Analysing and modelling context in mobile
systems to support design

Karsten Loer! and Michael D. Harrison?

Department of Computer Science, University of York
York, YO10 5DD, UK and
2Informatics Research Institute, University of Newcastle upon Tyne,
NE1 7RU, UK

Karsten.Loer@cs.york.ac.uk | Michael.Harrison®@ncl.ac.uk

Abstract Mobility of ubiquitous systems offers the possibility of using
the current context to infer information that might otherwise require user
input. This can either make user interfaces more intuitive or cause subtle
and confusing mode changes. We discuss one approach to the analysis
of such systems that will allow the designer to predict potential pitfalls
before the design is fielded. Whereas the current predominant approach
to understanding mobile systems is to build and explore experimental
prototypes, our exploration highlights the possibility that early models of
an interactive system might be used to predict problems with embedding
in context before costly mistakes have been made. Model checking is used
to perform exhaustive analysis of statechart models of two alternative
interfaces to a sewage plant control system.

1 Introduction

Ubiquitous mobile devices provide a number of opportunities for improving the
interface between a user and some service or application. However, mobility may
also lead to surprising consequences for interaction that were not intended or
envisaged by the designer. A particular set of these possible consequences are
the modal effects introduced by a device’s position within its spatial context.
These modal effects occur because action makes use of information about the
context that may not be transparent to the user.

Context and context awareness in mobile systems can therefore either con-
tribute to the seamlessness of an interaction or make the interface more confusing
and opaque to the user. While several systems have been developed to explore
these ideas, and there are a number of explorations of the concepts of context,
see [Abowd and Mynatt, 2000] and [Dix et al., 2000], there has been relatively
little work on the analysis that might be performed to predict some of the con-
sequences of design decisions in an emerging design. The paper explores how
model checking might be used to analyse these effects using a case study in-
volving the replacement of a centralised control room interface by a hand-held
system. Whereas the control room provides all information about the plant in
one format, the hand-held system makes use of positional information, using

2 Karsten Loer and Michael D. Harrison

mode to offer options to the operator and provides more limited display. Display
real-estate constraints imposed by the hand-held device are compensated for by
only displaying information that is relevant to the particular context.

Mobile devices have potential to enrich the work and productivity of users.
In the context of process control systems, where the consequence of error might
be expensive or disastrous, mobile devices can facilitate the movement of an
operator through the plant while continuing to enable the operator to observe
the plant as a whole, thus potentially freeing people from being confined to
the control room. But the consequences of unforeseen interaction problems that
might arise from the additional design complexity could be high. The approach
is illustrated using a case study involving a sewage plant (Fig. 1). It is assumed
that in an existing system the operator monitors and controls tank status and
fluid flows centrally. An alternative version is being developed that uses a mobile
hand-held device both to gather information about the plant and to control it.

When a problem arises in the plant with the existing system, the controller
can telephone a worker who happens to be near to where the problem is in order
to investigate it. It is proposed that new hand-held technology will, if properly
designed, provide staff in the plant with the means of monitoring and controlling
the plant at the same time while being on site. Achieving the same goals in the
mobile system is different from the central control system for a variety of reasons
including the need to compensate for different characteristics of the mobile device
display. Each of these differences provides a possible source of error, which needs
exploring in detail, possibly using the services of a human factors expert. One
way of doing this is to use models to compare sequences of interactions that occur
within the centralised control room to achieve specified goals with an equivalent
sequence of interactions to achieve the same set of goals using the mobile device.
In both cases the interfaces support alerting mechanisms, the ability to view
information about the state of the plant, and the ability to perform actions
perhaps in response to a particular alert.

In modelling any interactive system, a distinction is made between a device
(an appliance or the software of a desk top computer, for example) and the
system which may involve people, devices and the environment. Both interface
variants for the case study also require a distinction between the interactive
system that controls the process and the process itself. The industrial process
is a fundamental part of context and, for the hand-held interface, the spatial
situation in which the device is placed must also be modelled. The two interfaces
use context in different ways: the mobile interface infers mode from physical
context; the central interface is designed to be decontextualised and separated
from the physical details of the plant.

