In previous work [13], an extension to the PEPA Eclipse Plug-in
software is discussed. The extension implements an automatic search for the optimal
configuration, ie. the extension implements automatic capacity planning for PEPA
models.

In this paper we contribute a case-study demonstrating the value of the capacity
planning extension to the PEPA Eclipse Plug-in. We begin in the following section
with background information detailing PEPA, associated performance measures and
capacity planning in general. This is then followed by a in-depth description of the
case study scenario and the associated PEPA model. The results obtained from

2

Williams

running the software to obtain an optimal configuration of the server components in
the case study are then discussed. We end with future work discussing how to make
the software ever more general without sacrificing ease-of-use and the conclusion
that the capacity planning extension is an important feature for modelling software.

2 Background

This section gives an overview of the PEPA modelling language and the necessity
to provide capacity planning facilities. We first discuss PEPA, then describe how
PEPA models can be evaluated to obtain basic quantitative information concern-
ing how the model’s component states evolve over time and their steady-state (or
long-term) distributions. We then describe how more informative performance mea-
sures can be derived from this basic information. Crucially we are looking at the
throughput of particular activities within the model as well as the expected time
the model remains in a particular set of states. The latter is known as the average
response-time in the specific case where the set of states represents a client waiting
for service/response from a server.

2.1 PEPA

PEPA is a stochastically-timed process algebra where sequential components are
defined using prefix and choice. PEPA models require these sequential components
to cooperate on some activities, and hide others. A PEPA model typically consists
of several sequential components, placed in cooperation. In the model:

P ��
L
Q

The sequential components P and Q cooperate on the activities in the set L. If
activity α is in the set L then P and Q are required to cooperate on α. If activity β
is not in L then either of P or Q, or both, may perform this activity independently.
When L is empty we write P ‖ Q instead of P ��

∅
Q. We also allow the special

cooperation P ��
∗
Q to be a synonym for P ��

L
Q where L is the set of activities

performed by both P and Q.
Rates are associated with activities performed by each component. The symbol

> is used to indicate that the component will passively cooperate with another on
this activity. In this case the passive component may enable or restrict the activity
from being performed by the cooperating component but the rate when enabled is
determined by the actively cooperating component. The component (a, r).P per-
forms the activity a at rate r whenever it is not blocked by a cooperating component
and becomes the process P . The component (a,>).Q passively synchronises on a

and becomes process Q.
In PEPA models we often work with arrays of components. We use arrays to

represent workload (such as a number of independent clients) or resources (such
as a number of independent servers). We write P [5] to denote five copies of the
component P which do not cooperate and P [5][α] to denote five copies of the com-
ponent P which cooperate on the activity α. That is, P [5] is an abbreviation for

3

Williams

P ‖ P ‖ P ‖ P ‖ P and P [5][L] is an abbreviation for

P ��
L
P ��

L
P ��

L
P ��

L
P.

The PEPA language is formally defined in [8]. Applications of the language are
described in [7,11,10].

2.1.1 Evaluating the Model
PEPA is used to calculate performance measures. Traditionally this has been
achieved by translating the PEPA model into its underlying continuous-time Markov
chain. However for models with large numbers of components the state-space of
the model is too large to traverse and other techniques have been utilised. We
have used stochastic simulation and translation into Ordinary Differential Equa-
tions (ODEs) [9,17].

In this work we have utilised the translation into ODEs. The techniques de-
scribed are generalisable to any method of obtaining results from a PEPA model,
however if the search space is large we may evaluate many instantiations of the
model, meaning that whichever method is used should be fast for all the candidate
configurations of the model.

When the model is translated into a set of ODEs these can be numerically
evaluated to provide a time series which describes the population levels of the states
of each component kind over time. For some measures we are not interested in the
evolution of the component state populations but rather the long-term proportion of
the components in each state, known as the steady-state. To obtain these the ODEs
can be numerically evaluated for increasing time until the populations are stable.
This technique requires that your system does not exhibit oscillating behaviour.

2.1.2 Performance Measures
Once we have the long-term component populations we can calculate the expected
performance of the system. The two most common performance measures that we
are interested in are the throughput of particular actions or the average duration
of a particular state, or set of states. For example when considering some kind of
service we may wish to measure the throughput of responses made or the average
response-time. The average response-time here would be the expected delay between
a particular client making a request and that same client receiving a response to
the earlier request.

Typically the average response-time is appropriate because it is not a measure
that is penalised when the service is over-provisioned. When the service is over-
provisioned the performance may be very high, but the throughput of responses
can only be as high as the throughput of requests made by the users of the service.
Response-time on the other hand can still be, and is likely to be, low, even when
the rate of requests is low. In the case study presented in this work we focus on
response-time.

Response-time can be calculated with an application of Little’s Law[14]. Little’s
law states that the long-term average number of customers in a stable system L

is equal to the long-term average arrival rate λ multiplied by the average time a

4

Williams

customer spends in the system W . Hence, L = λW , re-arranging for W we have
that W = L/λ. In our case W is the response-time we seek, and L is the long-term
population of clients in states between their request and response activities whilst
λ is long-term throughput of requests made.

When considering systems with many consumers we wish to evaluate the per-
formance of the system as observed by a typical consumer. In other words we must
be careful to measure the expected time between a request made by a particular
client and the response received by that same client. Rather than the expected time
between any request and the next response to any client. To achieve this we use a
simple technique of tagging a single client, similar to the technique described in[5].
Tagging and specifying the states to be considered as part of the response-time, or
the specific actions considered part of the measured throughput are discussed in [2]
which introduces extended stochastic probes as a means for performance query
specification. Automatically modifying the model to suit the performance query is
discussed in [3].

Often a modeller must be careful to evaluate both response-time and throughput.
Since a low throughput of requests may results in a low average-response time, but
only because, for some reason, the demand is low. Similarly with no bound on the
number of clients in a waiting state may mean that the throughput of responses is
high, but that clients are waiting a long time for their requests to be satisfied.

2.2 Capacity Planning

Complex systems are commonly modelled to provide insight. Either this insight is
used to aid the design of the system before it is built or it is used to understand a
system already in operation. A complex system may have many components such
as different kinds of servers. One aspect of the design of a system is reasoning
about the most appropriate configuration, that is the numbers of different kinds
of components. Modelling of a system can allow one to speculate about the most
appropriate configuration and compare candidate configurations without physically
implementing them.

Once efficient comparison of multiple candidate configurations is possible, it
makes sense to perform a search for the best or most appropriate configuration.
Several techniques exist for searching a space of candidate parameter configurations.
Capacity planning has the unique property that usually the parameters in question
are all integers since they represent a physical configuration of a system in terms of
the populations of component types.

When considering configurations there are generally some trade-offs to consider.
Usually some or all of the components over which the designer has control of their
populations, have some cost associated with obtaining and running those compo-
nents. For example a web-service must spend money to obtain and run the physical
(or virtual) servers which host the web-service. However the designer will also wish
to ensure that the service gives enough performance such that, for example, the
response-time is sufficiently low.

We already know how to obtain performance measures from a PEPA model such
as response-time as explained above. Suppose we have a model with only one kind

5

Williams

of server and a desired average response time from a given level of service demand
or number of users. In this simple scenario it is straightforward to find the optimal
configuration. We can simply evaluate the response-time when just a single server is
allocated. If this response-time is low enough then this configuration can be reported
as the most appropriate configuration knowing that all other configurations will cost
more. If not then the model can be modified such that there are two servers and
re-evaluate the response-time. In this way a simple brute-force search for the lowest
number of servers which satisfies the response-time can be conducted.

In this simple case the first configuration found will be the most appropriate
since we know that all other configurations we have tried do not satisfy the desired
response-time and all configurations not yet tried will cost more. An obvious im-
provement would be a binary search. Both techniques would be performing a full
search of the configuration space and guaranteed to find the best configuration.

However complex systems are often not as simple. There may be several kinds of
servers each with a different cost to obtain and/or operate. Such a linear search for
the best candidate solution can still be done if the candidate configurations can be
ordered in terms of their operating cost. This may become prohibitively expensive
to perform when the number of candidate configurations increases rapidly. Binary
search may help in this scenario, but only if the candidate configurations are trivial
to order and index in terms of cost.

Furthermore it may also be that the modeller does not have a strict performance
threshold to achieve, but simply wants to trade-off good performance against the
cost of operation. In this case the modeller might give a notional cost to each unit of
response-time. Hence the cost of a candidate configuration is a combination of the
cost of obtaining and operating the components and the predicted response-time
achievable under that configuration.

In such a scenario we cannot do a linear search and stop at the first candidate
configuration which satisfies the performance constraints because there are no strict
performance constraints and a better trade-off may exist. One must search over the
terrain of the entire search space. In this kind of search it may still be possible to
perform a brute-force search and simply evaluate all possible configurations. This
is only possible if the number of plausible configurations is low.

When brute-force search is not possible, search techniques exist which avoid eval-
uating all possible configurations. The work described here utilises such techniques
specifically for PEPA models with associated performance measures. In essence
then capacity planning is a search for the optimal configuration. Search heuristics
make it possible to perform a search over a very large space of possible configura-
tions without evaluating all possible configurations. This means that the absolute
best configuration may not be found. However, even in such cases it is worth per-
forming the search automatically. Such techniques often fall under the category of
evolutionary computing of which there is a large literature base, for example [15,4,1].

2.2.1 Cost Functions
The evaluation of a particular configuration involves assessing how appropriately
the configuration balances performance and operating cost. These two measures are
combined into an overall cost of a candidate configuration. Hence, where, costpm

6

Williams

is the cost associated with the performance measure, costpop is the cost associated
with the candidate configuration populations and wpm and wp are weights, the cost
function has the general form:

cost = (wpm × costpm) + (wp × costpop)
However not all populations are weighted equally. One possible task is deciding

how many of each different kind of server to deploy and it may well be that the
different kinds of servers do not cost the same to acquire or operate. For N compo-
nent kinds, Pi is the population of component kind i and Ci is the cost associated
with a single component of kind i. Hence our populations component of the cost
function becomes:

costpop = ΣN
1 Ci × Pi

Recall that our performance measure may be associated with the throughput of
an action or the average response-time. Additionally in either case we may desire
either a high or low value. Hence the cost function must be capable of penalising
both a high or a low value for a performance measure. The simple solution is to set
a target value for the performance measure and calculate the difference from this
value. The modeller sets the target and the direction, so for a performance measure
which we wish to search for as low a value as possible we have:

costpm = measured− target
Similarly for a performance measure for where we are searching for as high a

value as possible we have:
costpm = target−measured
Note that in both cases this value may become negative. That is perfectly

acceptable and there is no reason to avoid negative costs. The search engine will
simply search for the configuration which gives the lowest cost, whether that lowest
value is negative or not.

However this simple measure assumes that the modeller would penalise perfor-
mance linearly. Consider the case of measuring average response-time. The modeller
may be interested in keeping the average below that which is noticeable by users and
hence may be very keen to discard configurations which evaluate to a response-time
of 1.0 time units or greater over those which evaluate to a response-time of less than
1.0 time units. However, the modeller may be less concerned about distinguishing
between two configurations that evaluate to response-times of 0.1 and 0.2 time units.
Preferring instead to distinguish those two configurations more according to the cost
of the populations.

