
Using ODEs from PEPA models to derive
asymptotic solutions for a class of closed queueing

networks
Nigel Thomas

School of Computing Science, Newcastle University, UK
Email: Nigel.Thomas@ncl.ac.uk

Abstract—In this paper a class of closed queueing network
is modelled in the Markovian process algebra PEPA. It is
shown that a fluid flow approximation using ordinary differential
equations (ODEs) gives rise to well known asymptotic results.
This result gives context to the use of a fluid flow approximation
and is potentially useful in cases where the model is not obviously
a closed queueing network. The approach is illustrated using
examples of a secure key distribution centre and a multi-user
query processing system.

I. I NTRODUCTION

Since the introduction of stochastic process algebra, there
have been many attempts to tackle the state space explo-
sion problem caused by the composition of many parallel
components (see [10] for example). One of the more recent
approaches to the issue has been the introduction of fluid
flow approximations from systems biology to tackle models
where there is a large number of instances of a particular
component. Such an approach gives rise to a system of
ordinary differential equations, which are generally solved
by simulation. Following original work by Hillston [11] on
biological systems, this style of fluid approximation has also
been applied to more traditional computer applications e.g. [5],
[17]. However, this approach has met with some scepticism
amongst some computer scientists for a number of reasons.
The main criticism is that the approximation maps a stochastic
model specification on to a deterministic representation, thus
the intrinsic randomness of the system is lost. In addition it can
be difficult to derive important computer performance mea-
sures such as utilisation (because the fluid is always flowing)
and interpreting the behaviour of a continuous fragment of a
component does not always make sense. For a full description
of the application of fluid approximations to PEPA models,
see [2], [7], [8], [11].

In this paper we use the ODE approach to derive an analyti-
cal solution to a class of model, specified using the Markovian
process algebra PEPA [9]. It is shown that this solution is
identical to that used for many years as an asymptotic solution
to the mean value analysis of closed queueing networks. This
has two clear benefits.

• By relating the fluid flow approximation to established
results in queueing theory, we gain greater confidence in
the use of ODEs as a solution method.

• By deriving the ODE solution directly from the PEPA
model specification, the asymptotic results become easily
available in the analysis of models which are not obvi-
ously closed queueing networks. Thus the applicability
of the asymptotic solution is practically extended without
the need for specialist knowledge or insight on the part
of the modeller.

The paper is organised as follows. In the next section the
model and its asymptotic solution are introduced, followed
by the PEPA specification of the class of model under in-
vestigation. We show how the ODEs can be derived from
the PEPA specification and solved analytically to give the
asymptotic solution. The process is illustrated by means of
two examples; a secure key exchange protocol and a multi-
user query processing system. Finally, some conclusions are
drawn and potential future work is discussed.

II. T HE MODEL AND ITS ASYMPTOTIC SOLUTION

Consider a model of a closed queueing network ofN jobs
circulating aroundM service stations, denoted 1 toM ; each
station is either a queueing station or an infinite server station.
There areMq queueing stations. At each queueing station,i,
there is an associated queue (bounded atN) operating a FCFS
policy and Ki servers which serve jobs at rateri. At each
infinite server station,j, jobs experience a random delay with
mean1/rj . All services are negative exponentially distributed.
Let M = {1, 2, . . . , M} be the set of all queueing stations.

Queueing models of this form have traditionally been solved
using mean value analysis [14]. However, this solution be-
comes costly whenN is large and so a number of approxima-
tions have been proposed. The simplest amongst these is the
asymptotic bound (see Haverkort [6] pp. 245-247).

DefineVi to be the visit count, the ratio of visits made to
station i relative to station 1 (henceV1 = 1). Now consider
the smallest possible population size,N = 1. This solitary job
would find each queue empty and experience a delay of1/ri

at each stationi at each visit. Hence, the average number of
jobs at stationi whenN = 1, Li(1), is given by the proportion
of time a job spends there. Similarly, whenN > 1 but still
small, a job entering a station has a high probability that there
will be at least one idle server, hence the delay at stationi is
still approximately1/ri. The sum of all average queue lengths

49

must beN , hence,

Li(N) ≥
NVi

ri

∑M
j=1

Vj

rj

(1)