For pragmatic reasons — the notation was used by a sponsor of this work
(BAE Systems) — the model of system behaviour is formulated in terms of stat-
echarts [Harel, 1987]. This notation has the advantage that it has been used
to explore interfaces, and in particular moding effects, see [Horrocks, 1999] and
[Degani, 1996]. Degani’s OFAN approach in particular uses additional structure
to decompose models of interactive systems into orthogonal sub-states represent-

Analysing and modelling context in mobile systems to support design 3

tank 2/
process X

product C product D

tank 1

? pump 4
. pump 1
? ﬁ__@k
r\? substrate A
< — = <— | j<—
product C/ \L;‘ 5 e substrate B o Pe’
productD PUMP pump 2

Figure 1. Example: A processing plant.

ing control elements, control mechanism (the model of the device functionality),
displays (a description of the output elements), environment (a model of rele-
vant environmental properties) and user task (the sequence of user actions that
are required to accomplish a certain task). The aim of structural decomposition
is to ease thinking about the interactive behaviour of the system as well as its
refinement.

Section 2 describes a model of plant behaviour and the following section gives
descriptions of models of the two different control devices, a central control panel
(3.1) and a hand-held control device (3.2). The analysis section (Section 4), while
briefly mentioning the need to analyse plant-specific properties, focuses on us-
ability properties and the suitability of the design in supporting the processes in
the plant. These analyses are performed on open system models, i.e., models that
contain variables whose behaviour is controlled by external processes that are
not modelled. The behaviour of such variables, which may represent user inputs
to control devices, is explored exhaustively in the course of the model-checking
analysis. An important issue in discussing the models will be how simplifying as-
sumptions were made to reduce the number of states to make models tractable.
These simpler models should not lose those features of the model that enable
a predictive analysis of the envisaged systems. Section 4 closes with an analy-
sis of the system adequacy with respect to specific tasks. For this purpose it is
demonstrated how specific user tasks and potential deviations can be described
as part of the model.

4 Karsten Loer and Michael D. Harrison

2 The plant model

The plant to be controlled (Fig. 1, numbers in circles denote physical locations
of controls in the plant), is based on the processes in the biological stage of a
sewage plant. Although the details are not important to the argument of this
paper, they are introduced to add realism to the process to be controlled by
the interactive system. While the details are fictitious, the underlying moding
structure shares features with aspects of a fast jet cockpit system analysed for
BAE Systems. The aim is that the reader may draw general conclusions about
the analysis process from this example.

Two different biochemical processes, X and Y, are contained in tank 2 and
tank 3. These processes are fed with two substrates, A and B. Process X gen-
erates product C' when supplied with substrate A. The bacteria in this process
are highly temperature and substrate sensitive, so the process must be supplied
with substrate A only at a certain range of temperatures. An earlier version of
the plant involved a single tank (1) supporting a single process (X). Because of
demand for a new substance B that can be produced by the existing infrastruc-
ture, a new process Y is introduced that generates product D when supplied
with substrate B, but requires a different temperature range than the original
process.

Because it is uneconomic to install process Y in a different plant it is proposed
(see Fig. 1) that tank 1 is shared between the processes and that there is a facility
to regulate the temperature of the substrates before entering and after leaving
processes X and Y. The flows therefore are organised as follows: substrate A can
be introduced into the system by pump 1 while substrate B can be introduced
by pump 2. Pumps 3 and 4 are bi-directional which means that substances are
transported from tank 1 to processes Y and Z in “forward” mode and from
processes to tank 1 in “backwards” mode. End products leave the plant using
pump 5. In addition pumps 1 and 2 are equipped with an optional VOLUME mode
that triggers an automatic stop when a selected target volume of the tank is
reached.

The plant is designed to satisfy a minimal set of safety requirements which
any model should also satisfy, namely:

PSR1: Substrates A and B must never leave the system unprocessed.

PSR2: If its feeding tank is empty a pump must be shut down to prevent damage.

PSR3: If the capacity of tank 1 is reached, the pump that currently feeds it must
be shut down immediately to prevent an overflow.

PSR4: Tank 1 must never hold more than one substance at any time.

The OFAN model that describes the behaviour of the plant is given in Fig. 2
and is designed to take requirements PSR1 to PSR4 into account. Part of the
process of analysing this system involves checking that these properties hold.
The model is open in the sense that some events are not controlled inside the en-
vironment model. Hence TITOPREACHED, TIBOTTOMREACHED and T1VOL _REACHED
in Fig. 2 can be fired arbitrarily during any analysis. Since pumps 2 and 4 are
precisely analogous to the specifications of pumps 1 and 3 they are not described.

