
Analysis of non-product form parallel queues
using a Markovian process algebra

Nigel Thomas1 and Jeremy Bradley2

1 School of Computing Science, Newcastle University, UK.
nigel.thomas@ncl.ac.uk

2 Department of Computing, Imperial College London, UK
jb@doc.ic.ac.uk

Abstract. In this paper we use the Markovian process algebra PEPA to
specify and analyse a class of queueing models which, in general, do not
give rise to a product form solution but can nevertheless be decomposed
into their components to obtain a scalable solution. Such a decomposition
gives rise to expressions for marginal probabilities which may be used to
derive potentially interesting system performance measures, such as the
average number of jobs in the system. It is very important that some
degree of confidence in such measures can also be given; however, we show
here that it is not generally possible to calculate the variance exactly from
the marginal probabilities. Hence, two approximations for the variance
of the total population are presented and compared numerically.

1 Introduction

Systems of Markovian queues which give rise to product form solutions have
been widely studied in the past. In this paper an alternative (non-product form)
method of model decomposition is considered that can be found in the queueing
network literature, quasi-separability. Quasi-separability was developed in the
study of queueing systems which suffer breakdowns [4, 8], and generalised by
Thomas et al [7, 5, 6] using the Markovian process algebra PEPA [3]. Decompo-
sitions of this kind are extremely useful when tackling models with large state
spaces, especially when the state space grows exponentially with the addition of
further components.

Quasi-separability can be applied to a range of models to derive numerical
results very efficiently. While it does not generally give rise to expressions for
joint probability distributions it does provide exact results for many performance
measures, possibly negating the need for more complex numerical analysis. As
such it is a very useful means of reducing the state space of large models. Not all
performance measures of interest can be derived exactly from this decomposition.
In particular, whilst the average number of jobs in the system may be calculated
exactly, in general its variance cannot. It is clearly advantageous however, to
gain some confidence in the calculated mean as a useful performance measure
without having to solve a much more complicated model. Our proposed solution
to this problem is to approximate the variance of the system state. Variance is

an extremely important performance measure, knowing how much a system can
vary from its mean performance is an essential practical consideration. If the
variation of behaviour is large then having only the mean figure for a sojourn is
probably not much use for evaluation. Furthermore it has been suggested that, it
in certain situations, it is more desirable for a system to be reliably predictable
(more deterministic), i.e. have a low variance, rather than fast, as might be
indicted by a low mean [1]. In this paper we consider a class of models consisting
of a number of nodes in parallel which share a source of jobs. Each node consists
of a finite length queue and one or more servers. Jobs are shared amongst the
nodes on an a priori basis according to a routing vector which is dependent on
the state of a scheduler. The scheduler state may change independently or in
response to changes in the behaviour of the nodes. We show that if the scheduler
state is not dependent on the number of jobs in the queues, then the system may
be decomposed such that each node may be studied in isolation.

There are some advantages in using a process algebraic approach to tackle
this problem. Firstly, the formal specification provided by the process algebra fa-
cilitates an automatic derivation of the decomposed models and therefore allows
such solutions to be applied by non-experts. Secondly, we are able to explore
such decompositions in a general setting in order to understand more about
the properties of such models and the relationship with other possible solution
methods.

In Section 2 we introduce the Markovian process algebra PEPA. In Section
3 the model is presented, followed by a PEPA representation of the model. In
Section 4 discuss the decomposition and we show how mean and variance can be
calculated from the marginal queue size probabilities derived. Some numerical
results are presented in Section 5 for a specific example and some concluding
remarks are made in Section 6.

2 PEPA

A formal presentation of PEPA is given in [3], in this section a brief informal
summary is presented. PEPA, being a Markovian Process Algebra, only sup-
ports actions that occur with rates that are negative exponentially distributed.
Specifications written in PEPA represent Markov processes and can be mapped
to a continuous time Markov chain (CTMC). Systems are specified in PEPA in
terms of activities and components. An activity (α, r) is described by the type of
the activity, α, and the rate of the associated negative exponential distribution,
r. This rate may be any positive real number, or given as unspecified using the
symbol >.