Now consider the case whenN is very large. Assume that
there is one queueing station with less service capacity than
all the other queueing stations, denoted byi = 1. Obviously
as N → ∞ the utilisation of this bottleneck station will
approach 1 and its throughput will tend toK1r1, i.e. it
becomes saturated. Obviously, the throughput must balance
across all stations, hence,K1r1 = ViLiri ∀i ≥ 2. Thus,

Li(N) =
K1r1

Viri
, i ≥ 2 (2)

The sum of all queues must equalN , hence

L1(N) ≤ N −
M
∑

i=2

K1r1

Viri
(3)

Thus, for station 1 the approximate average queue length
when the population size isN is given by

Max

[

N

r1

∑M
i=1

Vi

ri

, N −

M
∑

i=2

K1r1

Viri

]

And for all other stations,i, the approximate average queue
length when the population size isN is given by,

Max





NVi

ri

∑M
j=1

Vj

rj

,
K1r1

Viri





Clearly a very simple approximation for the average re-
sponse time has been used to make this calculation for average
queue length. However, if our goal is to find the average
response time when the population size isN , W (N), a much
better estimate can be found by combining this approximation
for Li(N−1) with the mean value analysis estimation to give,

W1(N) =
1

r1
+

1

r1
Max

[

N − 1

r1

∑M
i=1

Vi

ri

, N − 1−

M
∑

i=2

K1r1

Viri

]

(4)
and,

Wi(N) =
1

ri
+

1

ri
Max





(N − 1)Vi

ri

∑M
j=1

Vj

rj

,
K1r1

Viri



 , 2 ≤ i ≤ M

(5)
This is essential a single step of the mean value analysis
algorithm (theN th step) with all previous steps replaced by
the asymptotic approximation. The total average respone time,
that is the average time from leaving node 1 to subsequently
completing another service at node 1, can be found by sum-
ming Wi(N) over all nodes,i.

It is a simple matter to consider the case where there is
more than one bottleneck, although this is not a concern in this
paper. Clearly these two sets of asymptotic results are most
accurate at their extremes, i.e. whenN = 1 or asN → ∞.
Thus the asymptotic solution is least accurate when the two

curves forLi meet. There are a number of other approxi-
mations and enhancements which seek to improve accuracy
and applicability without the additional computational cost
associated with mean value analysis.

This form of simple approximation is generally applied
across the entire network to derive measures such as system
throughput and response time. However, it may also be ap-
plied to single nodes as outlined above. In such situations
the accuracy of the approximation is greatly variable. The
approximation generally works well when queueing only has
a significant effect at one station. This situation arises when
there is only one queueing station (the remainder being infinite
service stations) or where one queueing station has much less
service capacity than the others, relative to load.

III. A CLASS OF CLOSED QUEUEING NETWORKS INPEPA

The model introduced in Section II is now modelled in
PEPA. Clearly there are many possible ways to model this
system and the particular form of the PEPA model here is a
design choice. In particular, the model has been specified in
such a way that the ODEs can be derived easily (without fur-
ther transformation) and all behaviours are named, to improve
clarity.

In PEPA a queue station can be modelled as

QStationi
def
= (servicei, ri).QStationi , ∀i ∈M

The infinite server stations are not represented explicitly.
Each job will receive service from a sequence of stations

determined by a set of routing probabilities,

Jobi
def
=

M
∑

j=1

(servicei, Pij(i)ri).Jobj , 1 ≤ i ≤ M

Where,
M
∑

j=1

Pij(i) = 1 , 1 ≤ i ≤ M

The entire system can then be represented as follows:
(

∏

∀i∈M

QStationi[Ki]

)

⊲⊳
L

Job1[N]

WhereL is the set of all action typesservicei wherei ∈M.
The ODEs for such a system are relatively simple to derive

directly:

d

dt
Jobi =

∑

∀j /∈M

Pji(j)rjJobj(t)

+
∑

∀j∈M

Pji(j)rj min[Kj, Jobj(t)]

−riJobi(t) , ∀i /∈M

d

dt
Jobi =

∑

∀j /∈M

Pji(j)rjJobj(t)

+
∑

∀j∈M

Pji(j)rj min[Kj, Jobj(t)]

−min[Ki, Jobi(t)]ri , ∀i ∈ M

50Using ODEs from PEPA models to derive asymptotic solutions for a class of closed queueing networks

ODEs such as these can be solved in a number of ways.
Most commonly they would be simulated with a suitably small
time step to findJobi(t). In general, this quantity tends to a
constant value ast →∞, i.e. it has a steady state solution.