Analysing and modelling context in mobile systems to support design 5

|CONTROL MECHANISM |

PUMPlCTRLM\
PlON SIG [in(TIEMPTY) PMP lOFF PIOFF_SIG
and in(PMP5OFF))/ or FULL_SIG/
P1ONDISP_SETSI 10 DISP_UNSETSIG
PMP10ON
VOL _reached/ . AP

PIVOLDISP_UNSETS

P30OFF_SIG or FULL_SIG

PUMP3CTRLM o,
P30N_SIG/ PMP3OFF " or EMPTY_SIG/
P3ONDISP_SETSI!

P3ONDISP_UNSETSIG

PMP30ON ° P3BWD_SIG and
P3FWD_SIG PMP3IDLE not FWD_SIG
[in(HOLDS_A)}/ [in(TIEMPTY))/

P3FWDDISP_SIG P3BWDDISP_SIG

P3BWD_SIG[in(TIEMPTY))
P3BWDDISP_SIG

—{ PMP3BWD

PMP3FWD)<

P3FWD_SIG[in(HOLDS_A)}/
P3FWDDISP_SIG

IPUMPSCTRLM P5OFF_SIG or EMPTY_SIG/PSONDISP_SETSIG
E——
®—>{ PMP50FF TS0N.SIG PMP50N

[in(HOLDS_C)}/P5SONDISP_UNSETSIG

a) CONTROL_MECHANISM module

ENVIRONMENT

(" TANK1CONTENTS N
[in(PMP1ON)] [in(PMP3BWD)]
—— (TIEMPTY)———
TOPREACHED | BOTTOMREACHED| [BOTTOMREACHED | TOPREACHED
[in(PMP1ON)}/ [not in(PMP1_ON)J/ [not in(PMP3_BWD))/ [[In(PMP3BWD)}/
FULL_SIG EMPTY_SIG EMPTY_SIG FULL_SIG
MULTIPLE
- J

b) ENVIRONMENT module

Figure 2. Plant model.

Only the change of the volume is specified in pumps 1 and 2 because actual value
of the volume setting is irrelevant here. The OFAN modelling technique requires
splitting the specification into control mechanisms and environment. The pump
logic is modelled in the CONTROL_MECHANISM part of the model (Fig. 2a). The
model of tank 1 describes the ENVIRONMENT controlled by the process (Fig. 2b)
and provides a simple and discrete model of what it means for the tank to hold
substances, to be full and to be empty. No constraints are placed on tanks 2 and
3 and therefore they are not modelled explicitly.

6 Karsten Loer and Michael D. Harrison

Pump 1 Volume Pump 2 Volume

AN %I-
< - < -

Pump 3 Direction Pump 4 Direction

wor] > 4>

BWD FWD BWD FWD

Pump 5

ON/OFF

Figure 3. Control Screen layout.

Tank 1 is described in terms of a minimum number of discrete changes. These
discrete changes are designed to preserve significant features of its behaviour
while facilitating efficient model checking. The tank either holds A, B, C or D
exclusively, or it can contain multiple substances. The tank can also be in a state
where the top is reached in any of these conditions in which case a full signal
is sent. When the bottom is reached the state of the tank becomes empty and
an empty signal is sent. Hence the model is simple but captures the extreme
conditions of the system.

3 Modelling the user interface

The interactive system that controls the process should reflect the following
behaviour in the interactive system: (1) to inform the operator about progress;
(2) to allow the operator to intervene appropriately to control the process; (3) to
alert the operator to alarming conditions in the plant and (4) to enable recov-
ery from these conditions. A model is required to explore usability issues and
design alternatives in the light of achieving particular system goals. The central
control mechanism provides all information in one display (Section 3.1), while
the personal appliance displays partial information (Section 3.2).

3.1 Representing and modelling the central panel

The control room, with its central panel, aims to provide the plant operator with
a comprehensive overview of the status of all devices in the plant. The paper
confines itself to modelling aspects that deal with availability and visibility of
action. Other aspects of the problem can be dealt with by using complementary
models of the interface, for example alarms structure and presentation. How we
ensure that these complementary models are consistent is beyond the scope of
this paper. The specification describes the behaviour of the displays and the
associated buttons for pump 1 (and equivalently pump 2). The effects of actions

Analysing and modelling context in mobile systems to support design 7

PUMPIUSERINTERFACE

P1ONOFF 'PIVOLUME

I PIVOLUP 'PIVOLDOWN
| |
| PIVOLUP ,(PIVOLDOWN
| DARK | DARK
UM
click_P1VOLUMJ ! click_P1VOLUP/ ! cligk_P1IVOLDOWN/
PIVOL_SIG ! SE NEWVOL,SIG‘ SETNEWVOL_SIG
p Pl |
SEYSId P1VOLUP !(PIVOLDOWN
" \ILLUMINATED) '\ILLUMINATED
1 1

P30NOFF TP3BWD TP3FWD PUMPSUSERINTERFACE
| |
b P3DIR_BWD

DARK

P1ONOFF
ILLUMINATED,

PSONDISP.