Providing non-linear cost functions adds significantly to the complexity of the
user-interface provided for the modeller to specify their cost function. Hence we
have approximated non-linear cost functions by utilising a penalty for missing the
target. Hence our cost function for a performance measure for which we wish to
search for the lowest possible value becomes:

costpm = (target−measured) + (H(target−measured)× penalty)
Where H is the Heaviside function which returns zero when given a negative

argument and one otherwise. This corresponds to a situation in which you may
wish to adhere to a given service level agreement. For example the service level
agreement may state that the average response-time observed by users is no more

7

Williams

than 0.5 time units. Hence we can heavily penalise all configurations which result
in the model predicting an average response-time of more than 0.5 time units. This
means that for configurations which result in a response-time better than 0.5 time
units the search will still prefer better configurations, but that the weights on the
performance and population costs can be set sensibly.

For configurations in which the average response-time computed is worse than
the target then the penalty is applied. This allows the search to reject such config-
urations regardless of the population cost.

Recall that capacity planning is a search for the optimal configuration. Avoiding
a brute-force search of all configurations is important because the search space of
configurations is often infeasibly large. Search heuristics can avoid an exhaustive
search by finding good areas of the search space. To enable this it is important that
our cost function enables the search to be directed towards good areas in the search
space. For this reason there is still a gradient on the performance cost when the
target is not reached. That is, a configuration that misses the target response-time
by a little, still evalutes to a lower (performance) cost than a configuration which
misses the response-time target by a larger amount. This helps the search to move
towards configurations in which the target will be met, rather than simply rejecting
those that fail to meet the response-time target.

The weights of the overall cost function wpm and wpop allow the user to adjust the
importance of reducing the cost associated with the performance measure against
the cost associated with the populations of the components. The task that the user
has is to set these weights such that neither component of the cost dominates the
overall cost.

Unfortunately it is impossible for us to set a useful default here since we cannot
know in advance how the populations are costed. In addition the unit used for
the rates in the model is undefined. Hence determining how costly each unit of,
for example, response-time is, is a task that is necessarily left for the user. To see
this, consider that a model which used seconds as the unit can have all rates in
the model multiplied by 1000. The steady-state probabilities will not chanage, but
the any response-time measure we calculate will now be in the units of milliseconds
rather than seconds. This new model is just as valid, but clearly there would be a
much smaller real cost associated with a one time unit rise in average response-time.
Hence the weights used in this model would need to reflect that.

Strictly speaking the weights are unnecessary since the user could always adjust
the weights on the populations, but we include them as a convenience for the user.
Typically the user will not run a single capacity planning search, but will run several
searches modifying their search parameters accordingly.

We have given a brief description of the cost function considerations in this
section. Cost functions can become very complicated. There is a natural tension
between providing clear and usable software whilst also covering as many use cases
as possible. Ultimately to be entirely generic would require that we allow the user
to calculate their own cost function in some full evaluation environment such as a
general purpose programming language. This currently remains future work but
for now we hope to have provided enough flexibility for common use cases without
adding significant bloat and complication to the software and its associated user

8

Williams

Fig. 1. Deployment diagram of the e-University case study. Solid connectors between components indicate
request/reply communication. Dashed lines denote the deployment of services onto processors.

interface.

3 Case Study

Our example scenario concerns a previously studied [12] scenario which formed part
of a case study of the SENSORIA project [6, Chapter 2]. It concerns a hypothetical
European-wide virtual university in which students study remotely. The part of
the case study considered in the above work and in this work concerns the course
selection phase where students already matriculated to the university must enrol in
specific courses. Although the students only enrol in a few courses per year they all
do this at the same time, so it is important that sufficient provision is provided to
maintain a responsive service.

The case study is comprised of a number of scenarios; here the scenario of inter-
est is the Course Selection scenario, where students obtain information about the
courses available at their education establishment and may enrol in those for which
specific requirements are satisfied. Although the overall application is intended to
be service-oriented, the scenario investigated here is such that the kinds of services
available in the system do not to change over the time frame captured by this model.
This reflects the fact that a university’s course organisation is likely to be fixed be-
fore it is offered to students. Furthermore, minor changes are likely not to affect the
system’s behaviour significantly. The model will not consider other services which
may be deployed in an actual application (e.g. authentication services) because their
impact on performance is assumed to be negligible. The scenario also considers a
constant population of students to capture a real-world situation where the univer-
sity’s matriculation process is likely to be completed before the application may be
accessed.

3.1 The Model

The current authors are indebted to the authors of the above mentioned study [12]
for allowing us to include their description of the model here.

The access point to the system is the University Portal, a front-end layer which
presents the available services in a coherent way, for example by means of a web
interface. There are four services in this model:

Course Browsing allows the user to navigate through the University’s course of-
ferings;

Course Selection allows the user to submit a tentative course plan which will be
validated against the University’s requirements and the student’s curriculum;

9

Williams

Student Confirmation will force the student to check relevant personal details;

Course Registration will confirm the student’s selection.

These components make use of an infrastructural Database service, which in
turn maintains an event log through a separated Logger service.

The modelling paradigm adopted here captures the behaviour of a typical multi-
threaded multi-processor environment used for the deployment and the execution of
the application. The University Portal instantiates a pool of threads, each thread
dealing with a request from a student for one of the services offered. During the pro-
cessing of the request the thread cannot be acquired by further incoming requests,
but when the request is fulfilled the thread clears its current state and becomes
available to be acquired again. Analogous multi-threaded behaviour will be given
to the Database and Logger components.

Performance issues may arise from the contention of a limited number of threads
by a potentially large population of students. If at some time point all threads
are busy, further requests must queue, provoking delays and capacity saturation.
This model also proposes another level of contention by explicitly modelling the
processors on which the threads execute. Here, delays may occur when many threads
try to acquire a limited number of processors available. Furthermore, this may be
worsened by running several multi-threaded services on the same multi-processor
system, as will be the case in the deployment scenario considered in this model:
University Portal will run exclusively on multi-processor PS, whereas Logger and
Database will share multi-processor PD (see Figure 1).

3.1.1 General Modelling Patterns
Processing a request involves some computation on the processor on which the
service is deployed. Such a computation in the PEPA model is associated with an
activity (type, rate), where type uniquely identifies the activity and rate denotes
the average execution demand on the processor (i.e. 1/rate time units). A single
processing unit may be modelled using a two-state sequential component. One state
enables an acq activity to acquire exclusive access to the resource, while the other
state enables all the activities deployed on the processor. Letting n be the number
of distinct activities, the following pattern is used for a processor:

Processor1 = (acq, racq).P rocessor2

Processor2 = (type1, r1).P rocessor1

+ (type2, r2).P rocessor1

+ . . .

+ (typen, rn).P rocessor1

(1)

Communication in this model is synchronous and is modelled by a sequence of
two activities in the form (reqfrom,to, rreq).(replyfrom,to, rrep) where the subscript
from denotes the service from which the request originates and to indicates the
service required. A recurring situation is a form of blocking experienced by the
service invoking an external request. Let A and B model two distinct interacting
services, for example,

10

Williams

A= (reqA,B, rreqA).(replyA,B, rrepA).A
B = (reqA,B, rreqB).(execute, r).(replyA,B, rrepB).B

(2)

The communication between A and B will be expressed by means of the coop-
eration operator A ��

L
B where, L = {reqA,B, replyA,B}.

According to the operational semantics, A and B may initially
progress by executing reqA,B, subsequently behaving as the process
(replyA,B, rrepA).A ��

L
(execute, r).(replyA,B, rrepB).B.

Now, although the left-hand side of the cooperation enables replyA,B, the activ-
ity is not offered by the right-hand side, thus making the left-hand side effectively
blocked until execute terminates (i.e., after an average duration of 1/r time units).
These basic modelling patterns will be used extensively in this case study, as dis-
cussed next.

3.1.2 University Portal
A single thread of execution for the application layer University Portal is imple-
mented as a sequential component which initially accepts requests for any of the
services provided:

Portal= (reqstudent,browse, v).Browse
+ (reqstudent,select, v).Select
+ (reqstudent,confirm, v).Confirm
+ (reqstudent,register, v).Register

(3)

The rate v will be used throughout this model in all the request/reply activities.
In the following, the action type acqps is used to obtain exclusive access to processor
PS .

Course Browsing is implemented as a service which maintains an internal cache.
When a request is to be processed, the cache query takes 1/rcache time units on
average, and is successful with probability 0.95, after which the retrieved data is
processed at rate rint. Upon a cache miss, the information is retrieved by the
Database service, and is subsequently processed at rate rext:

Browse= (acqps, v).Cache
Cache= (cache, 0.95× rcache).Internal

+ (cache, 0.05× rcache).External
Internal= (acqps, v).(internal, rint).BrowseRep
External= (reqexternal,read, v).(replyexternal,read, v).

(acqps, v).(external, rext).BrowseRep
BrowseRep= (replystudent,browse, v).Portal

(4)

Course Selection comprises four basic activities. An initial set-up task initialises
the necessary data required for further processing (raterprep). Then, two activities
are executed in parallel, and are concerned with validating the selection against

11

Williams

the university requirements (rateruni) and the student’s curriculum (ratercurr),
respectively. Finally, the outcome of this validation is prepared to be shown to the
student (raterdisp). The relative ordering of execution is maintained by considering
three distinct sequential components. The first component prepares the data, then
forks the two validating processes, waits for their completion, and finally displays
the results:

Select= (acqps, v).(prepare, rprep).ForkPrepare
ForkPrepare= (fork, v).JoinPrepare
JoinPrepare= (join, v).Display

Display= (acqps, v).(display, rdisp).SelectRep
SelectRep= (replystudent,select, v).Portal

(5)

The two validating processes are guarded by the fork/join barrier as follows:

V alUni= (fork, v).(acqps, v).(validateuni, runi).(join, v).V alUni
V alCur= (fork, v).(acqps, v).(validatecur, rcur).(join, v).V alCur

(6)

These components will be arranged as follows in order to obtain a three-way
synchronisation:

Select ��
fork,join

V alUni ��
fork,join

V alCur(7)

Student Confirmation is represented in the PEPA model as an activity performed
at rate rcon. The service uses Logger to register the event:

Confirm= (acqps, v).(confirm, rcon).LogStudent
LogStudent= (reqconfirm,log, v).(replyconfirm,log, v).ReplyConfirm

ReplyConfirm= (replystudent,confirm, v).Portal
(8)

Finally, Course Registration performs some local computation, at rate rreg, and
then contacts Database to store the information:

Register= (acqps, v).(register, rreg).Store
Store= (reqregister,write, v).(replyregister,write, v).ReplyRegister

ReplyRegister= (replystudent,register, v).Portal
(9)

The general pattern 1 is applied to processor PS as follows:

PS1 = (acqps, v).PS2

PS2 = (cache, rcache).PS1 + (internal, rint).PS1

+ (external, rext).PS1 + (prepare, rprep).PS1

+ (display, rdisp).PS1 + (validateuni, runi).PS1

+ (validatecur, rcur).PS1 + (confirm, rcon).PS1

+ (register, rreg).PS1

(10)

12

Williams

3.1.3 Database
This service exposes two functions for reading and writing data. Reading is a
purely local computation, whereas writing additionally uses the Logger service. In
this model, Database is only accessed by the university portal in states External
and Store in equations 4 and 9, respectively. Let PD denote the processor on
which Database is deployed, acquired through action acqpd . Similarly to University
Portal, a single thread of execution for Database is:

