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Abstract—In this paper a class of closed queueing network
is modelled in the Markovian process algebra PEPA. It is
shown that a fluid flow approximation using ordinary differential
equations (ODESs) gives rise to well known asymptotic resust
This result gives context to the use of a fluid flow approximatn
and is potentially useful in cases where the model is not ohwiisly
a closed queueing network. The approach is illustrated usim
examples of a secure key distribution centre and a multi-uge

« By deriving the ODE solution directly from the PEPA

model specification, the asymptotic results become easily
available in the analysis of models which are not obvi-

ously closed queueing networks. Thus the applicability
of the asymptotic solution is practically extended without

the need for specialist knowledge or insight on the part
of the modeller.

uery processing system. . . .
query 9y The paper is organised as follows. In the next section the

model and its asymptotic solution are introduced, followed
by the PEPA specification of the class of model under in-

Since the introduction of stochastic process algebragthgestigation. We show how the ODEs can be derived from
have been many attempts to tackle the state space expiz PEPA specification and solved analytically to give the
sion problem caused by the composition of many para"@{;ymptonc solution. The process is illustrated by means o_f
components (see [10] for example). One of the more recdW© €xamples; a secure key exchange protocol and a multi-
approaches to the issue has been the introduction of fi{§Er Guery processing system. Finally, some conclusioas ar
flow approximations from systems biology to tackle modefdrawn and potential future work is discussed.
where there is a large number of instances of a particular
component. Such an approach gives rise to a system of |l- THE MODEL AND ITS ASYMPTOTIC SOLUTION

ordinary differential equations, which are generally sdv  consider a model of a closed queueing network\ofobs
by simulation. Following original work by Hillston [11] on ¢jrcyjating around\s service stations, denoted 1 id; each
biological systems, this style of fluid approximation hasoal gtation is either a queueing station or an infinite serveiosta
been applied to more traditional computer_appllcatlons[é]g _There arelM, queueing stations. At each queueing station,
[17]. However, this approach has met with some sceptiCifere is an associated queue (bounded poperating a FCFS
amongst some computer scientists for a number of reas icy and K; servers which serve jobs at rate At each
The main criticism is that the approximation maps a sto@hasfyfinite server station;j, jobs experience a random delay with
model specification on to a deterministic representatibus t mean /r;. All services are negative exponentially distributed.
the intrinsic randomness of the system is lost. In additi@an | ot (- {1,2,..., M} be the set of all queueing stations.
be difficult to derive important computer performance mea- o6 eing models of this form have traditionally been solved
sures such as utilisation (because the fluid is always ﬂo)""”@sing mean value analysis [14]. However, this solution be-
and interpreting the behaviour of a continuous fragment of & .o costly whetV is large and so a number of approxima-
component does not always make sense. For a full descripffhs have been proposed. The simplest amongst these is the
of the application of fluid approximations to PEPA mOdEISasymptotic bound (see Haverkort [6] pp. 245-247).
see [2]_. [71, [8], [11]. _ Define V; to be the visit count, the ratio of visits made to

In this paper we use the ODE approach to derive an analydizyion ; relative to station 1 (hence = 1). Now consider
cal solution to a class of model,_ specified using the Mar@V|%e smallest possible population si2é,= 1. This solitary job
process algebra PEPA [9]. It is shown that this sglutlon {Fould find each queue empty and experience a delaly/of
identical to that used for many years as an asymptotic solutiy; e4ch station at each visit. Hence, the average number of
to the mean value apaly5|s of closed queueing networks. T]BBS at station whenN = 1, L;(1), is given by the proportion
has two clear benefits. of time a job spends there. Similarly, whévi > 1 but still

« By relating the fluid flow approximation to establishedmall, a job entering a station has a high probability thateh

results in queueing theory, we gain greater confidencewill be at least one idle server, hence the delay at statiisn
the use of ODEs as a solution method. still approximatelyl /r;. The sum of all average queue lengths

I. INTRODUCTION



50Using ODEs from PEPA models to derive asymptotic solutions for a class of closed queueing networks

must beN, hence, curves for L; meet. There are a number of other approxi-
NV mations and enhancements which seek to improve accuracy
Li(N) > MZ v, (1) and applicability without the additional computationalsto
" Z7 Lry associated with mean value analysis.