S I
cTick P 3ONOFF/ , T -
UNSETSIG et SOFF siG | FoEJVPDISPSIG plick_P3BWD/ | P3BWDDISP_SIG |click_P3FWD/ UNSETHIG click_PSONOFF/
OFF/1= " prPBONDISP_— P3BWD._SIG Ior PSONDISP_ [P3FWD_SIG click_PSONDFF/ | PSOFF_SIG
P3ONDISHL UNRETSIG P3BWDDISP/SIG | UNSETSIG P3FWDDISP_$IG b

P3DIR_BWD

ILLUMINATED

Figure 4. Initial specification of control screen behaviour.

are described in terms of the signals that are used to synchronise with the pump
description and the states in which the buttons are illuminated.

The control panel is implemented by a mouse-controlled screen (see Fig. 3).
Screen icons act as both displays and controls at the same time. CONTROL EL-
EMENTS and DISPLAYS are combined in a single USER INTERFACE (UI) module
(Fig. 4) by AND-state composition of statecharts. PUMP1USERINTERFACE there-
fore supports four simple on-off state transitions defining the effect of pressing
the relevant parts of the display.

3.2 Representing context and the hand-held control device

The hand-held control device (Fig. 5) reflects its position within the spatial or-
ganisation of the plant. Hence the ENVIRONMENT model to describe the system
involving this device is extended to take location into account. A simple discrete
model describes how an operator can move between device positions in the plant
(denoted by circled numbers in the plant diagram in Fig. 1). The user’s move-

touch screen LED

component selector
bucket selector
laser pointer

Figure 5. A hand-held control device (modified version of the “Pucketizer” device in
[Nilsson et al., 2000]).

8 Karsten Loer and Michael D. Harrison

ENVIRONMENT

e N\
PLANT_POSITIONS CTRLROOM) « @

goCTRLRMT lgoPOS 1

goPOS1 goPOS2
— —

POS6 POS1 POS2
-— -

goPOS6 goPOS1
goPOSGT goPOS5 goPOSI1 goPOS3

2goPOS3 goPOS4
20T 0T

POS5 POS3 POS4
-— -—

N goPOS5 goPOS3 J

Figure 6. Model of device positions.

ments are modelled as transitions between position states, as shown in Fig. 6.

The hand-held control device “fills” so called virtual buckets on the display
(see [Nilsson et al., 2000] for a description of the original device). These buck-
ets can be used to capture information about plant components (i.e. different
types of pumps, valves and displays) that are encountered by the operator during
their rounds. By pointing the laser pointer at a plant component and pressing
the component selector button, the status information for that component and
soft controls are transferred into the currently selected bucket. Components can
be removed from a bucket by pressing the delete button. With the bucket se-
lector button the user can cycle through buckets. The original Pucketizer can
also be used to record and play audio messages that are “attached” to com-
ponents in the plant in order to remind the operator or inform colleagues of
issues related to that device. The intended use of the device has been altered
from the published description (monitoring and annotating) to monitoring and
manipulation. Appropriate simplifications have been made to the model for the
purposes of explanation, for example the audio processing facility is not being
considered. Control elements for the manipulation of components in a bucket
shall be displayed on a touch screen (as opposed to the plain display of the orig-
inal Pucketizer), with a display area that is limited to controls for up to two
pumps at a time.

The OFAN model of the hand-held device describes both the physical buttons
that are accessible continuously and other control elements, like pump control
icons, that are available temporarily and depend on the position of the device.
When the operator approaches a pump, its controls are automatically displayed
on the screen (it does not require the laser pointer). The component may be
“transferred” into a bucket for future remote access by using the component
selector button. Controls for plant devices in locations other than the current
one can be accessed remotely if they have been previously stored in a bucket.
When a plant component is available in a bucket and the bucket is selected,
the hand-held device can transmit commands to the processing plant, using the
pump control icons.