Database= (reqexternal,read, v).Read+ (reqregister,write, v).Write

Read= (acqpd, v).(read, rread).ReadReply
ReadReply= (replyexternal,read, v).Database

Write= (acqpd, v).(write, rwrite).LogWrite

LogWrite= (reqdatabase,log, v).(replydatabase,log, v).WriteReply

WriteReply= (replyregister,write, v).Database
(11)

3.1.4 Logger
This service accepts requests from Student Confirmation and Database, as de-
scribed in equations 8 and 11, respectively. It is deployed on the same processor
as Database, i.e., processor PD. Thus, one thread execution may be modelled as
follows:

Logger= (reqconfirm,log, v).LogConfirm+ (reqdatabase,log, v).LogDatabase
LogConfirm= (acqpd, v).(logconf , rlgc).ReplyConfirm

ReplyConfirm= (replyconfirm,log, v).Logger
LogDatabase= (acqpd, v).(logdb, rlgd).ReplyDatabase

ReplyDatabase= (replydatabase,log, v).Logger
(12)

Taking together 11 and 12 it is possible to write the sequential component that
models the processor PD:

PD1 = (acqpd, v).PD2

PD2 = (read, rread).PD1 + (write, rwrite).PD1

+ (logconf , rlgc).PD1 + (logdb, rlgd).PD1

(13)

3.1.5 Student Workload
A student is modelled as a sequential component which interacts with the university
portal and accesses all of the services available. The behaviour is cyclic and the
student interposes some think time between successive requests. This results in a
closed-workload type of behaviour which is typical of many performance studies:

StdThink= (think, rthink).StdBrowse
StdBrowse= (reqstudent,browse, v).(replystudent,browse, v).StdSelect
StdSelect= (reqstudent,select, v).(replystudent,select, v).StdConfirm

StdConfirm= (reqstudent,confirm, v).(replystudent,confirm, v).StdRegister

13

Williams

StdRegister= (reqstudent,register, v).(replystudent,register, v).StdThink
(14)

3.1.6 System Equation
The multiplicity of threads and processors is captured in the system equation, in
which all the sequential components illustrated above are composed with suitable
cooperation operators to enforce synchronisation between shared actions. The com-
plete system equation for this model is:

StdThink[NS]

��
∗(

(Portal[NP] ��
M1

V alUni[NP] ��
M1

V alCur[NP])

��
M2

Database[ND] ��
M3

Logger[NL]
)

��
∗

(PS1[NPS] ��
∅
PD1[NPD])

where:

M1 = {fork, join}
M2 = {reqexternal,read, replyexternal,read, reqregister,write, replyregister,write}
M3 = {reqconfirm,log, replyconfirm,log, reqdatabase,log, replydatabase,log}

It is worth pointing out that the separate validating threads ValUni and ValCur
inherit the multiplicity levels of the thread Portal which spawns them.

3.2 Performance Measure

Given this model we wish to measure and optimise for the performance observed by a
typical student. We are therefore interested in calculating the average response-time
for student requests. From the definitions in 14 the students in the StdThink state
are not attempting to make use of the system. We therefore calculate the average
time it takes from the moment a student actively uses the system by moving into
the StdBrowse state until the student returns to the StdThink state.

For the default configuration of the model we obtain the results 22.95 time units
for the average response-time. We now wish to optimise the configuration of the
system to obtain satisfactory performance whilst spending as little as possible on
the components.

3.3 Capacity Planning

The populations that a designer of the hypothetical e-university service may be
able to control are those of the components: Database, Logger, PD, Portal, PS,
V alCur and V alUni, we do not expect the service to be able to control the average
number of students accessing the service simultaneously. Therefore the modeller

14

Williams

assumes some fixed level of demand by fixing the initial population of StdThink,
in this case to 600.

We are interesting in optimising for the response-time performance measure
described above. In addition we would like to keep the cost of the system as low as
possible.

We have limited data to allow us to obtain realistic rates for some of the activities
in the model. Since the meaning of a unit of time in a PEPA model is unspecified
we need only be concerned that the rates are of realistic magnitudes relative to each
other.

In addition, as discussed in Section 2.2 we are able to place a threshold average
response-time above which there is a heavy cost function penalty, to approximate a
non-linear performance measure cost. In this study we somewhat arbitrarily specify
this to be 15, but this is no more arbitrary than the unspecified unit of time used
in the PEPA model itself. The 15 in question comes from the fact that the hand-
optimised version of the model for 600 users reported in [12] (mentioned above as
the source of our case study’s PEPA model), is 15.248.

Without specialist knowledge it is difficult to weigh the importance of the re-
ducing the average response-time against the importance of reducing the cost of the
system. So we have also somewhat arbitrarily set the cost function weights wpm
(the weight of the performance measure component) and wpop (the weight of the
populations components).

Hence we have two arbitrary pieces of information included in our cost function,
that is the penalty threshold for the performance measure and the ratio of weight-
ings for the performance measure and population components of the cost function.
However both such pieces of information would be available to a real-world modeller
utilising our capacity planning extension.

3.4 Results

The previously mentioned work which introduced our case study [12] utilised the
ODE response-time evaluation to find a configuration of the model with a low
response-time for the case in which there are 600 students. Table 1 shows the
populations for configurations found, using three search methods. The first is the
hand optimised configuration reported in the above referenced work, the second
is our heuristic-based search and the last is for a brute force search, in which the
search space was limited to a small area around the optimal configuration found by
the heuristic based search.

In the hand-optimised case for the original publication the authors held three
of the server populations to be equal to each other but not fixed. So in their case
NV C = NV U = NP , this was not a restriction that we imposed on our capacity
planning search. Such a restriction is indeed easily imposed, but we wished to allow
the search as much flexibility as possible.

Our software has found a model that has a significantly lower average response-
time, with a response-time of 9.430 compared to 15.248. This would not be im-
pressive if the cost of the server configuration were not cheaper. The population
of every server component kind cannot be lower than the hand-optimised version

15

Williams

Optimisation ND NL NPD NP NPS NV C NV U Total Avg Res

Hand 80 80 40 80 40 80 80 480 15.248

Search 28 21 28 81 51 17 43 269 9.430

Brute 26 19 27 77 49 15 36 249 10.242

Table 1
Optimal configurations found for three search techniques. The first is manual optimisation, the second is

our heuristic-based search and the last is a brute-force search around in a limited region around the
optimal configuration found by the heuristic-based search. Both the heuristic and brute-force search find
configurations that have a lower total population and a lower average response-time. The heuristic-based
search finds the lowest average response time of the three whilst the brute-force search finds a lower total

population.

otherwise we would have at best the same average response-time. However, in our
case we obtain a model that has a total population of server components that is
significantly less than that of the hand-optimised version. A total server component
population of 269 against 480 for the hand-optimised version.

There are only two server components for which the hand-optimised version has
a lower population than the configuration found by our automatic search. These
are, the number of Portal componets NP and the number of PS components NPS .
In the case of the Portal component there is only 1 more of them. In the case
of the multi-processors upon which the Portal threads run, the difference is more
significant 50 > 41 by more than 25%.

As we have stated it is difficult to provide realistic costs for each of the server
components in such a hypothetical scenario. However our automatically optimised
model is a significant improvement on the hand-optimised version unless Portal
components or the multiprocessor systems that they run on are significantly more
expensive than, for example, the multi-processors which execute the Database and
Logger components.

We can assert that given our cost values for each of the components, the au-
tomatic search was able to find a configuration that had a significantly improved
average response-time whilst simultaneously reducing the total cost of the server
components.

The entire search took 4366 seconds, or just under 73 minutes. In doing so it
solved 2426 models. We can say that each model therefore took approximately 1.8
seconds to solve on average. Each model may take a different time to solve because
the rates affect how quickly the model is solved. In addition there is some time spent
performing the search algorithm logic, but this will serve us as an approximation. All
of the computations described here were performed on a standard desktop computer.
In addition it is the relative, rather than absolute times that we are mostly concerned
with.

3.5 Brute Force Comparison

As described above the alternative to performing a stochastic search over the space
of potential configurations is to perform a brute-force search evaluating all possible
configurations.

The time taken to solve the set of ODEs generated from the PEPA model de-

16

Williams

pends on the configuration, but is generally comparable across the configurations.
As described above the capacity planning search is not instantaneous, but took
around an hour. The näıve approach to a brute-force search would evaluate all
possible configurations within our initial constraints. This would have meant solv-
ing 107374182400000000 distinct possible configurations and taken approximately
6399581450 years.

A modeller could of course be a little more clever about the ranges set on popula-
tion levels to reduce the search space. Whenever one does this there is a trade-off as
you are trading-off the possibility that a better solution exists outside your narrower
ranges against the advantage of your search performing faster.

However, the best solution had a highest population of 81 and a lowest popula-
tion of 17. Even if we set all ranges to be from this lowest value 17 to the highest
value 81, which would require insight into the search space that the modeller does
not have, then the search space still has (81− 17)7 = 4398046511104 possible can-
didate configurations. Hence searching the entire space with a brute-force approach
will still take 2443359172835 seconds or approximately 77478 years.

However, one could use the driven search to provide a suitable search area in
which to perform an exhaustive search. To perform our brute-force search in a
reasonable amount of time we set the ranges for each configurable population to
a range around the value that we have found from the capacity planning search.
To further reduce this we held the number of Database components constant at 26
(this was in error it should have been 28). As a result our brute-force search had
a more manageable number of configurations to solve: 125000 = (25 − 15) ∗ (45 −
35) ∗ (85− 75) ∗ (31− 26) ∗ (54− 49) ∗ (24− 19). This too approximately 65 hours
to solve. This best solution being shown in the table in Section 3.4.

So note, because of our error in setting the Database component population
the brute-force search never found as good a configuration as the capacity planning
search. This is the main problem with a brute-force search as opposed to a search
heuristic, because there are so many configurations to solve we must reduce the
available flexibility meaning that the modeller must already have significant insight
into their model. Capacity planning can either be used on its own, or to find a good
set of ranges in which to perform an exhaustive search.

3.5.1 Search Space
Figure 2 gives some idea of the search space of configurations. Each graph pair of
graphs concerns one configurable component (in the interests of brevity we have
included only two representative components, Portal and Logger). The left graph
of each pair displays the results from the driven capacity planning search and the
right displays the results from the brute-force search.

Each plotted dot represents a candidate configuration, the x-axis position de-
termines the population of the candidate configuration for the particular server
component kind depicted in that specific graph. The y-axis position determines
the value of the cost function for that configuration. Recall that the cost function
considers both the populations of all the configurable server components and the
resulting average response-time.

The x-axis range on the brute-force search results are much narrower, because the

17

Williams

Capacity Planning Search Brute-Force Search

(A) (B)

(C) (D)

Fig. 2. Scatter plots showing the results for a selection of the configurable server components. The left-hand
graphs depict the results for the capacity planning search whilst the right hand graphs depict the results for
the brute-force search. The x-axis ranges are much smaller for the brute-force search since it is infeasible
to evaluate all configurations when the range of possible values is large.

brute-force search was centred on a narrow range around each optimal configuration
found by the capacity planning search. This is because it is infeasible to do an
exhaustive search for larger ranges.