The syntax for describing components is given as:

P ::= (α, r).P |P + Q|P/L|P BC
L

Q|A
The component (α, r).P performs the activity of type a at rate r and then

behaves like P . The component P + Q behaves either like P or like Q, the
resultant behaviour being given by the first activity to complete.

The component P/L behaves exactly like P except that the activities in the
set L are concealed, their type is not visible and instead appears as the unknown
type τ .

Concurrent components can be synchronised, P BC
L

Q, such that activities in
the cooperation set L involve the participation of both components. In PEPA
the shared activity occurs at the slowest of the rates of the participants and if
a rate is unspecified in a component, the component is passive with respect to
the activities of that type. A

def= P gives the constant A the behaviour of the
component P . The shorthand P ||Q is used to denote synchronisation over no
actions, i.e. P BC

∅
Q. We employ some further shorthand that has been commonly

used in the study of large parallel systems. We denote
∏N

i=1 Ai to be the parallel
composition of indexed components, A1|| . . . ||AN .

In this paper we consider only models which are cyclic, that is, every deriva-
tive of components P and Q are reachable in the model description P BC

L
Q.

Necessary conditions for a cyclic model may be defined on the component and
model definitions without recourse to the entire state space of the model.

3 The model

Jobs arrive into the system in a Poisson stream with rate λ. There are N nodes,
each consisting of one or more servers with an associated bounded queue. All
jobs arrive at a scheduler which directs jobs to a particular node according to
its current state. Jobs sent to a queue which is full are lost. The system model
is illustrated in Figure 1.

qN

q2

q1

-

-

-

µ´
¶³

µ´
¶³
µ´
¶³

-

-

-

³³³³λ
-

JJ
JJ

J
J

J
J

J

Fig. 1. A single source split among N nodes

If, at the time of arrival, a new job finds the scheduler in configuration i, then
it is directed to node k with probability qk(i). These decisions are independent

of each other, of past history and of the sizes of the various queues. Thus, a
routing policy is defined by specifying 2N vectors,

q(i) = [q1(i), q2(i), . . . , qN (i)] , i ⊂ ΩN , (1)

such that for every i,
N∑

k=1

qk(i) = 1 .

The system state at time t is specified by the pair [I(t),J(t)], where I(t)
indicates the current scheduler configuration and J(t) is an integer vector whose
k ’th element, Jk(t), is the number of jobs in queue k (k = 1, 2, . . . , N). Under
the assumptions that have been made, X = {[I(t),J(t)] , t ≥ 0} is an irreducible
Markov process.

We now use PEPA to specify this class of queueing system.

Queuek,0
def= (arrivek,>).Queuek,1

Queuek,j
def= (arrivek,>).Queuek,j+1

+(servicek,>).Queuek,j−1 , 0 < j < K

Queuek,K
def= (servicek,>).Queuek,K−1

Scheduleri
def=

N∑

k=1

(servicek, µk,i).Scheduleri

+
N∑

k=1

(arrivek, qk(i)λ).Scheduleri

+
∑

∀h6=i

(switch, αi,h).Schedulerh

(
N∏

k=1

Queuek,0

)
BC
L

Scheduler1

Where L =
⋃N

k=1{servicek, arrivek}.
Clearly for this model to be irreducible we must restrict the rates of the

variables αi,h which control the switching of scheduler states, such that for each
i there is at least one h such that αi,h > 0. Furthermore, for each i there must
exist paths such that αi,a1αa1,a2 . . . αaX,1 > 0 and α1,b1αb1,b2 . . . αbN,i > 0. That
is, every scheduler state must be reachable from every other.