An alternative method for findinglimt→∞ Jobi(t) is to
solve the ODEs analytically. Such a solution is based on the
assumption that the system of ODEs will eventually reach a
steady state. Thus the derivatives will tend to zero ast tends
to ∞, i.e.

lim
t→∞

d

dt
Jobi → 0 , 1 ≤ i ≤ M

This gives rise to the following set of simple simultaneous
equations:

lim
t→∞

∑

∀j /∈M

Pji(j)rjJobj(t)

+
∑

∀j∈M

Pji(j)rj min[Kj, Jobj(t)]

= lim
t→∞

riJobi(t) , ∀i /∈ M

lim
t→∞

∑

∀j /∈M

Pji(j)rjJobj(t)

+
∑

∀j∈M

Pji(j)rj min[Kj, Jobj(t)]

= lim
t→∞

ri min[Ki, Jobi(t)] , ∀i ∈M

There areM equations, but each equation can be expanded
(with respect tomin function) in up to2Mq ways.

Define the probability that a component will evolve from
Jobi to Jobj , without revisitingJobi, as follows:

Pij(i) = pij +
∑

∀k/∈σ

pikPkj(i)

Clearly the system is irreducible if

Pij(i) > 0 ∀i, j , i 6= j

DefineLi to be the steady state average number of compo-
nents behaving asJobi, given by

Li = lim
t→∞

Jobi

Now selecti ∈ M such that1

Pij(i)riKi < Pji(j)rjKj ∀j ∈M , j 6= i (6)

Hence,

• If Ki ≤ Li then

Pij(i)riKi = Pji(j)rjLj , ∀j (7)

• If Ki > Li then

Pij(i)riJobi = Pji(j)rjLj , ∀j (8)

1If (6) does not hold then there is no unique solution for this fluid system
except whenN is very small. Instead the value ofLi will depend on the
initial valuesJobi(0) ∀i.

Thus, if Ki ≤ Li then

Lj =
Pij(i)riKi

Pji(j)rj
, ∀j 6= i (9)

Li = N −
∑

∀j 6=i

Lj = N −
∑

∀j 6=i

Pij(i)riKi

Pji(j)rj
(10)

Otherwise, ifKi ≥ Li then

Lj =
Pij(i)ri

Pji(j)rj
Li , ∀j 6= i (11)

Li = N −
∑

∀j 6=i

Lj =
N

1 +
∑

∀j 6=i
Pij(i)ri

Pji(j)rj

(12)

Clearly (10) and (12) meet whenKi = Li. This point is
given by the population sizeN = N∗, given by

N∗ = Ki



1 +
∑

∀j 6=i

Pij(i)ri

Pji(j)rj





Thus, if N ≤ N∗ then

Lj =
Pij(i)ri

Pji(j)rj
Li , ∀j 6= i (13)

Li = N −
∑

∀j 6=i

Lj =
N

1 +
∑

∀j 6=i
Pij(i)ri

Pji(j)rj

(14)

Otherwise, ifN ≥ N∗ then

Lj =
Pij(i)riKi

Pji(j)rj
, ∀j 6= i (15)

Li = N −
∑

∀j 6=i

Lj = N − riKi

∑

∀j 6=i

Pij(i)

Pji(j)rj
(16)

Clearly, the visit count is given byVi = Pij(i)/Pji(j).
Hence (13), (14), (15) and (16), are equivalent to (1), (2) and
(3). Observe also that (13) and (14) hold, with arbitraryi,
regardless of the existence of (6) as long asLj ≤ Kj ∀j.

From these expressions forLj we can derive the average
response time at stationj when the population size isN ,
Wj(N) in the same was as 4 and 5.