The capacity planning graphs exhibit a lower left corner slope. This indicates
that for each of these components there is a lower-bound on the population such
that populations below this result in too high an average response-time, regardless
of the rest of the configuration.

Each graph additionally demonstrates that one cannot optimise for each com-
ponent kind independently. For each population of each component kind a wide
range of costs are possible. Hence one must optimise for all of the configurable
component populations simultaneously, because the population of one affects both
the sensitivity and optimal value of another.

18

Williams

4 Future Work

Although we think that the user has been given much flexibility in the configuration
of their cost function we realise that there are surely scenarios which call for some
cost function that cannot be expressed using our configuration interface. A more
general solution would be to allow the modeller to express their own cost function
in a general purpose programming language such as Java which is used in our
implementation.

To provide this, some interface to the results and the model parameters would
be required. This would also place something of a burden on the modeller so we
would be keen to retain a simple gui-based configuration scheme that may be used
as a first exploration of the configuration space, and/or by novice users.

Recall that our practice of having the user specify a target performance measure
value is an approximation to a non-linear cost function. We think this is a good
trade-off of complexity, easy of use and power of expression. However, we continue
to investigate other possibilities.

Finally throughout this paper we have assumed that the modeller can either
make a good guess to the level of expected demand or is prepared to over-estimate
it. A further possibility is to perform multiple capacity planning searches assuming
different levels of demand.

We could perform multiple capacity planning searches for different levels of de-
mand automatically. Furthermore we may see adaptability to different levels of
demand as a particularly good thing to have. For example some services can op-
erate at different levels, in the most obvious case by simply turning servers on or
off. Currently, whilst we may find a configuration which is particularly good for
a particular level of demand it may not be very adaptable. Hence we continue to
investigate ways in which we may reward configurations that are adaptable.

In the meantime we provide methods for the modeller to examine some of the
configurations that have been found mid-search, but perhaps did not have the glob-
ally best cost, because adaptability is not accounted for in the cost function. This
provides a further reason that it is particularly useful for the modeller to be able to
examine elements of the search rather than simply the best configuration found.

5 Conclusion

When modelling service based systems such as the system modelled in our case study
the modeller is unlikely to have great control over the level of demand. Therefore
the system designer must be sure to provision enough service to satisfy a realistic
level of demand.

Most realistic levels of demand can be satisified with enough service provision,
but generally there is some significant cost to providing that level of service. If not
then one need do little modelling but simply provision plenty of service component.

Assuming that there is some significant cost we would like to know how best to
provide the required level of service. Even further we may not know the level of
service we demand but we have some idea of how to trade-off the level of performance
against the cost of the provision.

19

Williams

However, knowing this is not enough for many kinds of services. These are
services in which there are more two kinds of components that need to be deployed
to provide the whole service. In these kinds of scenarios there are simply too many
plausible configurations of the service to try them all. Furthermore it is rarely
obvious what the most efficient configuration is, or even how to improve on the
current one.

Hence an automatic search through the configuration space can provide excellent
insight for the modeller. We are of the opinion that not only the end result of such
a search but many of the configurations and their associated costs found mid-search
may be of interest to the modeller.

Performing such a search is a non-trivial task. A user-friendly GUI based tool
which not only performs the search itself but guides the user through the configu-
ration of the search is a significant help to the modeller. We have presented such a
software tool in this paper.

The trade-off is that the developers of such a tool must consider the ways in which
the modeller may wish to evaluate the efficacy of a particular model configuration.
We think that so far we have a powerfully expressive method of configuration but
we continue to investigate methods to be more expressive as well as more intuitive.

Finally we wish to claim that capacity planning, or more generally a heuristic
search, is a useful addition to any modelling software. It is difficult to provide the
correct interface, but this is ultimately worth the effort. The capacity planning ex-
tension to the PEPA Eclipse Plug-in project [16] will be available at the forthcoming
release due in September 2014.

References

[1] Bäck, T. and H.-P. Schwefel, An overview of evolutionary algorithms for parameter optimization, Evol.
Comput. 1 (1993), pp. 1–23.
URL http://dx.doi.org/10.1162/evco.1993.1.1.1

[2] Clark, A. and S. Gilmore, State-aware performance analysis with eXtended Stochastic Probes, in:
N. Thomas and C. Juiz, editors, Proceedings of the 5th European Performance Engineering Workshop
(EPEW 2008), LNCS 5261 (2008), pp. 125–140.

[3] Clark, A. and S. Gilmore, Transformations in PEPA Models and Stochastic Probe Placement, in:
K. Djemame, editor, Proceedings of the Twenty-Fifth UK Performance Engineering Workshop, Leeds
University, 2009, pp. 1–16.

[4] Deb, K. and D. Kalyanmoy, “Multi-Objective Optimization Using Evolutionary Algorithms,” John
Wiley & Sons, Inc., New York, NY, USA, 2001.

[5] Dingle, N. J. and W. J. Knottenbelt, Automated Customer-Centric Performance Analysis of
Generalised Stochastic Petri Nets Using Tagged Tokens, in: Third International Workshop on Practical
Applications of Stochastic Modelling (PASM’08), Palma de Mallorca, Spain, 2008.
URL http://pubs.doc.ic.ac.uk/pasm08-tagged/

[6] Elgner, J., S. Gnesi, N. Koch and P. Mayer, Introduction to the sensoria case studies, in: M. Wirsing
and M. Hölzl, editors, Rigorous Software Engineering for Service-oriented Systems, Springer-Verlag,
Berlin, Heidelberg, 2011 pp. 26–34.
URL http://dl.acm.org/citation.cfm?id=2043021.2043025

[7] Hillston, J., The nature of synchronisation, in: U. Herzog and M. Rettelbach, editors, Proceedings of
the Second International Workshop on Process Algebras and Performance Modelling, Erlangen, 1994,
pp. 51–70.

[8] Hillston, J., “A Compositional Approach to Performance Modelling,” Cambridge University Press, 1996.

[9] Hillston, J., Fluid flow approximation of PEPA models, in: Proceedings of the Second International
Conference on the Quantitative Evaluation of Systems (2005), pp. 33–43.

20

http://dx.doi.org/10.1162/evco.1993.1.1.1
http://pubs.doc.ic.ac.uk/pasm08-tagged/
http://dl.acm.org/citation.cfm?id=2043021.2043025

Williams

[10] Hillston, J., Process algebras for quantitative analysis, in: Proceedings of the 20th Annual IEEE
Symposium on Logic in Computer Science (LICS’ 05) (2005), pp. 239–248.

[11] Hillston, J., Tuning systems: From composition to performance, The Computer Journal 48 (2005),
pp. 385–400, the Needham Lecture paper.

[12] Hillston, J., M. Tribastone and S. Gilmore, Stochastic process algebras: From individuals to populations,
Comput. J. 55 (2012), pp. 866–881.

[13] Hillston, J. and C. D. Williams, Capacity planning for PEPA models, in: A. Horvath and K. Wolter,
editors, Proceedings of the 11th European Performance Engineering Workshop (EPEW 2014), LNCS
8721 (2014), to appear in.

[14] Little, J. D. C., A proof of the queueing formula l = λw, Operations Research 9 (1961), pp. 380–387.

[15] Simon, D., “Evolutionary Optimization Algorithms,” 2013.

[16] Tribastone, M., The PEPA Plug-in Project, in: M. Harchol-Balter, M. Kwiatkowska and M. Telek,
editors, Proceedings of the 4th International Conference on the Quantitative Evaluation of SysTems
(QEST) (2007), pp. 53–54.

[17] Tribastone, M., “Scalable Analysis of Stochastic Process Algebra Models,” Ph.D. thesis, School of
Informatics, The University of Edinburgh (2010).
URL https://dl.dropboxusercontent.com/u/13100903/papers/phd-thesis.pdf

21

https://dl.dropboxusercontent.com/u/13100903/papers/phd-thesis.pdf

Performance Modelling and Evaluation

of Secure Dynamic Group Communication Systems

in RANETs

Demetres D. Kouvatsos, Esmaeil Habibzadeh (University of Bradford, UK),

Guzlan M.A. Miskeen (University of Sebha, Libya)

Security mechanisms, such as encryption and authentication protocols, require extra

computing resources and therefore, have an adverse effect upon the performance of

communication networks. In this context, an investigation is undertaken, based on combined

performance and security metrics (CPSMs), using hybrid stochastic Petri nets (SPNs) and

queueing networks (QNs) towards the modelling and evaluation of performance vs. security

trade-offs in robotic mobile wireless ad hoc networks (RANETs). Specifically, each robotic

node is represented by open gated (G) coloured generalised stochastic PN (CGSPN) and QN

(G-CGSPN-QN) hybrid models capturing, respectively, <mobility, encryption processing and

security control> and <‘intra’ robot component-to-component communication and ‘inter’

robot-to-robot transmission>. The so called HPQNS [5] framework is employed as an

effective tool to carry out numerical experiments in order to assess the credibility of the

proposed G-CGSPN-QN model and associated CPSMs. Finally, future research directions at

the level of a RANET are included.

Keywords Mobile Ad hoc NETworks (MANETs), Robotic mobile wireless Ad hoc

NETworks (RANETs), Queueing Networks (QNs), Petri Nets (PNs) , CPSMs, HPQNS

Summary

1. Introduction

The performance of Robotic mobile wireless Ad hoc NETworks (RANETs) is of vital

importance towards enhancing quality-of-service (QoS) in a wide range of applications [4].

However, it is known that RANETs have high security vulnerability due to the open medium,

the dynamically changing network topology and the lack of infrastructure [3]. Thus,

performance and security are mutually critical and should jointly be taken into consideration

during the design, development and upgrading of RANETs.

On the other hand, security mechanisms such as en/decryption and security protocols require

an extensive amount of computing power that would have an adverse impact on the

performance of individual robots as well as the whole network. In this context, the

applicability of Petri nets (PNs) and Queueing networks (QNs) hybrid modelling paradigms

for robotic nodes is explored and an open Gated Coloured Generalised Stochastic PN and QN

(G-CGSPN-QN) model is proposed for each robotic node capturing intra/inter-robot

communications. This model is comprised of modular interacting CGSPN and QN sub-

models, which represent robots’ mobility, and security processing &control and transmission

delays, respectively.

Moreover, an investigation is undertaken involving security related performance metrics in

terms of nodal throughput and utilisation of the channels (‘servers’) on each individual

robotic node. In particular, the impact of security attacks and re-keying overheads on the

performance metrics is examined and optimal trade-offs between performance and security

with respect to various system security levels are identified.

2. Technical Contributions

Fig. 1 shows the proposed hybrid model for each robotic node, which comprises from

modular hybrid CGSPN and QN sub-models. The gated mobility sub-model captures the

robot’s dynamic join/leave from the RANET where, as a result, it alternatively becomes

available or goes out of reach. The en/decryption sub-model represents the amount of delay

each packet would incur as the packets are now required to first go through en/decryption

processes to be secured against outsider attacks. To deal with insider attacks, Intrusion

Detection Systems (IDS) are usually developed, which are to detect compromised nodes and

remove them from the network [3]. To reflect the behaviour of an IDS and its impact upon

the system performance, a security control sub-model is introduced; this leads the robot to

alternate between certain security states and effectively block the encryption process in case

of security attacks. The latter is ensured by the use of an inhibitor link connecting P3 to T1

(Fig. 1). These sub-models are designed and implemented using an extended version of

CGSPN, where places assume queues of finite capacity with Head-Of-the-Line (HOL)

scheduling strategy. The final stage, however, includes the transmission sub-model, which is

purely designed in QN of an arbitrary topology and finite capacity queues; this sub-model

reflects any further process required to feed the packets back inside the robot or forward them

to another robot in the RANET. These hybrid sub-models together with the routing matrices

govern the intra-inter robotic communications.