As we have seen, when the routing probabilities depend on the system con-
figuration, the process is not separable (i.e., it does not have a product-form
solution). As the capacity of the system becomes large, i.e. each queue has a
large bound and N is also large, the direct solution becomes increasingly costly.
Hence it is practically relevant to explore more efficient means of solving this
class of model.

4 Quasi-Separability

A decomposition based on quasi-separability allows expressions to be derived
for marginal distributions just as with a product form solution, however unlike
product form these marginal distributions cannot, in general, be combined to
form the joint distribution for the whole model. Despite the lack of a solution
for the joint distribution, many performance measures of interest can still be
derived exactly. Clearly, since exact expressions for marginal probabilities can
be found, it is possible to derive any performance measure that depends on
a single component. In addition it is possible to obtain certain whole system
performance measures in the form of long run averages, such as the average
state of the system and average response time in a queueing network.

A system that is amenable to a quasi-separable solution can be considered in-
formally in the following way. The entire system operates within a single environ-
ment, which may be made up of several sub-environments. Several components
operate within this environment such that their behaviour is affected by the
state of the environment. The state of each component does not alter the state
transitions of either the environment or the other components. The behaviour of
such components can clearly be studied in isolation from the other components
as long as the state of the environment is considered also. The restriction on the
behaviour of the components imposed here is unnecessarily strong. We can also
consider models where the state space of the components can be separated into
that part which does have an impact on state transitions in the environment or
other components and that part which has no external influence, not even on
the other part of that component. Such a separation requires that the part of a
component that influences the state of the environment is considered to be part
of the environment for the purposes of model decomposition.

Models such as these have appeared in the literature of the study of queue-
ing systems with breakdowns and rerouting of jobs [4, 8]. In such models the
environment is generally made up of the operational state of servers in the sys-
tem. For instance each server might be either working or broken, so for a system
of N servers the environment has 2N states. The routing of jobs to queues is
dependent on the operational state of the system i.e. the state of the environ-
ment. Such models can generally be decomposed into single queue systems with
Markov-modulated arrivals and breakdowns. This type of model is conceptually
quite simple; there are only two aspects to the state of the components, but in
general there may be many aspects of state that must be considered.

Consider an irreducible Markov process, X(t), which consists of N separate
components. The state of each component i can be described by a set of Ki

separate variables. Denote by Vi the set of Ki variables which describe the state
of component i. If it is possible to analyse the behaviour of each component, i,
of the system exactly by only considering those variables that describe it, i.e.
Vi, then the system is said to be separable. In this case all the components are
statistically independent and a product form solution exists.

For the system to be quasi-separable it is necessary only that it is possible
to analyse the behaviour of each component, i, of the system exactly by only

considering those variables that describe it, Vi, and a subset of the variables
from all the other components. Thus the elements of Vi can be classified into
the subsets of either system state variables, Si or component state variables Ci,
such that:

– the state of c(t) ∈ Ci changes at a rate which is independent of the state of
any variable v(t) ∈ Cj , ∀ j such that j 6= i.

– the state of s(t) ∈ Si changes at a rate which is independent of the state of
any variable v(t) ∈ Cj , 1 ≤ j ≤ N .

If Ci 6= ∅, ∀ i, the system can be decomposed into N submodels such that the
submodel of the system with respect to the behaviour of component i specifies
the changes in the system state variables S =

⋃N
i=1 Si and the component state

variables Ci. In general the analysis of these submodels gives rise to expressions
for their steady-state marginal probabilities if the submodels have stationary
distributions with state spaces which are infinite in at most one dimension. As
stated above, these marginal probabilities do not, in general, give rise to expres-
sions for the joint probability of the whole system, i.e. no product form solution
exists. For quasi-separability to be useful the state space of the submodels should
be significantly smaller than the state space of the entire model.