Wj(N) =
1

rj
, Lj(N − 1) + 1 ≤ Kj

Wj(N) =
Lj(N − 1) + 1

Kjrj
, Lj(N − 1) + 1 > Kj

WhereLj(N) is the average number of jobs at stationj when
the population size isN . This computation forWj(N) is based
on the queueing theory result of an arrival as random observer,
see Mitrani [12] page 141 for example. If the random observer
sees a free server, then the average response time will be the
average service time. However, if the random observer sees all
the servers busy, then the average response time will be the
average service time plus the time it takes for one server to
become available (including scheduling the other jobs waiting
ahead of the random observer).

Nigel Thomas 51

In addition we can derive an expression for utilisation at the
bottleneck queueing stationi, Ui, based on the flow into the
station being equal to the available service.

Ui =
∑

∀j 6=i

Pji(j)Lj

rjKiri

IV. EXAMPLE 1: A SECURE KEY DISTRIBUTION CENTRE

Consider a model of the classic Needham-Schroeder key
distribution protocol (taken from [19]) specified as follows:

KDC
def
= (response, rp).KDC

Alice0
def
= (request, rq).Alice1

Alice1
def
= (response, rp).Alice2

Alice2
def
= (sendBob, rB).Alice3

Alice3
def
= (sendAlice, rA).Alice4

Alice4
def
= (confirm, rc).Alice5

Alice5
def
= (usekey, ru).Alice0

The system is then defined as:

KDC[K] ⊲⊳
response

Alice0[N]

Where,K is the number ofKDC’s and N is the number of
client pairs (Alices’s).

It is a simple matter to write down the ODEs for this system
as follows.

d

dt
Alice0 = ruAlice5(t)− rqAlice0(t)

d

dt
Alice1 = rqAlice0(t)− rp min(KDC(t), Alice1(t))

d

dt
Alice2 = rp min(KDC(t), Alice1(t))− rBAlice2(t)

d

dt
Alice3 = rBAlice2(t)− rAAlice3(t)

d

dt
Alice4 = rAAlice3(t)− rcAlice4(t)

d

dt
Alice5 = rcAlice4(t)− ruAlice5(t)

d

dt
KDC = 0

In this analysis we are interested primarily in the number
of client pairs awaiting a response from theKDC (or KDC’s)
from a population of sizeN , which we denote asL(N) This is
represented in the model by the number ofAlice1’s; L(N) =
limt→∞ Alice1(t) when there areN client pairs (Alice’s) in
the population.

If the system reaches a steady state then all the derivatives
will tend to zero ast tends to∞, i.e.

lim
t→∞

d

dt
Alicei → 0 , 0 ≤ i ≤ 5

Hence,

lim
t→∞

rp min(KDC(t), Alice1(t)) = lim
t→∞

rBAlice2(t)

= lim
t→∞

rAAlice3(t)

= lim
t→∞

rcAlice4(t)

= lim
t→∞

ruAlice5(t)

= lim
t→∞

rqAlice0(t)

Thus we only need to solve this set of simple parallel
equations to findL(N). If KDC(t) ≥ Alice1(t) then the
ODEs give rise to

L(N) = lim
t→∞

Alice1 =
Nrx

rx + rp
(17)

If KDC(t) ≤ Alice1(t) then the ODEs give rise to

L(N) = lim
t→∞

Alice1 =
Nrx −Krp

rx
(18)

Whererx is given by

rx =

(

1

rq
+

1

rB
+

1

rA
+

1

rc
+

1

ru

)−1

(19)

(17) and (18) meet whenKDC(t) = Alice1(t) for a given
population sizeN∗, hence, with (19) we get,

N∗ = K +
Krp

rx
= K + Krp

(

1

rq
+

1

rB
+

1

rA
+

1

rc
+

1

ru

)

Figure 1 shows the average response time of theKDC, found
approximately using (17) and (18) and computed exactly using
mean value analysis [16]. Clearly, when the service rate is
smaller, the response time is larger and its rate of increaseis
larger. As noted above, there is a difference between the two
solutions aroundN∗, which is clearly evident.