Now consider the case whe¥ is very large. Assume that This form of simple approximation is generally applied
there is one queueing station with less service capacity thcross the entire network to derive measures such as system
all the other queueing stations, denotediby 1. Obviously throughput and response time. However, it may also be ap-
as N — oo the utilisation of this bottleneck station will Plied to single nodes as outlined above. In such situations
approach 1 and its throughput will tend t&r;, i.e. it the accuracy of the approximation is greatly variable. The
becomes saturated. Obviously, the throughput must bala@@Proximation generally works well when queueing only has

across all stations, henc&;r, = V;L;r; Vi > 2. Thus, a significant effect at one station. This situation arisegnvh
Kor there is only one queueing station (the remainder beingitefin
L;(N) = L ,1>2 (2) service stations) or where one queueing station has mush les

i service capacity than the others, relative to load.

The sum of all queues must equsl, hence
q qusi Ill. A CLASS OF CLOSED QUEUEING NETWORKS INPEPA

Kir The model introduced in Section Il is now modelled in

<N -— . i
Li(N) < N 22 Vir; @) PEPA. Clearly there are many possible ways to model this
. = giéstem and the particular form of the PEPA model here is a
Thus, for station 1 Fhe approximate average queue lengfBsign choice. In particular, the model has been specified in
when the population size i§ is given by such a way that the ODEs can be derived easily (without fur-

M ther transformation) and all behaviours are named, to in®ro

N K17‘1 .
Max — V7N—Z o clarity.
EDINEE-. i—g Vil In PEPA a queue station can be modelled as

And for all other stations;j, the approximate average queue QStation; = (Sermce“m QStation; , Vi € M

length when the population size i€ is given by, .
The infinite server stations are not represented explicitly

g Each job will receive service from a sequence of stations
NV; K1T1 . . e
Max VY determined by a set of routing probabilities,

T Z] 1 'r]- il M

Clearly a very simple approximation for the average re-  Job; 2 Z(Se?”vicei,Pij(i)m)-Jobj , 1<i<M
sponse time has been used to make this calculation for averag j=1
queue length. However, if our goal is to find the averag&here,
response time when the population size\isWW(N), a much
better estimate can be found by combining this approximatio

for L;(N —1) with the mean value analysis estimation to give, _ i=
The entire system can then be represented as follows:

11 N-1 MKy
Wi(N) = ot EMax S V%,N -1- ; Virs ( 11 QStationi[Ki]> D1 Joby [N]
- @) vieM
and, Where. is the set of all action typeservice; wherei € M.
The ODEs for such a system are relatively simple to derive
Wi(N) :iJf %Ma:c v Ml)‘é Kir o<i<y directy:
T T TZjlrj Vir; de B Job,

®) b = Z J)r;Job;(t)
This is essential a single step of the mean value analysis vigM
algorithm (theN'th step) with all previous steps replaced by + > Pi(d)r; min[K;, Job;(t)]
the asymptotic approximation. The total average respone, ti ViEM
that is the average time from leaving node 1 to subsequently —riJobi(t) , Vi ¢ M

completing another service at node 1, can be found by sum-

ming W;(N) over all nodes;. d
It is a simple matter to consider the case where there is EJObi - Z J)rjJob;(t)
more than one bottleneck, although this is not a concerrisn th VigM
paper. Clearly these two sets of asymptotic results are most + Z Pj;(j)r; min[K;, Job;(t)]
accurate at their extremes, i.e. whdh= 1 or asN — oc. VjEM

Thus the asymptotic solution is least accurate when the two —min[K;, Job;(t)|r; , Vi e M
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ODEs such as these can be solved in a number of waysThus, if K; < L; then

Most commonly they would be simulated with a suitably small
time step to findJob;(t). In general, this quantity tends to a
constant value as — oo, i.e. it has a steady state solution.