Analysing and modelling context in mobile systems to support design 9

value of |content of|| value of |content of|| value of |content of
B1CONTENT| bucket 1 |[B2CONTENT| bucket 2 |[B3CONTENT| bucket 3

0 - 0 - 0 -
1 P1 1 P3 1 P5
2 P3 2 P5 2 P1
3 P1 & P3 3 P3 & P5 3 P1 & P5

Table 1. Encoding of sample “bucket” configurations.

Fig. 11 (see Appendix) shows an extract of the USER INTERFACE and CON-
TROL MECHANISM modules for the hand-held device. Here the user can choose
between three buckets and each bucket can store controls for up to two compo-
nents. In the BUCKETS state the current contents of each bucket x are encoded
by variables “BxCONTENT”. The encoded configurations in Table 1 cover many
situations that are relevant for the further analysis.

An ENVIRONMENT module completes the model which is given by AND
composition of the tank content model (Fig. 2b) and the device position model
in Fig. 6.

The model described here presumes that the appliance should always know
where it is in the network. This is of course a simplification. Alternative models
would allow the designer to explore interaction issues when there is a dissonance
between the states of the device and the states of the environment. A richer
model in which variables are associated with states, and actions may depend on
values of the state that have actually been updated, may lead to asking questions
of the models as whether “the action has a false belief about the state”. These
issues are important but are not considered in this paper.

4 Analysis

Model-checking is a technique for analysing whether a system model satisfies a
requirement. These requirements may be concerned with a number of issues in-
cluding safety and usability. The model checker traverses every reachable system
state to check the validity of the given property. If the property “holds”, a True
answer is obtained. Otherwise, the property is False, and the tool attempts to
create a sequence of states that lead from an initial state to the violating state.
These “traces” are a valuable output because they help understanding why a
specification is violated. There are many detailed expositions of approaches to
model checking, see for example [Clarke et al., 1999], [Huth and Ryan, 2000],
[Bérard et al., 2001] or [Holzmann, 2003].

4.1 Properties to be checked

Typical properties that would be checked for the system described in this paper
include questions about:

10 Karsten Loer and Michael D. Harrison

— system sanity: can an end-product be produced at all and does the model
reflect the reality of the system to be designed?

— safety and reliability: can an unsafe state be reached and how can the system
recover from error?

— usability and efficiency: how do different interfaces influence the productivity
of the process?

General usability properties are first considered here including the comparison
of alternative designs in terms of the paths discovered by the checker for specific
properties. A general criterion of usability is first considered, followed by an
analysis of the visibility of aspects of the system before considering a reachability

property.

Usability: The central control panel interface of the plant can be operated more
efficiently if valid combinations of pumps are operated concurrently. That the
hand-held device supports this mode of operation adequately is therefore a mat-
ter of importance. On the one hand a safety analysis (for example [Leveson, 1995])
establishes that invalid combinations of pumps are ruled out and, on the other
hand, an exploratory analysis based on model checking shows how valid combi-
nations can be reached. By exhaustively exploring whether unsafe pump combi-
nations are possible the model checker produces a trace that shows that pump 3
can be operated in BWD mode while pump 5 is ON (see final steps of sequence
4 in Fig. 7'). Such a configuration can be reached by checking the negated prop-
erty. In the given design, which has a fixed bucket configuration, pump 3 is
stored in bucket 2 while pump 5 is stored in bucket 3. A trace is generated in
which the desired combination of pumps is achieved by switching between buck-
ets. The model checker helps to demonstrate that either both pumps are stored
and selected from buckets, or one pump is stored and the control elements of
the other pump override previously displayed information as soon as that pump
is approached by the user (sequence 5 in Fig. 7). In both cases only the control
elements for a single component are visible at any time. This problem might be
resolved by modifying the design so that controls for multiple components can
be stored in a bucket — this is likely to require a scrolling mechanism, because
not all control elements can be displayed on the limited screen of the hand-held
device.

Status and operation visibility: The icons on the hand-held device are the
only means available to the user to infer the current system state and the avail-
able operations. The visibility of icons therefore is important for the operation of
the plant and the usability of the hand-held device. Two concerns for the status

! The traces in Fig. 7 are filtered and pretty-printed to illustrate the key information
of interest with respect to this paper; the standard outputs of the model checker —
ASCII text files or data tables — are not easy to read, see [Loer, 2003, Chapter 6]
for a discussion.