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N

WKDC

MVA, rp=1

MVA, rp=2

MVA, rp=4

ODE, rp=1

ODE, rp=2

ODE, rp=4

Fig. 1. Average response time at theKDC varied with population size
(rq = rB = rA = rc = 1, ru = 1.1, K = 1)

52Using ODEs from PEPA models to derive asymptotic solutions for a class of closed queueing networks

Figure 2 shows the average queue length at theKDC, LKDC

for this system when there is either one fast server orK slower
servers. When the population size is large (N > 30 in this
case) theKDC becomes saturated and there is consequently
no difference in the service rate offered between the two cases
shown. However, whenN is smaller, there will be periods
where one or more of theK servers will be idle, thus reducing
the overall service capacity offered. Hence, for smallerN ,
a single fast server will out perform multiple slower servers
with the same overall capacity. Once again, there is a clear
divergence aroundN∗.

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

N

LKDC

MVA: K=1, rp=4

ODE: K=1, rp=4

MVA: K=4, rp=1

ODE: K=4, rp=1

Fig. 2. Average queue length atKDC varied with population size (rq =
rB = rA = rc = 1, ru = 1.1)

V. EXAMPLE 2: A MULTI -USERQUERY PROCESSING

SYSTEM

Consider the following PEPA specification of a classic
model taken from Lazowska et al [13].

Proc
def
= (service, µ).P roc

Disk
def
= (write, η).Disk

User1
def
= (think, ξ).User2

User2
def
= (service, pµ).User1

+(service, (1− p)µ).User3

User3
def
= (write, η).User1

The entire system is then specified as

(Proc||Disk[K])
⊲⊳

{
service,

write }
User1[N]

This system depicts a processor and an array ofK inde-
pendent disks. Users request a service from the processor.
After this they either think for a while, before making another

request, or their result requires writing to a disk before
thinking and then another request.

The ODEs are given as

d

dt
User1(t) = pµ min[1, User2(t)]

+η min[K, User3(t)]

−ξUser1(t)
d

dt
User2(t) = ξUser1(t)− µ min[1, User2]

d

dt
User3(t) = (1 − p)µ min[1, User2(t)]

−η min[K, User3(t)]

If the system reaches a steady state then all the derivatives
will tend to zero ast tends to∞, i.e.

lim
t−→∞

d

dt
Useri −→ 0 , 0 ≤ i ≤ 5

DefineLi = limt−→∞ Useri to be the steady state average
number of users at each point in the system. Hence,

pµ min[1, L2] + η min[K, L3] = ξL1

ξL1 = µ min[1, L2]

(1 − p)µ min[1, L2] = η min[K, L3]

There are two possible bottlenecks in this system If(1 −
p)µ < Kη then the bottleneck is the processor.
• If 1 ≤ L2 then

L1 =
µ

ξ

L3 =
(1 − p)µ

η

L2 = N −
µ

ξ
−

(1− p)µ

η

• If 1 ≥ L2 then

L1 =
µ

ξ
L2

L3 =
(1− p)µ

η
L2

L2 = N −
µ

ξ
L2 −

(1− p)µ

η
L2

=
Nξη

ξη + µη + µξ(1 − p)

In this case,

N∗ =
ξη + µη + µξ(1 − p)

ξη

Alternatively, if (1 − p)µ > Kη then the bottleneck is
writing to the disks.
• If K ≤ L3 then

L1 =
ηK

(1− p)ξ

L2 =
ηK

(1− p)µ

L3 = N −
ηK

ξ(1− p)
−

ηK

µ(1− p)

Nigel Thomas 53

• If K ≥ L3 then

L1 =
η

(1− p)ξ
L3

L2 =
η

(1− p)µ
L3

L3 = N −
η

(1 − p)ξ
L3 −

η

(1− p)µ
L3

=
Nξµ(1− p)

ξµ(1 − p) + ηµ + ηξ

In this case,

N∗ = K +
ηK

ξ(1 − p)
+

ηK

µ(1− p)

If (1 − p)µ = Kη then the solution will depend on the
initial values ofUser1(0), User2(0) andUser3(0), unless,

Nξη

ξη + µη + µξ
≤ 1

and,
Nξµ

ξµ + Kηµ + Kηξ
≤ K

In which caseLi is given by

L1 =
Nµη

ξη + µη + µξ

L2 =
Nξη

ξη + µη + µξ

L3 =
N(1− p)µξ

ξη + µη + µξ

Figures 3 and 4 show the average queue lengths at the
processor and the disk array for various values ofp, where
the processor is the bottleneck (Figure 3) and where the disk
array is the bottleneck (Figure 4). In both cases results are
shown as calculated by the ODE method in this paper and the
mean value analysis method from [16].