An alternative method for findindim;_.., Job;(t) is to

solve the ODEs analytically. Such a solution is based on the

assumption that the system of ODEs will eventually reach a

steady state. Thus the derivatives will tend to zera tends
to oo, i.e.

lim

t—o0

A Job; -0, 1<i<M
dt

This gives rise to the following set of simple simultaneous

equations:

lim
t—oo

VigM

+ > Pi(j)r; min[K;, Job; ()]
VjeM

= thm ’I»LJObZ(t) ;

Pji(g)r;Job;(t)

Vig¢ M

tlim

+ > Pyu(j)r; min[K;, Job;(t)]
VjeM
= lim r; min[K;, Job;(t)]

t—o0

Pji(j)r;Job;(t)

, Vie M

There areM equations, but each equation can be expande

(with respect tomin function) in up to2M« ways.

Define the probability that a component will evolve from

Job; to Job;, without revisiting.Job;, as follows:
Pij(i) =pij + > pinPr;(i)
Vkdo
Clearly the system is irreducible if

Pyi) > 0Vij, i #
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P;; (1)
L; = “9WNRE iy 9)
’ sz(])rj
L = N-Y1,=N-%_ (”f (10)
Vj#i Vj#i ﬂ j
Otherwise, ifK; > L; then
Py (i)r; o,
L, = I i, VjFEi (1)
! Pyi(j)ry
N
Li = N-)Y Lj= e (12
Vi L+ 2 vini P

Clearly (10) and (12) meet wheR; = L;. This point is
given by the population siz& = N*, given by

Nk (14 ST Ll
e Pyi(5)r;
Thus, if N < N* then
P
L, = Furip s (13)
Pji(5)rj
N
L, = N- Z L= e (149
Vjti L+ 3 v Pratiyr,
dOtherwise, if N > N* then
Ly = ——=— Vj#i (15)
’ Pyi(5)r;
Li = N*ZLJ: TZKZPUL (16)
Vi Vi ji

Clearly, the visit count is given by; = P;;(i)/P;i(j).
Hence (13), (14), (15) and (16), are equivalent to (1), (2) an
(3). Observe also that (13) and (14) hold, with arbitrary
regardless of the existence of (6) as longlgs< K Vj.

Define L; to be the steady state average number of compo-From these expressions fdr; we can derive the average

nents behaving agob;, given by
Li = thm JOb,L

Now selecti € M such that

P (i)riK; < Pyi(j)r K; Vj e M, j #1i (6)
Hence,
o If K; < L; then
Pij(i)riKi = Pji(j)riLj , Vj @)
o If K; > L; then
P”(’L)’I““]Obl :sz(j)T]L] 9 V_] (8)

1if (6) does not hold then there is no unique solution for thisdflsystem
except whenNV is very small. Instead the value df; will depend on the
initial values Job;(0) Vi.

response time at statiof when the population size &,
W;(N) in the same was as 4 and 5.

1
WilN) = —, LiiN-1)+1<K;
J
Li(N—-1 1
wyvy = LW =DEL N sk

KjT‘j

WhereL;(N) is the average number of jobs at statjowhen

the population size 8. This computation foi¥’; (V) is based

on the queueing theory result of an arrival as random obgerve
see Mitrani [12] page 141 for example. If the random observer
sees a free server, then the average response time will be the
average service time. However, if the random observer dees a
the servers busy, then the average response time will be the
average service time plus the time it takes for one server to
become available (including scheduling the other jobsingit
ahead of the random observer).