Analysing and modelling context in mobile systems to support design 11

and operation visibility analysis are (i) that all available operations are visible,
and (ii) that all visible operations are executable.

The OFAN model of the hand-held device defines that a function is visible if
its control elements are in the visible state. An operation for a pump is available
if either the user is at the location of that pump, or if the controls for that
pump are stored in one of the buckets (see Section 4). The device’s position in
the plant is recorded by the environment (Fig. 6), and the allocation of compo-
nents to buckets is recorded by the history variables BICONTENT, B2CONTENT and
B3CONTENT.

With this knowledge, it can be checked that an operation that is available
(antecedent state) always becomes visible (consequent state). Take pump 3, for
example. The pump is located in position 6 and may be stored in bucket 1,
which is indicated by a value of B1CONTENT greater than one, according to
the encoding in Table 1. Similarly, the encoding that corresponds to the sit-
uation where pump 3 controls are stored in bucket 2, is given by the condition
“B2CONTENT mod 2 = 1” since in that situation either pump 3 alone is in the
bucket or pump 3 and pump 5 are in there. The property that requires that if
pump 3 is stored in a bucket or is directly accessible then its controls are visible
is:

AG (((BUCKETS.B1CONTENT>1)
| (BUCKETS .B2CONTENT mod 2 = 1)
| (POSITIONS.state=P0S6))
-> AF(PUMP3_CONTROLS.state=P3CTRL_VIS))

To check that all visible operations are executable, the same general form
can be used repeatedly. This time, the antecedent state is given by the visible
state and an input action, whereas the consequent state is instantiated with a
desired system status. For example, selecting the ON/OFF icon of pump 3 when
it is visible should always switch pump 3 ON:

AG(((PUMP3_CONTROLS.state=P3CTRL_VIS)
& TAP_P30NOFF)
-> AF (PUMP3CTRLM.state=PMP30N))

The property does not hold and the model-checking trace demonstrates that
user input on screen is not processed when at the same time a different bucket
is being selected. Therefore, the analyst might wish to check that the property
holds before a different bucket is selected. For the current example the user would
choose the situation that the pump 3 controls are visible and a different bucket
is selected: “(PUMP3_CONTROLS.state=P3CTRL.VIS) & BSLCT_SIG” which would
generate the more complex property expression:

'E[(! ((PUMP3_CONTROLS.state=P3CTRL_VIS) & BSLCT_SIG))
U((! ((PUMP3_CONTROLS.state=P3CTRL_VIS) & BSLCT_SIG))
& (! (((PUMP3_CONTROLS.state=P3CTRL_VIS) & TAP_P30NOFF)
&'A[(! ((PUMP3_CONTROLS.state=P3CTRL_VIS)&BSLCT_SIG))
U((PUMP3CTRLM. state=PMP30N)

12 Karsten Loer and Michael D. Harrison

& (! ((PUMP3_CONTROLS. state=P3CTRL_VIS)
& BSLCT_SIG)))1))
& EF((PUMP3_CONTROLS.state=P3CTRL_VIS) & BSLCT_SIG))]

sequence 1: Control room interface, serial use of pumps.

sequence 2: Hand-held control device, serial use of pumps.

sequence 3: Control room interface, concurrent use of pumps.

sequence 4: Hand-held control device, concurrent use of pumps.

sequence 5: Hand-held control device, concurrent use of pumps, automatic override.
sequence 6: Hand-held control device, concurrent use of pumps, “forgetful” opera-

sequence 7: E);hd-held control device with interlock, concurrent use of pumps, in-
terlock yields save operation.
sequence 8: Hand-held control device with interlock, concurrent use of pumps, in-
terlock ignored.
Table 2. Explanation of Sequences in Fig. reffig:bisimPuckx,

This property still does not hold. The resulting trace demonstrates that a
screen input is ignored if it is made when a new device is approached by the user.
An automatic update of the display is triggered, and different control elements
become invisible. The analyst might opt to rule that situation out in one of three
ways:

1. First, the conjunct defining the before-predicate of the property above can be
extended by the action exP0S6 (representing the statechart action ex (P0S6),
which is fired when state POS6 is left). The property then states that a signal
will be sent successfully if the control elements are visible and the ON/OFF
icon is selected before the position is left or a different bucket is selected.

2. Alternatively the analyst might decide to formulate an invariant that states
that the position of pump 3 must never be left once it was visited. However
this is not a realistic possibility.