Fig. 1 An open G-CGSPN-QN hybrid model of a RANET node

To study performance vs security trade-offs, two different CPSMs are considered. The

CPSM1 combines the performance metric of ‘channel utilisation’ associated with component

QS4 (c.f., Fig. 1)) plus the security metric of ‘probability of system being secure’. The

CPSM2 is chosen to combine another set of performance and security metrics, namely the

packet loss probability (PLP) at the encryption queue of Fig. 1 and the probability of system

being insecure, respectively.

The HPQNS tool [5] is used to carry out the numerical experiments and assess the credibility

of the proposed G-CGSPN-QN hybrid model for each robotic node. In particular, simulation

results are generated for both CPSM1 and CPSM2, which are illustrated in Figs. 2 and 3

below. These figures demonstrate the effects of different security key lengths on performance

and security of the robot. It is clear that CPSM1 and CPSM2 both give the same optimal

encryption time. It is worth mentioning that the key length has a direct impact on the

encryption time [2], which makes them interchangeable.

Security Control

 Gated Mobility

Security
Processing

 Hybrid Performance

 Model

 Intra Robot – Component to

 Component Communication

co

QN

GSPN

 Reconnect

Disconnect

‘On’
‘Off’

Inter

Robot-to-Robot

Transmission

 Arrival

QS1 QS4 P0

P1

P3

P5

P4

T0

QS2

QS3

P2

T1

T2

T3 T4

T5 T6

Fig. 2 CPSM1: Utilisation + P(Secure)

Fig. 3 CPSM2: PLP + P(Insecure)

3. Future Work

Further research work at the RANET level (c.f., Fig. 4)) may focus on

i) An extension to improve the mobility sub-model and provide an effective link with the

security parts of the G-CGSPN-QNs hybrid model, where each join/leave process should lead

to a renewal/regeneration of the security key.

ii) The characterisation of the IDSs with respect to two parameters, false negative probability

() and false positive probability (); the former may lead to information leakage and the

latter may have further adverse impact on the performance.

iii) The energy consumption in RANETs, where the energy sub-model may capture either

battery consumption or battery life (remaining energy levels); in this context, the trade-off

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Encryption Time (sec)

Utilisation (QN)

P(Valid Encryption Key)

CPSM1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Encryption Time (sec)

PLP

P(Detected Broken Key)

CPSM2

between energy (as a performance metric) and security could be examined in order to gain

new insights into the efficient energy use in RANETs whilst maintaining the security in

adequately high levels.

iv) Secure Dynamic Group Communication Systems (SDGCSs), which may be established

by robots of extended G-CGSPN-QN hybrid models (Fig. 4), where IDSs are integrated with

rekeying processes (RPs) to deal with insider and outsider attacks, respectively [3].

Investigation of trade-offs between performance and security across the SDGCS with respect

to a number of CPSMs would be of significant value. In addition, the pros and cons of

individual rekeying and batch rekeying as well as host-based and voting-based IDSs [3] could

be analysed in greater details.

Fig. 4 A SDGCS with three robots exploiting G-CGSPN-QN hybrid models

v) Different probability distributions, where generalised exponential (GE) [1] would

particularly be useful to find out how and why higher SCVs might influence the optimal

points in performance vs security trade-offs.

vi) Additional CPSMs such as

 {P(Secure) + E(Throughput)} quite similar to {P(Secure) + E(Utilisation)}

 {P(Not Secure) + E(Response Time)}

 {P(Secure) + E(Remaining Energy level)} or {P(Not Secure) + E(Energy

Consumption)}

Robot 0
 Robot 1

 Robot 2

References

1. Miskeen G., Kouvatsos D. D., Habibzadeh E. (2013). An Exposition of Performance–Security Tradeoffs in

RANETs Based on Quantitative Network Models. Wireless Personal Communications, Springer. vol. 70, no. 3,

pp 1121-1146

2. Wolter, K., & Reinecke, P. (2010). Performance and security tradeoff. In A. In. Aldini, Bernardo, M., Di

Pierro, A. & Wiklicky, H. (Ed.), Formal Methods for Quantitative Aspects of Programming Languages (pp.

135-167). Heidelberg: Springer Berlin.

3. Cho, J. H., Chen, R., & Feng, P. G. Performance analysis of dynamic group communication systems with

intrusion detection integrated with batch rekeying in mobile ad hoc networks. In 22nd International Conference

on Advanced Information Networking and Applications-Workshops, AINAW 2008, Okinawa, 25-28 March 2008

2008 (pp. 644-649): IEEE

4. Zorkadis, V. (1994). Security versus performance requirements in data communication systems. Third

European Symposium on Research in Computer Security Proceedings, Computer Security - ESORICS, 19-30.

5. Habibzadeh, E. & Kouvatsos, D. & Miskeen, G. (2014). A Hybrid Simulation Framework for the Analysis of

Petri Nets and Queueing Networks. UK Performance Engineering Workshop, Newcastle University.

6. Balbo, G., Bruell, S. C., & Ghanta, S. (1988). Combining queueing networks and generalized stochastic petri

nets for the solution of complex models of system behavior. IEEE Transactions on Computers, 37(10), 1251-

1268.

7. Bause, F. Queueing petri nets-a formalism for the combined qualitative and quantitative analysis of systems.

In Proceedings of 5th International Workshop on Petri Nets and Performance Models, 1993 (pp. 14-23): IEEE

8. Becker, M., & Szczerbicka, H. (1999). PNiQ: integration of queuing networks in generalised stochastic petri

nets. IEE Proceedings, Software, 146(1), 27-32, doi:10.1049/ip-sen:19990153.

9. Becker, M., & Szczerbicka, H. Integration of multi-class queueing networks in generalized stochastic petri

nets. In IEEE International Conference on Systems, Man, and Cybernetics, 2001 (Vol. 2, pp. 1137-1142):

IEEE. doi:10.1109/icsmc.2001.1309629.

10. Szczerbicka, H. (1992). A combined queueing network and stochastic Petri net approach for evaluating the

performability of fault-tolerant computer systems. Performance Evaluation, 14, 217-226, doi:10.1016/0166-

5316(92)90005-2.

11. Bause, F. (1993). "QN+ PN= QPN"-combining queueing networks and petri nets. (pp. 1-15). Germany:

University of Dortmund.

12. Miskeen, G., Kouvatsos, D. D., & Akhlaq, M. Performance and Security Trade-off for Routers in High

Speed Networks In S. Hammond, S. Jarvis , & M. Leeke (Eds.), UK Performance Engineering Workshop,

University of Warwick, 2010 (pp. 119-128)

13. Jensen, K. (1998). An introduction to the practical use of coloured petri nets. Lectures on Petri Nets II:

Applications, 237-292.

14. Bhatia, H., Lening, R., Srivastava, S., & Sunitha, V. (2007). Application of QNA to analyze the ‘queueing

network mobility model of MANET. (pp. 1-6). Gandhinagar, India: Technical Report, Dhirubhai Ambani Insti

tute of Information & Communication Technology (DAIICT).

UKPEW 2014

Operating policies for energy efficient
dynamic server allocation

Thai Ha Nguyen, Matthew Forshaw and Nigel Thomas

School of Computing Science, Newcastle University, UK

Abstract

Power inefficiency has become a major concern for large scale computing providers. In this paper, we
consider the possibility of turning servers on and off to keep a balance between capacity and energy saving.
While turning off servers could save power, it could also delay the response time of requests and therefore
reduced the performance. Furthermore, as consistency is one of the most important factors for a system, we
also analyse the level of consistency in the form of switching rate and fault occurrence. Several heuristic-
based switching policies are introduced with a view to balance the cost between power saving, performance
and consistency. Simulation results are presented and discussed with requests arriving according to a two-
phase Poisson process.

Keywords: Energy efficiency, discrete event simulation, performance evaluation.

1 Introduction

The non-functional challenges facing large scale computing provision are generally

well documented [1]. Amongst these the cost of energy has become of paramount

concern. Energy costs now dominate IT infrastructure total cost of ownership

(TCO), with data centre operators predicted to spend more on energy than hard-

ware infrastructure in the next five years. The U.S. Environmental Protection

Agency (EPA) attribute 1.5US electricity consumption to data centre computing

[2], and Gartner estimate the ICT industry was responsible for 2With western eu-

ropean data centre power consumption estimated at 56 TWh/year in 2007 and pro-

jected to double by 2020 [3], the need to improve energy efficiency of IT operations

is imperative.

Data centres, with their high density of power consumption and a steady growth

in number, have become a major industrial energy consumer in the recent years. One

of the most important factors that promoted their growth is that cloud computing

has become a big trend in web services and information processing. The most

significant advantage of the cloud is its flexibility. It offers the chance of shifting

1 Corresponding author: nigel.thomas@ncl.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:nigel.thomas@ncl..ac.uk

Nguyen et al

capital expenditure to operational expenditure [4], which is ideal for starting a new

service. Furthermore, since there is an increase in the quantities of data being

collected for commercial, scientific or medical purpose, the big capacity of data

centre is ideal to process such massive volume of data. As the cloud offers users an

illusion of infinite computing resources on-demand [5], cloud computing is in fact

essential to gather useful data from that enormous amount of information [6].

This paper is based on the work of Slegers et al [7,8] and is focussed on the

notion that servers can be powered off and on according to demand in order to

avoid the non-trivial energy requirements of idle servers. With perfect knowledge of

arriving workload an optimal dynamic allocation of servers can be obtained which

significantly reduces the overall energy demand of the system with no impact on

performance, i.e. servers can be made available only when they are going to be used.

Of course, we do not generally have a perfect knowledge of future workload and so

an optimal dynamic solution is not practical. Instead we must investigate the trade-

off between energy consumption and performance (e.g. response time) to determine

the best practical method of reducing energy costs whilst not adversely affecting

the quality of service. Two principle approaches to minimising energy consumption

are apparent. In the first instance an optimal fixed provision of servers can be

computed based on estimated workload. Depending on the variability in demand,

this approach might lead to servers being idle for extended periods or to some tasks

experiencing long waiting times during peak demand. The second approach is to

compute a strategy to turn servers on and off based on the current (or past) state of

the system. This approach minimises idle time by turning off servers, but potentially

delays tasks which arrive in a burst as it takes time to turn servers back on. In

addition, powering servers off and on may lead to faults which not only reduce the

total available number of servers, but may also further delay an arriving task.

The remainder of this paper is organised as follows. In the next section we

explain the context of this work in relation to other work on energy reduction. In

Section 3 we describe the system model and introduce six heuristic strategies for

controlling the number of servers powered on and off. This is followed in Section

4 by a brief description of the simulation environmen and we then a present and

discuss the results of our experiments. Finally we present some conclusions and

directions of further work.