It can be seen that whenp is relatively large, the approx-
imation works well (except aroundN∗). Whereas whenp is
smaller, particularly whenp is close to0.5, it is much poorer,
and even diverging withN . It might perhaps be surprising that
the ODE and MVA results are not closer whenp = 0.1. After
all, in this scenario, most jobs will visit the disk array and
experience a long delay there. However, even whenp = 0.1
queueing effects still have an effect at the processor and this
causes a difference between the two methods.

Clearly, the accuracy of the ODE approximation of average
queue length is sensitive top. However, as stated earlier,
the asymptotic solution is generally applied across the entire
network, and not at an individual station. Therefore it is
interesting to observe the accuracy of system wide metrics.
Figure 5 shows the average response time for the entire system,
computed as

W =
M
∑

i=1

ViWi

WhereVi is the visit count andmin[V1, . . . , VM] = 1.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N

Lproc(N)

MVA, p=0.8

ODE, p=0.8

MVA, p=0.6

ODE, p=0.6

Fig. 3. Average queue length at processor and disk array varied with
population size (ξ = 10µ = 30, η = 5, K = 3)

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N

Ldisk(N)

MVA, p=0.1

ODE, p=0.1

MVA, p=0.4

ODE, p=0.4

Fig. 4. Average queue length at processor and disk array varied with
population size (ξ = 10µ = 30, η = 5, K = 3)

Clearly the system response time is much less sensitive to
the errors in the average number of jobs in each queue than
we might naively expect. Indeed, Figure 5 shows only a very
small divergence between MVA and ODE calculations, even
when p = 0.4 (the worst case in the earlier graphs). The
explanation for this is relatively simple, in that the maximum
error in predicting the queue lengths is caused when the service
capacity at each queueing station are relatively similar. Hence,
when computing the average response time, we replace a delay
at one station with a very similar delay at the other. As such,
the errors, to an extent, disappear when aggregated across the

54Using ODEs from PEPA models to derive asymptotic solutions for a class of closed queueing networks

0

1

2

3

4

5

6

7

8

9

1 5 9 13 17 21 25 29 33 37 41 45 49

N

W

MVA, p=0.4

ODE, p=0.4

MVA, p=0.6

ODE, p=0.6

MVA, p=0.8

ODE, p=0.8

Fig. 5. Average system response time varied with populationsize (ξ =
10µ = 30, η = 5, K = 3)

whole network in this way.

VI. CONCLUSIONS AND FURTHER WORK

It has been demonstrated that the fluid approximation for
a class of PEPA models coincides with the well known
asymptotic approximation for a corresponding class of closed
queueing network. This result is potentially useful as an alter-
native means for characterising models of queueing networks
specified using PEPA, particularly when the model specified
is not obviously a queueing model. This is the first class of
fluid PEPA model for which there is an explicit expression for
where the fluid solution is least accurate with respect to the
exact solution of the stochastic model. The derivation of ODEs
used in this paper is based on the work of Hillston [11] and is
incorporated into the PEPA Eclipse Plug-in [18], facilitating
easy numerical solution.

The result in this paper is limited to a class of cyclic
queueing model where each station can perform just one
action type. However, the asymptotic approximation applies
to a much wider class of model. Thus it should be possible to
extend this result to consider PEPA models with multiple com-
peting action types at eachJobi derivative, each occurring at
different rates but with the overall rate capped by aQStationj

component. In addition, the asymptotic result holds for general
service distributions, suggesting that the applicabilityof the
fluid approximation in PEPA potentially extends beyond its
conventional Markovian semantics. These investigations are
left as ongoing work.

The result here is also limited to the case where there is
a single bottleneck, unless the population is small enough
that Li ≤ Ki ∀i. It is clearly possible to easily compute the
average queue length for systems where there is more than
one bottleneck, however it is not possible to find a unique

solution directly from the ODEs, which is the aim of this
paper. Furthermore, the approximation is shown to be accurate
only when there are significant queueing effects at one station
only. This gives some further insight as to the kind of model
where ODE analysis is (in)appropriate.