52 Using ODEs from PEPA models to derive asymptotic solutions for a class of closed queueing networks

In addition we can derive an expression for utilisation at ttHence,
bottleneck queueing station U;, based on the flow into the ) . . .
station being equal to the available service. Jim rp min(KDC(t), Alice(t)) = lim rpAlices(t)

= lim raAlices(t)
t—o0
i Kir; = flirglo rcAlicey(t)

= lim r,Alices(t)
IV. EXAMPLE 1: A SECUREKEY DISTRIBUTION CENTRE t—oo
= lim rqAlice(t)
Consider a model of the classic Needham-Schroeder key ) tmoe _
distribution protocol (taken from [19]) specified as folsw ~ Thus we only need to solve this set of simple parallel
equations to findL(N). If KDC(t) > Alices(t) then the

ODEs give rise to

KDC = (response,r,).KDC .
’ L(N) = Jim Alice = Nf 17)
— 00 Tz T,
Ali = t,7q). Al o
tc€o = (request,rq).Aice If KDC(t) < Alice(t) then the ODEs give rise to
Alice; = (response, ). Alices Nr — Kr
) det . L(N) = lim Alice; = —= P (18)
Alices = (sendBob,rg).Alices t—00 "
Alices = (sendAlice,r4).Alicey Wherer, is given by
Alice, = (confirm,r.).Alices 1 1 1 1 1\t
Alices = (usekey,ry,).Aliceg Te = <E + e + A T re + E) (19)
The system is then defined as: (17) and (18) meet whel& DC(t) = Alicey(t) for a given

population sizeN*, hence, with (19) we get,
KDC[K] D Aliceo[N]

vk K g (Ll 1)
Where, K is the number oKDC's and N is the number of Tz Tq TB TA Te Tu
client pairs Alicess). Figure 1 shows the average response time oKiID€E, found
It is a simple matter to write down the ODEs for this systerapproximately using (17) and (18) and computed exactlygusin
as follows. mean value analysis [16]. Clearly, when the service rate is
d smaller, the response time is larger and its rate of incresase
EAliceo = ryAlices(t) — rqAliceg(t) larger. As noted above, there is a difference between the two
d . . _ solutions aroundV*, which is clearly evident.
EAlzcel = rqAliceg(t) — rp min(KDC(t), Alice1(t))

iAliceg = 1p, min(KDC(t), Alicei(t)) — rpAlices(t)

dt 10 ——MVA, r,=I
d

—Alices = rpAlicea(t) — raAlices(t) 9 —t—MVA, ;=2
Ccilt —— MVA, r,=4
EAMC&; = raAlices(t) — rcAlices(t) 57 --%:-ODE, r,=1
d 71 - %= ODE, 1,22
EAliC€5 = r.Aliceq(t) — ryAlices(t) 6 — o~ ODE, r,=4

d Wkpc

—KDC = 0

dt

In this analysis we are interested primarily in the number

of client pairs awaiting a response from tK®C (or KDC's)
from a population of sizéV, which we denote a& (V) This is
represented in the model by the numbertAdice,’s; L(N) =
lim;_,~, Alice;(t) when there areV client pairs @lice’s) in

the population. e A ——
If the system reaches a steady state then all the derivatives b2 3 4 5 6 7 8 9 1011 1213 1415
will tend to zero ag tends toco, i.e. N

. d . . Fig. 1. Average response time at th®C varied with population size
lim d—Alwei —-0,0<1<5 (rq=rp=ra=1c=114 =11, K =1)

t—oo dt
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Figure 2 shows the average queue length aKlb€, Lxpc request, or their result requires writing to a disk before
for this system when there is either one fast servek @lower thinking and then another request.
servers. When the population size is largé & 30 in this The ODEs are given as
case) theKDC becomes saturated and there is consequently 4 ,
no difference in the service rate offered between the tweas Useri(t) = pumin[l, Users(t)]
shown. However, whernV is smaller, there will be periods +n min[K, Users(t)]
where one or more of th& servers will be idle, thus reducing