2 Related Work

Although the issue of power efficiency for data centres had received significant con-

cerns in the recent years, much less attentions had been paid to the option of

dynamically turning servers on or off depended on the incoming requests. Some

researches that were close to the idea had been introduced including [9] and [10].

However, they lacked the ability to dynamically turn servers on/off due to changes

in the systems state. In [11], a dynamic server provisioning was examined using

data traces from Windows Live Messenger. Since the workload of the Windows

Live Messenger was periodic, i.e. it was predictable, this method was insufficient

for the erratic and non-periodic workloads of a data centre. In [12], an M/M/c

queueing system with removable servers and nontrivial setup times was examined.

2

Nguyen et al

The queueing model was relatively similar to this project, but servers could only be

powered up and down one at a time. Similar to [12], the work of authors Gandhi et

al [13] enabled multiple servers to be in powering mode at a time, while estimated

the mean response time and the mean power consumption as key metrics.

On the other hand, this project was based on the previous works of authors

Slegers et al [7,8], where the system consisted of a pool of homogeneous servers

which could be in on, off or switching modes. The job requests arrived with high

and low arrival rate and switching decisions were made by six different heuristics.

The heuristics evaluated the number of jobs in queue along with the jobs arrival rate

to optimize the system behaviour, given a trade-off between power consumption and

response time.

With a similar system architecture to [7], the work of author Mitrani [14] focused

on turning servers on and off in a block. The principle of this system was turning up

a fixed number of reserves servers if the jobs queue exceeded a predefined threshold,

while those reserves would be powered down in case of low workload. The two

thresholds up (U) and down (D) determined the point of time when the system

needed to turn on or off the reserves. In other words, m reserves servers would

be powered up when the number of jobs exceed the threshold U , and those servers

would be switched off when the jobs queue decreased to threshold D. Similar to [7],

this system also used response time and power saving as key metrics. The switching

question became how big the reserves should be, and how to choose the threshold

U and D efficiently with the goal of balancing between performance and power

consumption. Additionally, the paper also suggested the possibility of multiple

server blocks with non-identical sizes. Server reserves could be powered up and

down one after another as the job queue changed.

Another noticeable recent work was of the authors Yang et al [15]. It involved a

resource management system which had the role of minimizing the number of active

servers while keeping the overload probability to a standard threshold. This method

did not measure the system performance by response time or energy consumption,

but by an overload estimation model. The overload was calculated using the large

deviation principle [16], while the decisions were made without any prior knowledge

of the workload intensity.

The dynamic cluster reconfiguration model which consisted of a resource man-

agement system and a batch of server nodes. The servers could be in either active

or sleep modes, and heterogeneous servers cluster was supported. In the resource

management system, a server scheduling strategy including server management and

job scheduling was introduced. The task scheduler had the role to allocate suitable

resources for requested tasks, while the cluster reconfiguration controller could dy-

namically turn servers on or off to satisfy the workload demand. In other words, the

goal of the dynamic cluster configuration was to turn off as many servers as possible

and still be able to comply with the quality-of-service constraints. Interestingly, this

research also proposed the possibility of independently applying of techniques like

DVS and DPM in individual servers to achieve fine-grained energy consumption

control.

Noticeably, none of the works above had mentioned the factor of consistency in a

system. The closest measurement of consistency for such problem was found in [17]

3

Nguyen et al

in form of the rate of switching. That work focused on developing optimal policies

for a single server system while taking the approximate response time, the energy

consumption and the rate of switching into account. In this paper, we also consider

consistency as the frequency of server powering on/off along with the occurrence

rate of faults while switching. The measurement of consistency would be a beneficial

metric for the policies to make switching decisions.

3 The Model

The system contained N homogeneous servers which can be in five states: powered

up, powered down, powering up, powering down and fault state. The powered up

servers could be working or staying idle, while there were only one mode each for the

other states. The powered down mode was left ambiguous and could mean complete

shutdown or hibernating, which consumed less or no power. During switching or

fault modes, a server could not serve jobs but still consumed power. While faults

could happen in almost any state, this paper only focused on the appearance of

faults while switching, which was believed to have a high possibility of occurrence.

Furthermore, the number of faults while switching should be an adequate index

to measure the consistency of the system. Additionally, the modes were provided

with specific costs, which were cup, cidle, cdown, cpowUp, cpowDown, cfault respectively.

While most of the costs denoted the relative energy cost for a server to run in that

mode for a unit of time, cfault reflected the relative loss for a server to remain in

fault mode.

Furthermore, the system held an unbounded jobs queue which received job re-

quests according to a two-phase Poisson process, i.e. a high and a low arrival period.

During the periods, jobs were coming with the average mean of λhigh and λlow for

each unit of time correspondingly. The requests time was exponentially distributed

with an average duration of µ, while the time of high and low periods were also

exponentially distributed with mean ξ and η respectively. Similarly, other values

were calculated using the exponential distribution, including the duration of fault

tfault and the switching time tup and tdown. In addition from the energy costs and

the fault cost, we also assigned the job holding cost cjob, which indicated the cost

of holding a job in the system for one unit of time, in other words the need of

processing jobs quickly. Moreover, there was also cpow which reflected the energy

saving benefit of keeping a server down for one unit of time. Again, those were only

relative cost, i.e. cpow = 1 and cjob = 2 simply meant that keeping a job in the

system was double as expensive as the energy saving gained by powering down a

server. To sum up, a data centres state could be described as follows:

S = {j, λ, kup, kdown,mup,mdown, f}(1)

J denotes the number of jobs in queue, λ the arrival rate, while kup, kdown, mup,

mdown and f are the number of servers which were currently up, down, powering

up, powering down and at fault mode respectively. Furthermore, the sum of servers

in all modes was always N (i.e there is no loss). A system state could move to the

next state by the following possibilities:

• Staying the same without switching, the durations of modes and arrival periods

4

Nguyen et al

can be decreased by one unit of time.

• If the duration of a server mode reaches zero, the number of servers for that mode

will decrease by one and the number of servers up/down will be increased by one

accordingly.

• If the duration of an arrival period reaches zero, the system will move to the next

period.

• Turning on x servers, which means mup will be increased by x and kdown will be

decreased by x respectively.

• Turning off x servers, which means mdown will be increased by x and kup will be

decreased by x respectively.

• The number of jobs j will be increased according to the current arrival rate,

meanwhile j can also be decreased if the duration of any job reaches zero.

• The same procedure is also true for f . It can be increased with the rate mf as

long as there are servers being powered on or off. If the duration of fault mode

for a server reaches zero, f will be decreased.

In fact, those possibilities do not happen individually, they were often combined

with others to reach the next state. Finally, there were two metrics of calculating the

energy usage of the system. The first metric was the energy consumption which was

the total of energy costs for all servers in the system. This was a straightforward

method which was understandable and easy to calculate. However, it could not

fully determine the efficiency of a data centre. For example, a system could keep

the number of powered up servers low to gain small energy consumption, but it

was in fact non-profitable since the inadequate number of servers could not keep up

with the incoming requests. Therefore, the energy efficiency metric was introduced

with the view of taking power consumption together with other values into account.

This metric was calculated as follows:

Eeff = kdowncpow − jcjob − fcfault −mupcpowUp −mdowncpowDown(2)

In other words, this metrics calculated the power saving benefit of having a

server staying down, while took into account the costs of faults, of having too many

jobs in the queue and of switching too many servers. It was in fact a trade-off

between saving powers, consistency and performance.

4 Switching Policies

This section will introduce six switching heuristics of different characteristics with

the view of balancing data centres power savings, consistency and performance. The

heuristics have the role to inspect each state of the data centre and made decisions

of powering servers on or off for the next state. While most methods depended

on statistical theories to achieve solution, some others simply reacted based on the

number of requests in queue.

5

Nguyen et al

4.1 Static Allocation Heuristic

This method employs the concept of making no changes in the number of active

servers. In other words, the heuristic decided on the best possible number of servers

to switch on, and made no additional switching after that. Unless there were faults

occurred in the process of powering on, then the heuristic would decide to switch

on more servers to compensate for the lost ones. First, the heuristic determined the

average rate for both arrival periods by adding the jobs loads and then divided it

to the mean duration of both periods:

α =
ξλhigh + ηλlow

ξ + η
(3)

Therefore, the problem became a jobs queue with arrival rate α and a fixed

number of servers n, while n must not exceed the total number of servers N . This

is a well-known problem in queueing theory (see e.g. [18]) and hence we can calculate

the probability of all n servers being occupied. Subsequently the mean response time

for n servers was determined as followed:

tn = µ

(
1 +

Ec(n, µ)

n− µ

)
(4)

As µ is the mean load of the system, n−µ indicates that n should not be smaller

than the mean load. Furthermore, with the use of Erlang-C formula Ec(n, µ), the

equation Ec(n,µ)
(nµ) describes the extra percentage of time that the system may spend to

finish processing the job in comparison with the average duration µ. In other words,

it is the extra percentage of time that jobs need to wait before getting processed.

Subsequently, it is trivial to calculate the energy efficiency of the data centre for

that response time:

Eeff = (N − n)cpow − cjobtn(5)

Since the method keeps a fixed number of servers all the time, the cost of switch-

ing and faults can be excluded. Therefore, the energy efficiency is only dependent

on the power savings and the job holding cost. Then the process can be easily

repeated for all possible number of servers in order to determine the best efficiency

value and therefore the optimal number of servers.

The idea of the method is to sacrifice the ability to respond to incoming jobs

volume for the stability. Obviously, this is an especially stable method. Since the

heuristic only requires a small ammount of initial switching, it contains almost no

faults. However, this method does not have a good performance as we will observe.

In fact, the number of servers that this method decides on is often more than

enough to handle the low arrival rate, while being insufficient for the high arrival

rate. Therefore, in the case that the high arrival rate lasts longer than expected,

this heuristic is likely to perform badly because of the high job holding cost.

4.2 Semi-static Allocation Heuristic

In order to fix the disadvantage of the static allocation heuristic, the semi-static

policies is introduced. This method works with the same principle as the static

allocation, but it treats the two arrival periods separately. In other words, the

semi-static heuristic uses the Erlang C formula to find out the best number of

6

Nguyen et al

servers for the high and low arrival periods separately. Therefore, those optimal

numbers of serv-ers will be able to keep up with the arrival rates of both periods

without the waste of turning on too many servers.

Unlike the static allocation method, the semi-static still needs to turn servers

on or off between periods. However, since it uses the same mechanism as the static

allocation, the semi-static does not take the switching time into account. Therefore,

when the system is erratic, i.e. the durations of periods were short, or when the

switching time is long, this method clearly shows a poor performance. In some

extreme cases, the period might be over before the switching finished. Nevertheless,

because switching times are often small in comparison to the periods duration and

the length of jobs, the semi-static still has a good overall performance.

4.3 Idle Heuristic

This policy is the most straightforward method which depends entirely on the num-

ber of jobs in the queue. The idle heuristic has the strategy to turn off any idle server

and turn on more servers if there are jobs waiting. To be more precise, the number

of currently powering servers was also taken into account, i.e. more servers will be

turned on if the number of jobs is larger than the total of active servers and power-

ing on servers. This was clearly a very passive and unsophisticated method. While

other heuristics try to predict the rate of incoming jobs and act correspondingly,

the idle heuristic completely excludes the possibility of prediction. Understandably,

this method requires a very high level of switching, which led to a big switching

cost. Furthermore, even if the switching cost is small and the switching time is

insignificant compared to the job duration, the idle heuristic would not necessarily

be a good choice. If the job holding cost was significantly smaller than the power

saving benefit, then it would be preferable to have some jobs waiting rather than

turn on servers instantly.