4.1 Deriving mean and variance from
marginal probabilities

If the state space of a model is being reduced then the available information
is also reduced unless a product form solution exists. The submodels consist of
the system state variables S =

⋃N
i=1 Si and the component state variables Ci,

hence the steady state solution of such a system gives probabilities of the form
p(S, c) = p(S = S, Ci = c). A solution of the entire model would give rise to
probabilities of the form p(S,C) = p(S = S, C = C), where C = {C1, . . . , CN}
and C = {C1, . . . ,CN}. These probabilities are related in the following way for
the submodel involving component i subject to the quasi-separability condition,

p(S = S, Ci = c) =
∑

∀Cs.t.Ci=c

p(S = S, C = C)

If it is possible to associate a value, xij with each state of a component i then
the average state of the component can easily be found. In addition the average
of the sum of all components can be found exactly. Thus,

E[xi] =
∑

∀j

∑

∀S
xijp(S = S, Ci ≡ xij)

Gives the average state of the component, which can be used to derive the
average sum,

E[x] =
∑

∀i

E[xi]

Consider, for example, the following case involving just two values:

E[x, y] =
n∑

i=1

m∑

j=1

(i + j)p(i, j) =
n∑

i=1

m∑

j=1

ip(i, j) +
n∑

i=1

m∑

j=1

jp(i, j)

=
n∑

i=1

i

m∑

j=1

p(i, j) +
m∑

j=1

j

n∑

i=1

p(i, j)

=
n∑

i=1

ip(i, .) +
m∑

j=1

jp(., j)

= E[x] + E[y]

Clearly it is an advantageous property to be able to derive system performance
measures from marginal probabilities when they can be found. However, the
mean is a special case as the sum of the values is trivially separated. If we
consider the same example on variance the problem is evident.

V [x, y] =
n∑

i=1

m∑

j=1

(i + j)2p(i, j)− E2(x, y)

=
n∑

i=1

m∑

j=1

(i2 + 2ij + j2)p(i, j)− E2(x, y)

=
n∑

i=1

m∑

j=1

i2p(i, j) +
n∑

i=1

m∑

j=1

j2p(i, j) +
n∑

i=1

m∑

j=1

2ijp(i, j)− E2(x, y)

=
n∑

i=1

i2p(i, .) +
m∑

j=1

j2p(., j) +
n∑

i=1

m∑

j=1

2ijp(i, j)− E2(x, y)

In this case there is one term involving p(i, j) which cannot be broken down
to the marginal probabilities, p(i, .) and p(., j). In the more general case where
there are N components, there will be N terms involving just the marginal
probabilities, but (N − 1)! terms involving the joint distribution. Clearly then
it is not possible to calculate the variance exactly except when a product form
solution exists.

The obvious (traditional) solution to this problem is to generate an approxi-
mate solution to variance by substituting p(i, j) with p(i, .)p(., j), i.e. a product
based approximation. In the case of quasi-separability the situation is slightly
complicated since the submodels give rise to marginal probabilities involving not
only component variables (as in the simple example used here), but also system
state variables. The simplest solution (henceforth referred to as the compo-
nent state approximation) would be to eliminate the system state variables by
summing over all possible values:

p(c) ≈
N∏

i=1

∑

∀S
p(S, ci) (2)

where c = {c1, . . . , cN}. An alternative approach (henceforth referred to as the
system state approximation) is to attempt to derive approximations for every
possible system state:

p(S, c) ≈
∏N

i=1 p(S, ci)
p(S)N−1

(3)

In the following section we will compare these two methods through a nu-
merical example.

5 Example: multiple queues with unreliable servers

Now consider the following three queue example expressed in PEPA.