X ; —&U t
the overall service capacity offered. Hence, for smahér d (User(?)
a single fast server will out perform multiple slower sesser —Users(t) = ¢EUser(t) — pmin[l,Users]
with the same overall capacity. Once again, there is a clear t
divergence aroundv*. ﬁUser;;(t) = (1 —=p)umin[l,Users(t))
—n min[K,Users(t)]
14 4
If the system reaches a steady state then all the derivatives
o o MVA: K=l =4 will tend to zero astdtends tooo, i.e.
——ODE: K=1, r,=4 lim —User; — 0, 0<i<5
t—o0 dt
109 T MVA K=4, sl Define L; = lim;__., User; to be the steady state average
- %~ ODE: K=4, r,=1 number of users at each point in the system. Hence,
8 .
. pp min[l, Lo] +n min[K, Ls] = &L
KDC .
6 §L1 = pmin[l, Lo
(I —p)umin[l,Ls] = nmin[K, Ls]
4 ‘;;* There are two possible bottlenecks in this systenillt
i p)p < Kn then the bottleneck is the processor.
2 'D'D.D' o If 1 <Ly then
u,n'n‘n'u Ll — H
13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 L3:(1—P)M
N n
Fig. 2. Average queue length &DC varied with population sizer{ = L, = N-— [ (1 *p)/“b
rg=rAa=rc=1,1, =1.1) ¢ n
e If 1> Ly then
V. EXAMPLE 2: A MULTI-USERQUERY PROCESSING L = gLQ
SYSTEM
_ _ o _ .o d=pu,
Consider the following PEPA specification of a classic 3 = n
model taken from Lazowska et al [13]. " 1-pu
» Ly = N-Ltpn,—-~—2"1,
Proc = (service,pu).Proc £ N Y
Disk £ (write,n).Disk = &
&n+ pn + pé(1 = p)
U S (think,€).U In this case,
sery = (think,§).User
' . ¢ ’ N = &+ pE(l —p)
Users = (service,pu).User; = n
+(service, (1 — p)u).Users Alternatively, if (1 — p)u > K then the bottleneck is
Users = (write,n).User; writing to the disks.

. . . o If K < Ljthen
The entire system is then specified as

L 0k _
L =
(Proc||Disk|K]) {selz?ce,} User1|[N] (1 —I(Z?)ﬁ
write /)7
Ly = —/——
This system depicts a processor and an arraysoinde- 2 1I-pp
pendent disks. Users request a service from the processor. I N nK nK
3 = -

After this they either think for a while, before making aneth
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o If K > L5 then

L, = L
' 1-pe?°
n
Ly = L
? Q—pu°
n n
Ly = N-— Lz — L
’ 1-pE " Q—ppu°
_ NEu(1 —p) Lyl
Eu(l —p) +np+né
In this case,
, nK nk
N*=K + +
§(1—p)  pu(d—p)

If (1 —p)p = Kn then the solution will depend on the
initial values ofUser(0), Users(0) andUsers(0), unless,
Ny
& =+ pn + p€
and,
Nép <K
Ep+ Knp + Kng

In which caseL; is given by

I.o— Nun
L o= e
&n+ un + pé

I Nén
) _vem
En+ pn + pé
I N(1 —p)ug
5 AL T PIES
&n+ un + pé

Lyisp(N)

Figures 3 and 4 show the average queue lengths at the
processor and the disk array for various valuegpofvhere
the processor is the bottleneck (Figure 3) and where the disk
array is the bottleneck (Figure 4). In both cases results are
shown as calculated by the ODE method in this paper and the
mean value analysis method from [16].

It can be seen that whemis relatively large, the approx-
imation works well (except aroun®/*). Whereas whemnp is
smaller, particularly whemp is close t00.5, it is much poorer,
and even diverging wittV. It might perhaps be surprising that
the ODE and MVA results are not closer whes= 0.1. After

—a— MVA, p=0.8
--<--ODE, p=0.8
—— MVA, p=0.6
—-©- ODE, p=0.6

Fig. 3.