Although the inefficiency and naivety of the idle heuristic is undeniable, its sim-

plicity still possesses a strong point. While other methods would need a significant

amount of computer resources to calculate statistical theories and run through var-

ious loops, the idle policy only requires a minimum of processing power.

4.4 Threshold Heuristic

This heuristic was proposes as an improvement from the idle heuristic. To be more

precise, it is a generalisation version of the idle where a threshold jthres is defined.

If there were more than jthres idle servers then the servers will be switched off. On

the other hand, if the number of jobs is greater than the available servers and the

threshold (j > jthres + kup +mup) then more servers will be turned on. Clearly, the

idle heuristic is equivalent to the case that jthres = 0.

The idea of the threshold heuristic is to reduce the switching number of the idle

heuristic by establishing jthres. But the process of choosing a suitable threshold

value is not trivial, especially when stability is also considered to measure the ef-

ficiency of a data centre. The threshold should significantly reduce the amount of

switching, while not restricting the system too much to keep up with the incoming

requests. Therefore, the task of selecting the threshold should take the job holding

7

Nguyen et al

cost along with the power saving and the number of switching into account.

4.5 High/Low Heuristic

The high/low heuristic also depends on the current arrival period of the system.

But unlike the semi-static, this method takes the switching time into account. The

high/low can be considered the most sophisticated heuristic since it analyses every

factor of the system, including the arrival periods, switching time, processing time

and the queue length. Furthermore, we assume that the system is very stable.

In other words, jobs will arrive at a constant state of λhigh or λlow while the job

duration had the fixed value of µ.

Basically, the high/low heuristic is based on the job processing speed to estimate

the average time when the job is finished. If the system did no switching, then it

is trivial to estimate the time that the jobs were finished. On the other hand, if

the system decided to switch on more servers, then after the switching time, the

processing speed would increase and the time would be shortened. On the contrary,

the processing speed would be slowed down and the time would increase if the

system switched off servers.

Assuming there was no switching and the current number of working servers is

kup, then the jobs are processed with the speed of
kup
µ . If there are j jobs in the

system and the arrival rate is λ, then the average decreasing rate of the queue length

should be s =
kup
µ − λ. Therefore, the finished time for those jobs is t = j/s. Since

the queue is assumed to be processed at a constant rate, the estimated efficiency

can be calculated as follows:

Eeff = Kdowncpowt−
j

2
cjobt(6)

With similar approach, we can also calculate the efficiency when the system

decides to switch servers on or off. The switching also includes the servers that are

currently in powering up or powering down mode. In this case, the process can be

divided into two different phases: before and after the switching time t′. Assuming

at time t′ the number of jobs was reduced to j′ and the numbers of servers up and

down were k′up and k′down accordingly. Then j′ can be calculated as j′ = j−(s/jup)

or j′ = j−(s/tdown) depending on the type of the switching. After that equation (6)

can be used again to estimate the after-switching efficiency E′eff with j′ jobs and

k′up working servers. On the other hand, the before-switching phase is estimated

using the initial values. Then the total efficiency of the whole process should be:

Eeff = kdowncpowt′ −
j + j′

2
cjobt′+ E′eff − Cswitch(7)

Where Cswitch is the switching cost, calculated as (kup − k′up)cpowUp for switching

on and (k′up−kup)cpowDown for switching off. Subsequently, the process is repeated

for every possible switching to choose an optimal outcome.

The high/low is a sophisticated heuristic which measures the performance along

with the stability of the system. However, due to the complexity of the calculation,

this method may require much more processing resource in comparison to others.

Furthermore, as the high/low heuristic makes decisions based on the arrival period,

it faces the same problem as the semi-static when the arrival periods were short and

erratic.

8

Nguyen et al

4.6 Average Flow Heuristic

The average flow heuristic uses the same method of calculating the energy efficiency

as the high/low heuristic. The only difference between them is instead of two types

of arrival periods, this heuristic averages out the high and low arrival rate into a

single one:

λ =
ξλhigh + ηλlow

ξ + η
(8)

The rest of the analysis is similar to equations (6) and (7). By having a single

arrival rate, the average flow heuristic resolves the weakness of the high/low heuristic

when the durations of periods were very short. This means the average flow is more

stable and required fewer switchings. However, it cannot keep up with a long high

arrival period as well as the high/low heuristic.

5 Experimental results

A simulation for a data centre model was implemented using Java JDK. It used

an additional library of JFreeChart [19] to display the real-time running of the

system, along with the statistical results. From this experiments were undertaken

to better understand the performance of the various heuristics introduced above.

Each simulation run lasted 10000 units of (simulated) time, and the costs were

calculated from an average of 50 runs.

First, the heuristics were compared in a system with different levels of high

arrival rate. Second, we simulated a scenario in which the ratios between the job

holding cost and the cost for servers to staying off were varied. The results also

indicated a significant improvement of the threshold heuristic over the idle heuristic.

In addition, an erratic system with short duration of both high and low arrival rates

explained the necessity of policies that are independent on what the current arrival

period is. Furthermore, a scenario in which the server powering time was changed

from low to high was also investigated. Finally, a chart of total faults among policies

was displayed to explain why a stable heuristic is always preferable.

Note that the average costs in the figures below were the energy efficiency indexes

of the data centres and not the energy consumptions. Those are only relative

numbers that rate the performances and compares between heuristics, which means

a negative value does not denote that there is no improvement in the data centre.

5.1 Increased Bursts

This experiment is one of the most common situations in practice when the duration

of the high arrival period is relatively small in comparison with the duration of

the low period. The system contained N = 90 servers with the average request

processing time µ = 3. The arrival rate in the low period was λlow = 10, while the

high arrival rate increased from 10 to 30 which made the utilization 100% at the

highest peak. Durations of the low and high periods had a mean value of 100 and

10 respectively. The benefit of a server staying down was 1 while the job holding

cost was 2. These relative values indicated that having a job in the queue was twice

as expensive as having a server powered up. There was also a 0.05% rate of faults

9

Nguyen et al

with the cost for each fault being 10, which slightly decreased the performance of

the heuristics with high level of switching. Finally, the switching of servers up and

down was considered with a cost of 3, while powering servers took 1 unit of time.

Fig. 1. The effect of increasing arrival intensity on heuristic performance

Figure 1 displays the performance of the heuristics with the setting of all-servers-

on as a baseline cost, which clearly has the worst efficiency overall. However, as

the high arrival rate kept increasing, the efficiency of the static allocation heuristic

would eventually decrease to that of all-servers-on (since the static allocation will

be all the servers). In certain occasions when the high period lasted longer than

expected, the number of powered up servers would not be able to keep up with the

increasing request, followed by an exceeding big jobs queue. On the other hand, the

idle heuristic also performed badly in comparison with the rest policies. This was

the most basic choice for a heuristic, but it involves too much switching which lleads

to a high energy cost and higher occurrence of faults. As an improvement from the

idle heuristic, the threshold heuristic with a threshold of 3, which was expected

to have less switchings, showed a significantly better performance with its average

costs always staying about 5 units beyond the cost of the former policy. On the

other hand, the performance of the last three heuristics was quite remarkable with

semi-static being the best policy because of its stability. It was also understandable

that the semi-static and high/low heuristics, which made distinctive decisions for

each arrival period, tended to perform better than other methods in the latter half

of the chart when the gap between arrival rates of high and low periods was bigger.

This scenario was one the most common situation in practice, when high periods

10

Nguyen et al

only occurred at certain times of day. Out of the six heuristics, four performed quite

well in this situation; however it was not enough to determine their performances

and other characteristics would have to be taken into consideration in the later

experiments.

5.2 Changing Cost Difference

While the last experiment focused on data centres whose priorities involved pro-

cessing jobs quickly than having a server powered down to save energy, there are

also systems which preferred to have their servers staying down until a certain level

of jobs stacked up in the queue. Therefore, this section concentrates on the differ-

ence between the job holding cost and the benefit of servers powered off. Here the

system contains 50 servers with mean request processing time µ = 3. The other

numbers were mostly the same as the last experiment, but the high and low arrival

rates were 5 and 20, respectively. Additionally, the job holding cost had a value

of 5, while the power saving of a server staying down was increased from 1 to 10,

which indicated the priority of powering a server off in comparison with the need of

quickly processing a job, from very low to very high priority.

Fig. 2. The effect of increasing power cost on heuristic performance

As described in the previous section, the static allocation method performes

worse when there is a big difference between high and low arrival rates. Except for

the average flow policy, the other methods performed quite well with the threshold

heuristic being slightly ahead of others. The idle heuristic also had a high result

since its biggest disadvantage, the cost of powering servers on and off, is not sig-

nificant enough in comparison with the job holding cost and the increased server

11

Nguyen et al

off saving. On the other hand, the threshold heuristic with a threshold of 3 per-

forms exceedingly well as the server off benefit grew. This method is well balanced

between making servers stay down with its threshold and still keep up with the in-

creasing requests. Apart from that, the average flow policy, while averaging out the

high and low period, had a noticeable lower performance than others. Its behaviour

was somehow similar to the static allocation heuristic when the disadvantage was

caused by prolonged high arrival periods.

5.3 The Threshold Heuristic

Since the last two experiments showed a significant improvement of the threshold

heuristic over the idle heuristic, this section considered those two separately from

other methods to have a more clearly view of the pros and cons of the threshold

method.

In this case a system with 50 servers was measured with a high arrival rate of

30 jobs per unit time and a low arrival rate of 5 jobs per unit time. The server off

saving was 8 while the job holding cost was 10, which indicated that processing jobs

quickly was given slightly more priority than saving power. The cost of powering

servers on and off was accumulating from zero to 10 to show the changes of the two

heuristics in comparison with each other. Furthermore, the threshold was set to be

5 to make the result easier to distinguish.

Fig. 3. The effect of increasing switching costs on threshold and idle heuristic performance

Not surprisingly, the idle heuristic had a better figure in the first part of the

chart. Since the cost of turning servers on and off was notably lower than other

costs, the advantage of threshold over idle heuristic was not significant enough. As

12

Nguyen et al

the power-ing cost grown bigger, the threshold also showed its strong point and

clearly surpassed the idle heuristic. It was also clear that the threshold was not

always a good choice over the idle policy. For data centres which had a slow arrival

rate of request but long mean processing time, servers would prefer to be turned

on intermediately instead of waiting for the jobs queue to pass the threshold, which

was likely to take a long time.

5.4 Changing Period Duration

In the previous scenarios, the high/low and semi-static heuristics displayed an im-

pressive performance. The main common point of those two methods is that they

both handled the high and low arrival periods separately. However, there are also

systems in which those methods do not work that well. In the case when the du-

rations of periods are very short, the erratic system may move to the next period

before the decision of this period took effect, which may lead to unnecessary switch-

ing. Therefore, policies which calculate the average requests arrival might be more

suitable. This experiment was designed to display such a case. The system was set

up just like the first scenario with 90 servers with a high arrival rate of 25. The

high arrival period lasted 10 units of time while the low arrival period was varied

from 10 to 100 units of time, which moved from a very erratic data centre with

short period durations to a more stable one.