Queuek,0
def= (arrivek,>).Queuek,1

Queuek,j
def= (arrivek,>).Queuek,j+1

+(servicek,>).Queuek,j−1 , 0 < j < K

Queuek,K
def= (servicek,>).Queuek,K−1

Scheduler0
def= (repair, η).Scheduler3 + (arrive1, q1λ).Scheduler0

+(arrive2, q2λ).Scheduler0 + (arrive3, q3λ).Scheduler0

Scheduler1
def= (arrive1, λ).Scheduler1 + (service1, µ1).Scheduler1

+(fail1, ξ1).Scheduler0

Scheduler2
def= (arrive2, λ).Scheduler2 + (service2, µ2).Scheduler2

+(fail2, ξ2).Scheduler0

Scheduler3
def= (arrive3, λ).Scheduler3 + (service3, µ3).Scheduler3

+(fail3, ξ3).Scheduler0

Scheduler4
def= (fail1, ξ1).Scheduler2 + (fail2, ξ2).Scheduler1

+(arrive1,
q1λ

q1 + q2
).Scheduler4 + (arrive2,

q2λ

q1 + q2
).Scheduler4

+(service1, µ1).Scheduler4 + (service2, µ2).Scheduler4

Scheduler5
def= (fail1, ξ1).Scheduler3 + (fail3, ξ3).Scheduler1

+(arrive1,
q1λ

q1 + q3
).Scheduler5 + (arrive2,

q3λ

q1 + q3
).Scheduler5

+(service1, µ1).Scheduler5 + (service3, µ3).Scheduler5

Scheduler6
def= (fail2, ξ2).Scheduler3 + (fail3, ξ3).Scheduler2

+(arrive2,
q2λ

q2 + q3
).Scheduler6 + (arrive3,

q3λ

q2 + q3
).Scheduler6

+(service2, µ2).Scheduler6 + (service3, µ3).Scheduler6

Scheduler7
def= (fail1, ξ1).Scheduler6 + (fail2, ξ2).Scheduler5

+(fail3, ξ3).Scheduler4 + (arrive1, q1λ).Scheduler7

+(arrive2, q2λ).Scheduler7 + (arrive3, q3λ).Scheduler7

+(service1, mu1).Scheduler7 + (service2, µ2).Scheduler6

+(service3, µ3).Scheduler6

(Queue1,0||Queue2,0||Queue3,0)
BC

{arrive1,service1,arrive2
service2,arrive3,service3}

Scheduler7

This model represents three queues whose servers suffer independent failures
and subsequent repairs. A repair will repair the entire system, but will only
be triggered once all the servers have failed. The scheduler attempts to route
jobs to active servers, if any exist. In the case of all the servers being broken
(Scheduler0) the scheduler routes jobs to all queues in the same proportion as
if all were working.

Clearly this model fits the decomposition class introduced in the previous
section. The number of jobs in each queue is not dependent on the number in
the other queues, however, all queue lengths are dependent on the behaviour of
the scheduler component. Thus we can decompose this model into three smaller
ones, defined by the following system equations.

Queue1

BC
{arrive1,
service1}

Scheduler7

Queue2

BC
{arrive2,
service2}

Scheduler7

Queue3

BC
{arrive3,
service3}

Scheduler7

Each of these models has 8(K +1) states in the underlying CTMC, whereas the
original model has 8(K + 1)3 states. Obviously if K is large, then this is a con-
siderable saving, possibly meaning that the decomposed models are numerically
tractable when the full model is not.

The immediate advantage of this decomposition is that we can quickly find
global average metrics as described above, which can then be used to optimise
parameters. In the case of this example we can numerically optimise the routing
probabilities qk to minimise the average number of jobs in the system or the
average response time. Performing optimisations of this kind on the whole model
would be extremely costly.

5.1 Numerical results

We now turn our attention to the problem of estimating the variance of the
total number of jobs in the system. For this exercise we will assume that the
three servers are identical, meaning of course that the optimal (static) routing
probabilities will be equal, i.e. qk = 1

3 . In all cases the queues were bounded at
K = 10. We will then investigate how the two approximations perform as we
vary the load and the duration of repair periods.

Figure 2 shows the relationship between variance and load. At low load the
variance is low, as the number of jobs in any queue rarely grows very large. As
the load increases, so does the variance, until leveling off and then decreasing
due to the effect of the bound. The variance decreases at high load as the queues
become full most of the time. As can be seen, with these parameters, both
approximations work well.