3. A further possibility is that the analyst might decide that the display override
is acceptable as long as (i) the control elements can be retrieved again by
appropriate user actions, and as long as (ii) their controls are visible only
when operations are executable. In summary, operations are executable after
their controls become visible and until they become invisible again.

The resulting property is true. Sequence 6 in Fig. 7 presents a situation where
the user keeps returning to position 6 whenever an input to pump 3 is made.
This suggests the possibility that the user might forget to store a pump in a
bucket before he moves on to a different device.

Consequently, the analyst might decide that it is necessary to change the
design of the user interface. For example, before the currently displayed controls
are removed, the user could be informed by a pop-up window that they were not
stored yet and therefore will be lost, if the user moves on.

Analysing and modelling context in mobile systems to support design 13
sequence 1 sequence 2 sequence 3 sequence 4 sequence 5 sequence 6 sequence 7 sequence 8
| goPos2 | | goPos2 | | goPos2 | | goPos2 | | goPos2 |
)) v
getPmp1ictrls getPmp1ictrls gethP1ctrIs getPmp1ictrls getPmp1ictrls
]]
openPmp1 | | openPmp1 | | openPmp1 | | openPmp1 | | openPmp1 | | openPmp1 | | openPmp1 | | openPmp1 |
! v
| savePmp1ctrls | | savePmpictrls |
' '
| goPos6 | | goPos6 | | goPos6 | | goPos6 | | goPos6 |
' v
| acknowledge | | acknowledge |
savePmp1ctrls
selectBucket1 getPmp3ctrls | getPmp3ctrls | | getPmp3ctrls | | getPmp3ctrls |
) v
closePmp1 | | closePmp1 | openPmp3 | openPmp3 | openPmp3 | openPmp3 | openPmp3 | openPmp3 |
! v
| selectBucket2 | | selectBucket2 |
' '
| savePmp3ctrls | | savePmp3ctrls |
IE’OSZ goPos2
acknowledge
getPmp3ctrls @@ getPmpictrls
selectBucket2 selectBucket1 | selectBucket1 | selectBucket1
' '
openPmp3 | | openPmp3 | closePmp1 | closePmp1 | closePmp1 | closePmp1 | closePmp1 | closePmp1 |
savePmp3ctrls goPos6
IitPSCM getP3ctrls
selectBucket2 | selectBucket2 | | selectBucket2 | selectBucket2
' '
reverseP3 | | reverseP3 | | reverseP3 | | reverseP3 | | reverseP3 | | reverseP3 | | reverseP3 | | reverseP3 |
)))))
goPos5 | goPos5 | | goPos5 | goPos5 | | goPos5 | | goPos5 |
! !
acknowledge acknowledge
getP5ctrls IESCIEI | getP5ctrls | | getP5ctrls | | getP5ctrls |
| closeP3 | | closeP3 |
' '
| openP5 | openP5 | | openP5 | | openP5 | | openP5 | | openP5 | | openP5 | | openP5 |
Figure 7. Comparison of behaviours for a goal: “Produce substance C”. — See Table

2 for explanation.

14 Karsten Loer and Michael D. Harrison

Reachability: A reachability property may be formulated for a user level “goal”
of the system. The goal chosen here for illustration is “Produce substance C”
which is a primary purpose of the system. If a property does not hold then the
checker finds one counter-example. Alternatively, the negated property may be
used to find a trace that satisfies the property. Usually the model checker only
produces a single trace giving no guarantee that it is an interesting one from
the point of view of understanding design implications. Additional traces can be
created by adding assumptions about the behaviour. This approach contrasts
with the approach given in the next section where the model checker is used to
explore a particular way in which the goal can be achieved (the task) because
the idea is to use as few behavioural assumptions as possible. We are interested
in any behaviours.

The sequences in Fig. 7 are visualisations of the traces obtained by checking
for different models if and how the plant can deliver substance C' to the outside
world. This is specified as property:

SAN1:
F (PUMP5CTRLM.state=PMP50N)
& (TANK1.state = HOLDS_C)

In this case the negated property “not SAN1” is used because instances that
satisfy the property are required. The two models involving the different inter-
faces are checked with the same property. The first sequence in Fig. 7 satisfies
the control room interface. The second sequence was generated by checking the
property against the hand-held device model. While the first two traces assume
a serial use of pumps, the third and fourth sequences show the same task for
a concurrent use of pumps. Comparison of these sequences yields information
about the additional steps that have to be performed to achieve the same goal
and, as a result of this comparison, a further assumption is introduced that an
operator might forget certain steps (see Section 4.2) is introduced. Checking
this property leads to the sixth sequence and as a result a decision to modify the
design of the hand-held device so that an interlock mechanism is introduced to
reduce the likelihood that human error might arise. This change to the design
(discussed in 4.3) leads to the seventh and eighth sequences.