Fig. 4. The effect of increasing arrival duration on heuristic performance

The beginning of the chart displayed a considerable advance of the static allo-

cation and average flow heuristics over the semi-static and high/low heuristics. As

13

Nguyen et al

the first two methods made decisions based on the average flow of requests, which

is less dependent on what period the data centre is currently in, they gain a big

advantage when the duration of low and high periods are not too much different.

This situation changed in the latter half of the chart when the low period duration

increased and the two period-distinct policies regain their value. In addition, the

naive policy of the idle heuristic also worked quite well when the system was erratic,

while the threshold continued its good performance by being the best heuristic most

of the time.

5.5 Changing Switching Time

In this scenario, the case of systems with different server powering time was investi-

gated. This experiment was designed to simulate situations when a data centre

need to handle small requests which require only a short processing duration, while

turning servers on would require a longer time. The system was based on the data

centre in the first experiment with 90 servers. The average service duration take 5

units of time, while the time of powering servers varied from 1 to 10.

Fig. 5. The effect of increasing switching time on heuristic performance

As the server powering time increased, the performance from most heuristic

gradually decreased, except for the static allocation method, since this heuristic

did not need to turn on any more servers. The semi-static policy also made it

decision without concerning about the powering time. Regardless of powering time,

this method would behave the same. However, this heuristic still need to power

servers on and off be-tween periods, which made semi-static the worst heuristic

when the powering time passed 9 units. On the other hand, the idle and threshold

policies decreasing patterns were quite similar with the threshold always performs

14

Nguyen et al

better than its predecessor. As the switching time grew longer, more requests would

have to wait before being pro-cessed. On the contrary, the high/low and average

flow heuristic did take the switch-ing time into consideration, which gave them the

best figures above all. However, as the switching time kept increasing, they would

eventually be surpassed by the stabil-ity of the static allocation policy.

This scenario may not have much use in practice, when the switching time is

often insignificant compared to the duration of requests. However, it did point out

the prob-lem within semi-static heuristic that this method did not calculate the

switching time. As semi-static being one of the most well performed heuristic in the

last experiments, an enhancement regarding this problem would be really useful for

further practices.

5.6 The Fault Rate

One of the most important factors when considering the performance of a system

is its consistency. It is also true with data centres. In this case, the consistency

denoted the ability to avoid unnecessary switching, which tended to trigger faults.

The system in Section 6.1 was measured again to get the average number of faults

for each heuristic after a loop of 10000 units of time and 50 runs, while the fault

rate of switching was calculated with a probability of 0.1%.

Fig. 6. The effect of increasing arrival intensity on fault rate

Obviously, the static allocation heuristic had the fewest faults above all, since

this heuristic did not require any switching except for the initial powered on servers

at the start of the system. On the other hand, it was understandable that the

threshold and idle heuristics had the largest numbers of faults, as those two meth-

ods kept turning servers on and off to keep up with the length of the jobs queue.

Moreover, the semi-static and high/low policies had quite a low level of faults, while

15

Nguyen et al

the average flow method performed the most surprisingly with its number stayed as

small as the static allocation method when the high arrival rate was low. The mean

reason for the con-sistency of the average flow method was that this heuristic had a

single average arrival rate, so its switching decision did not fluctuated between high

and low periods like the last two heuristic.

As consistency being an indispensable factor for all systems, the number of

switch-ing and faults will need to be taken into consideration when choosing a

suitable heuristic for a data centre. The threshold policy, which had performed

very well in the last experiments, may not be that impressive choice of a heuristic

regarding its high number of switching.

5.7 Summary

From the experiments above, it is to be concluded that the idle heuristic is generally

a poor choice of a policy. But it does not mean that this heuristic will perform badly

in every situation. As an enhancement of the idle heuristic, the threshold heuristic

showed some encouraging potential, however its high level of switching had become

a great drawback. The static allocation method also did not perform well, since

it preferred doing nothing over turning servers on, but that is also the reason why

it has such high stability. The semi-static, high/low and average flow heuristics

all have their own strengths and weaknesses which can be adapted for different

situations. Especially in the case of the semi-static heuristic, if it could fix the

problem of neglecting the switching time, this would be a really promising policy.

Last but not least, as a stable system is always preferable, the consistency of the

heuristics should be taken into account when considering their effectiveness.

There is clearly no best heuristic which suits every situation, as each heuris-tic

works well in a specified situation and worse in others. There are many factors

affecting the performances of the heuristic, including the differences between arrival

rates and time, the length of switching time, the number of faults, etc. Since there

is always a trade-off between performance and energy saving, it is the job of data

cen-tres operators to find out the balance between them and to decide what policy

is the most suitable for each specified data centre. Furthermore, there is even the

possibility of having many policies for a single data centre, which can switch between

different heuristics for different situation.

6 Conclusions

In this paper we have explored a model with multiple servers servicing an input

stream of jobs. In order to limit the power consumption we allow servers to turn

off and on according to demand. We have extended previous work in this area by

considering the possibility that servers can fail whilst turning off or on. The costs

of providing servers, holding jobs and failures have been incorporated into a new

cost function which allows the performance of the system to be better understood.

We have proposed six heuristics for constructing a policy to manage the servers

turning off and on and we have compared these numerically through a custom-built

simulation. The simulation has been run with a number of scenarios to consider

different operating conditions. The results of the simulation show that several of

16

Nguyen et al

the heuristics are capable of performing well under certain conditions, but there is

no single heuristic that we can claim is always best. This suggests that one line

of future work might be to consider an environment which is capable of employing

multiple heuristics to obtain a better performance under more conditions.

Our approach here has a number of limitations. Firstly we have only considered

delays which are negative exponentially distributed, whereas in reality this may not

be the case. Given that we are simulating the model, there is no real reason why

we could not consider general distributions to better understand the effects that

different distributions might have on system performance. We have also assumed

that all servers are identical, whereas in practice this may not be the case. Not only

would different servers have different processor speeds, but they would conceivably

have different energy consumptions. It would be feasible and interesting to model

more than one type of server and to consider, for example, the impact of utilising

N fast but energy inefficient servers or M slower but more efficient ones.

References

[1] Jarvis, A., Thomas, N., and van Moorsel, A., Open issues in grid performability. International Journal
of Simulation, 5(5):312, 2004.

[2] Brown, R., Report to congress on server and data center energy efficiency: Public law 109-431. Lawrence
Berkeley National Laboratory, 2008.

[3] Bertoldi, P., and Anatasiu, B., Electricity Consumption and Efficiency Trends in European Union
Status Report 2009.

[4] Creeger, M. (2009). Cloud Computing: An Overview. ACM Queue, 7(5), 2.

[5] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, Y., Konwinski, A., and Zaharia, M. (2009).
M.: Above the clouds: A Berkeley view of cloud computing.

[6] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., and Zaharia, M. (2010).
A view of cloud computing. Communications of the ACM, 53(4), 50-58.

[7] Slegers,J., Thomas N., and Mitrani, I., Dynamic server allocation for power and performance. In
Performance Evaluation: Metrics, Models and Benchmarks (pp. 247-261). Springer, 2008.

[8] Slegers,J., Thomas N., and Mitrani, I., Static and dynamic server allocation in systems with on/off
sources. Annals of Operations Research, 170(1), 251-263, 2009.

[9] Chase, J.S., Anderson, D.C., Thakar, P.N., Vahdat, A. M., Doyle, R. P. (2001, Octo-ber). Managing
energy and server resources in hosting centers. In ACM SIGOPS Operating Systems Review (Vol. 35,
No. 5, pp. 103-116). ACM.

[10] Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., and Wood, T. (2008). Agile dynamic provisioning
of multi-tier internet applications. ACM Transactions on Autonomous and Adaptive Systems (TAAS),
3(1), 1.

[11] Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., and Zhao, F. (2008, April). Energy-Aware
Server Provisioning and Load Dispatching for Connection-Intensive Internet Ser-vices. In NSDI (Vol.
8, pp. 337-350).

[12] Artalejo, J. R., Economou, A., and Lopez-Herrero, M. J. (2005). Analysis of a multiserver queue with
setup times. Queueing Systems, 51(1-2), 53-76.

[13] Gandhi, A., Harchol-Balter, M., and Adan, I. (2010). Server farms with setup costs. Perfor-mance
Evaluation, 67(11), 1123-1138.

[14] Mitrani, I. (2013). Managing performance and power consumption in a server farm. An-nals of
Operations Research, 202(1), 121-134.

[15] Yang, J., Zeng, K., Hu, H., and Xi, H. (2012). Dynamic cluster reconfiguration for energy conservation
in computation intensive service. Computers, IEEE Transactions on, 61(10), 1401-1416.

17

Nguyen et al

[16] Dembo, A., and Zeitouni, O. (1998). Large deviations techniques and applications (Vol. 2). New York:
Springer.

[17] Maccio, V. J., and Down, D. G. (2013, August). On optimal policies for energy-aware servers. In
Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), 2013
IEEE 21st International Symposium on (pp. 31-39). IEEE.

[18] Kleinrock, L. (1975). Queueing systems, volume I: theory.

[19] http://www.jfree.org/jfreechart/

18

	Introduction
	Energy Efficiency in Cloud Computing
	Energy Efficiency Modelling
	Profiling
	Metrics

	Energy-Aware Profiling
	Proposed System Architecture
	Illustration

	Early Exploration
	Experiment 1
	Experiment 2

	Conclusion and Future Work
	References
	References
	Introduction
	Leader and Follower Scenarios
	PALOMA
	Scenario 1: Passive Followers
	Scenario 2: Active Followers
	Scenario 3: Multiple Followers

	Performance Measures
	Performance measures of the Leader-Follower Scenarios
	Basic measures
	Derived measures
	Temporal distance measures
	Multiple followers

	Conclusions and future work
	References
	Introduction
	Model components
	House
	Demand
	Weather
	Solar Panel
	Battery
	Pricing Module
	Neighbourhood

	Simulation studies
	Set-up
	Neigbourhood level
	Residential level

	Related Work
	Conclusion
	References
	Introduction
	The value of data visualisation
	Visualisation of single bus trajectories
	Visualisation for collective systems

	Isolating errors in data
	Visualising headway
	Spatial separation of service instances

	Headway-based service-level agreements
	Determining satisfaction of service-level agreements

	Related work
	Conclusions
	References
	Introduction
	Preliminaries
	Parallel Queueing Systems
	Performance Metrics

	Method
	Calculating subtask dispersion in dynamic split merge system
	Deterministic 2 server example
	Exponential 2 server example
	Fork-join systems

	Results
	Existing methods from previous publications
	New methods presented in this paper

	Conclusions
	References
	Introduction
	Background
	PEPA
	Capacity Planning

	Case Study
	The Model
	Performance Measure
	Capacity Planning
	Results
	Brute Force Comparison

	Future Work
	Conclusion
	References
	Introduction
	Related Work
	The Model
	Switching Policies
	Static Allocation Heuristic
	Semi-static Allocation Heuristic
	Idle Heuristic
	Threshold Heuristic
	High/Low Heuristic
	Average Flow Heuristic

	Experimental results
	Increased Bursts
	Changing Cost Difference
	The Threshold Heuristic
	Changing Period Duration
	Changing Switching Time
	The Fault Rate
	Summary

	Conclusions
	References