16

18

20

22

24

26

28

30

32

34

36

10 14 18 22 26

V
ar

ia
n

ce

System state
approximation

Component state
approximation

Exact solution

Fig. 2. Variance of the total number of jobs against arrival rate
µk = 10, η = 10, ξ = 1, qk = 1

3

Figure 3 shows the variance as a function of the failure rate, ξk. The repair
rate is also varied in direct proportion to the failure rate, so that the probability
of being in any given scheduler state is the same for each value of ξk. When
the failure (and repair) rate is relatively large the interruptions to service are
relatively brief and so few arrivals occur when all the servers are broken. However,
when the repair rate is decreased, the duration period for which all servers are
broken increases and so the queue will fill up. Thus, when the repair rate is
small, there becomes a big difference between the queue lengths in Scheduler7

and the queue lengths in Scheduler0. As the repair rate continues to decrease,
this difference does not increase any more as the queues cannot exceed their
bound, hence the variance levels off.

In Figure 3 there is much less correspondence between the approximations
and the exact result. Apart from ξk = 0.1, there is fairly good correlation between
the system state approximation and the exact result. In other examples we have
observed that when the approximations closely agree, they are accurate, however,
that does not hold here when ξk = 0.1.

25

30

35

40

45

50

10 1 0.1 0.01 0.001
k

V
ar

ia
n
ce

System state
approximation

Component state
approximation

Exact

Fig. 3. Variance of the total number of jobs varied with failure rate
λ = 18, η = 10ξ, µk = 10, qk = 1

3

6 Conclusions

In this paper we have shown how a class of queueing model can be specified using
PEPA and formally decomposed into a number of submodels. These submodels
are easier to solve numerically, but have the weakness that it is not possible to
derive the joint queue length probabilities exactly. As a consequence we have
investigated two approximations for the joint queue length probability which
can be used to predict the variance of the total population.

The approach has been illustrated through a significant example. This has
shown that there is a huge potential saving in computational effort through
this method. However, computing the approximations is not trivial and their
accuracy is not universal. Therefore, the main lesson is that this decomposition
is mainly useful as a way of obtaining metrics which are based entirely on the
marginal queue length probabilities. Estimates of other metrics are clearly useful
and particularly so if there is a very high cost of obtaining an exact solution.

Acknowledgements

Both authors are supported by the EPSRC funded AMPS project, which is held
jointly at Imperial College London (EP/G011737/1) and Newcastle University
(EP/G011389/1).

References

1. J. Bradley and N. Davis, Measuring improved reliability in stochastic systems, in:
Proceedings of 15th UK Performance Engineering Workshop, pp. 121-130, Univer-
sity of Bristol, 1999.

2. G. Clark, S. Gilmore, J. Hillston and N. Thomas, Experiences with the PEPA
performance modelling tools, IEE Proceedings - Software, 146(1), 1999.

3. J. Hillston, A Compositional Approach to Performance Modelling, Cambridge Uni-
versity Press, 1996.

4. I. Mitrani and P.E. Wright, Routing in the Presence of Breakdowns, Performance
Evaluation, 20, pp. 151-164, 1994.

5. N. Thomas, Extending Quasi-separability, in: Proceedings of 15th UK Performance
Engineering Workshop, pp. 131-140, University of Bristol, 1999.

6. N. Thomas and J. Bradley, Approximating variance in non-product form decom-
posed models, in: Proceedings of the 8th International Workshop on Process Algebra
and Performance Modelling, Carleton Scientific Publishers, 2000.

7. N. Thomas and S. Gilmore, Applying Quasi-Separability to Markovian Process
Algebra, in: Proceedings of 6th International Workshop on Process Algebra and
Performance Modelling, 1998.

8. N. Thomas and I. Mitrani, Routing Among Different Nodes Where Servers Break
Down Without Losing Jobs, in: Quantitative Methods in Parallel Systems, pp. 248-
261, Springer-Verlag, 1995.