ACKNOWLEDGEMENTS

The author is indebted to A. Clark, A. Duguid, S. Gilmore
and M. Tribastone of the University of Edinburgh for invalu-
able comments on earlier work which contributed to this paper,
in particular for clarifying aspects of the PEPA Eclipse Plug-
in and the apparent rate. The example of the Key Distribution
Centre is based on earlier work by Zhao and Thomas [19].

REFERENCES

[1] J. Bradley, S. Gilmore and N. Thomas, Performance analysis of Stochas-
tic Process Algebra models using Stochastic Simulation, in: Proceedings
of 20th IEEE International Parallel and Distributed Processing Sympo-
sium, IEEE Computer Society, 2006.

[2] J. Bradley, A ticking clock: Performance analysis of a Circadian rhythm
with stochastic process algebra, in: C. Juiz and N. Thomas (eds.),Com-
puter Performance Evaluation: 5th European Performance Engineering
Workshop, LNCS 5261, Springer Verlag, 2008.

[3] A. Clark, A. Duguid, S. Gilmore and M. Tribastone, Partial evaluation
of PEPA models for fluid-flow analysis, in:Computer Performance En-
gineering: Proceedings of the 5th European Workshop on Performance
Engineering (EPEW), LNCS 5261, Springer-Verlag, 2008.

[4] G. Clark and S. Gilmore and J. Hillston and N. Thomas,Experiences
with the PEPA Performance Modelling Tools, IEE Proceedings - Soft-
ware, pp. 11-19, 146(1), 1999.

[5] A. Duguid, Coping with the Parallelism of BitTorrent: Conversion of
PEPA to ODEs in dealing with State Space Explosion. in: E. Asarin
and P. Bouyer (eds.),Formal Modeling and Analysis of Timed Systems,
LNCS 4202, Springer-Verlag, 2006.

[6] B. Haverkort, Performance of Computer Communication Systems: A
model Based Approach, Wiley, 1998.

[7] Richard Hayden, Addressing the state space explosion problem for
PEPA models through fluid-flow approximation, Undergraduate Project
Dissertation, Imperial College London, 2007.

[8] R. Hayden and J. Bradley, Fluid-flow solutions in PEPA to the state
space explosion problem, ValueTools 2008.

[9] J. Hillston, A Compositional Approach to Performance Modelling,
Cambridge University Press, 1996.

[10] J. Hillston, Exploiting Structure in Solution: Decomposing Composi-
tional Models, in: E. Brinksmaet al, Lectures on Formal Methods and
Performance Analysis, LNCS 2090, Springer-Verlag, 2003.

[11] J. Hillston, Fluid flow approximation of PEPA models, in: Proceedings
of QEST’05, pp. 33-43, IEEE Computer Society, 2005.

[12] I. Mitrani, Probabilistic Modelling, Cambridge University Press, 1998.
[13] E. Lazowska, J. Zahorjan, S. Graham and K. Sevcik,Quantitative System

Performance, Prentice-Hall, 1984.
[14] M. Reiser and S. Lavenberg, Mean value analysis of closed multichain

queueing networks,JACM, 22(4), pp. 313-322, 1980.
[15] W. Stallings,Cryptography and Network Security: Principles and Prac-

tice, Prentice Hall, 1999.
[16] N. Thomas and Y. Zhao, Mean value analysis for a class of PEPA

models, in: Proceedings of 6th European Performance Engineering
Workshop, LNCS 5652, Springer-Verlag, 2009.

[17] N. Thomas and Y. Zhao, Fluid flow analysis of a model of a secure
key distribution centre, in:Proceedings 24th Annual UK Performance
Engineering Workshop, Imperial College London, 2008.

[18] M. Tribastone, The PEPA plug-in project, in:Proceedings of 4th
International Conference on the Quantitative Evaluation of Systems
(QEST), pp. 53-54, IEEE Computer Society, 2007.

[19] Y. Zhao and N. Thomas, Approximate solution of a PEPA model of a key
distribution centre, in:Performance Evaluation - Metrics, Models and
Benchmarks: SPEC International Performance Evaluation Workshop,
pp. 44-57, LNCS 5119, Springer-Verlag, 2008.

Nigel Thomas 55