20 ~

10 A

1 2 3 4

56 7 8 9 1011 12 13 14 15 16 17 18 19 20
N

Average queue length at processor and disk arrayed/anith
population size{ = 10 = 30,7 =5, K = 3)

—=— MVA, p=0.1
--<--ODE, p=0.1 o
-0- MVA, p=0.4 Py

—— ODE, p=0.4 -

1

all, in this scenario, most jobs will visit the disk array angg, 4.

experience a long delay there. However, even when 0.1
queueing effects still have an effect at the processor aisd th
causes a difference between the two methods.

2 3 45 6 7 8 9 10111213 1415 16 17 18 19 20
N

Average queue length at processor and disk arrayedsanith
population sized = 10p = 30,71 =5, K = 3)

Clearly, the accuracy of the ODE approximation of average Clearly the system response time is much less sensitive to

queue length is sensitive tp. However, as stated earlier,the errors in the average number of jobs in each queue than
the asymptotic solution is generally applied across th&entwe might naively expect. Indeed, Figure 5 shows only a very
network, and not at an individual station. Therefore it ismall divergence between MVA and ODE calculations, even
interesting to observe the accuracy of system wide metrieghen p = 0.4 (the worst case in the earlier graphs). The
Figure 5 shows the average response time for the entirensystexplanation for this is relatively simple, in that the maxim
computed as error in predicting the queue lengths is caused when thécgerv
capacity at each queueing station are relatively similend¢,
when computing the average response time, we replace a delay
at one station with a very similar delay at the other. As such,
the errors, to an extent, disappear when aggregated atiss t

M
W=> Viw;
i=1

WhereV; is the visit count andnin[Vi,..., V] = 1.
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—0—MVA, p=0.4
—4— ODE, p=0.4
—s— MVA, p=0.6
--%--ODE, p=0.6
—a— MVA, p=0.8
—-<-- ODE, p=0.8
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solution directly from the ODEs, which is the aim of this
paper. Furthermore, the approximation is shown to be ateura
only when there are significant queueing effects at oneostati
only. This gives some further insight as to the kind of model
where ODE analysis is (in)appropriate.
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(1]
15 9 13 17 21 25 29 33 37 41 45 49
N [2]

Fig. 5. Average system response time varied with populatize ¢ =
10p =30,n =5, K =3)

3l
whole network in this way.

[4]

VI. CONCLUSIONS AND FURTHER WORK

It has been demonstrated that the fluid approximation fdp]
a class of PEPA models coincides with the well known
asymptotic approximation for a corresponding class ofedios
queueing network. This result is potentially useful as deral [6]
native means for characterising models of queueing netwvor
specified using PEPA, particularly when the model specifie ]
is not obviously a queueing model. This is the first class of
fluid PEPA model for which there is an explicit expression forl®!
where the fluid solution is least accurate with respect to thg,
exact solution of the stochastic model. The derivation oE3D
used in this paper is based on the work of Hillston [11] and &7
incorporated into the PEPA Eclipse Plug-in [18], faciliat
easy numerical solution. [11]

The result in this paper is limited to a class of cycli 12]
queueing model where each station can perform just ofig
action type. However, the asymptotic approximation ajgplie
to a much wider class of model. Thus it should be possible !
extend this result to consider PEPA models with multiple €ons)
peting action types at eackvb; derivative, each occurring at
different rates but with the overall rate capped by Station;
component. In addition, the asymptotic result holds foregah
service distributions, suggesting that the applicabitifythe [17]
fluid approximation in PEPA potentially extends beyond its
conventional Markovian semantics. These investigatia®s ;g
left as ongoing work.

The result here is also limited to the case where there jg
a single bottleneck, unless the population is small enough
that L; < K; Vi. It is clearly possible to easily compute the
average queue length for systems where there is more than
one bottleneck, however it is not possible to find a unique

[16]
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