The central control panel characterises the key actions to achieving the goal
since the additional actions introduced by the hand held device are concerned
exclusively with the limitations that the new platform introduces, dealing with
physical location, uploading and storing controls of the visited devices as ap-
propriate. The analysis highlights these additional steps to allow the analyst to
subject the sequence to human factors analysis and to judge if such additional
steps are likely to be problematic. The reasons why a given sequence of actions
might be problematic may not be evident from the trace but it provides an im-
portant representation that allows a human factors or domain analyst to consider
these issues. For example, action goP0S6 may involve a lengthy walk through
the plant, while action savePmp4ctrls may be performed instantaneously and
the performance of action getPmp3ctrls might depend on additional contex-
tual factors like the network quality. The current approach leaves the judgement

Analysing and modelling context in mobile systems to support design 15

of the severity of such differences to the designer, the human factors expert or
the domain expert. It makes it possible for these experts to draw important
considerations to the designer’s attention.

The nature of the assumptions that may be added to properties for checking
is next considered in more detail.

4.2 Restricting search by adding assumptions

A number of assumptions can further focus the exploration of the model. These
may be properties that are analysed alone or may focus further analysis to a
subset of paths that satisfy the assumptions. The assumptions may concern:

— robustness of the system to the achievement of goals in the face of failure.
An assumption might require that goals can be achieved even when defined
failure states eventually occur in every execution path.

— that paths will include given patterns of response by users in given situations.

System assumptions can be specified in a number of ways with varying de-
grees of advisability depending on the model checker, for example we used SMV
[Cimatti et al., 2002] and [Cadence Berkeley Laboratories, 2000]: (i) by adding
state invariants, (ii) by extending the property specification by temporal asser-
tions, and (iii) by binding the model execution to the behaviour of observer
automata. The first two options are described here while observer automata are
used in Section 4.5 [Bérard et al., 2001]).

State invariants specify that certain combinations of actions cannot occur at
any time or must occur all of the time. For example, two user inputs may be
required not to occur at the same time. An invariant can be used to specify
that only a single user input can occur at any step. So if Ey is the set of all
user-initiated events in the model and 4,5 € {1,2,...,|Ey|} then

INVAR /\eieEU (ei A _‘ngeEU,j;éi €j)

Temporal logic assertions are illustrated in the case study by the assumption
that the operator consistently forgets to store control elements on the handheld
device (see sequence 6 of Fig. 7). This is achieved by specifying an assertion
“alwaysForget” as follows:

assert alwaysForget:
G !(savePmplctrls| [...] |savePmp5ctrls);

and then checking the original property SAN1 under the assumption that this
assertion holds?:

2 Tt can be argued that such an assumption is too restrictive. For a list of patterns that
make it possible to specify more sophisticated sequential properties from a system-
centred and usability point of view, see [Dwyer et al., 1999] and [Loer, 2003, Chap-
ter 5]. Observer automata for specifying more elaborate user behaviour is demon-
strated using the example of this hand-held device in [Loer, 2003, Chapter 7].

16 Karsten Loer and Michael D. Harrison

assume alwaysForget;
using alwaysForget prove SAN1;

4.3 A suggested design alteration

Having explored the forgetfulness issue a design solution is required. It is pro-
posed that an interlock is introduced that warns the user and asks for acknowl-
edgement that the currently displayed control elements are about to disappear.
The warning is issued whenever a device position is left and the device’s control
elements are neither on screen nor stored in a bucket. The extended model in
Fig. 11 contains additional paths from PzCTRL_INVIS to PxCTRL_VIS states.

For each PUMPz_CONTROLS sub-state of chart TEMPORARY ELEMENTS add an
intermediate state PxVISWARNING and two transitions ¢; from state PxCTRL_VIS
to state PeVISWARNING, and ¢; from state PxVISWARNING to state PxCTRL_INVIS,
where label(t;) =“user_ack”. For pump 1 label(t;) is given by:

ex(P0S2) [(in(BUCKET1)
and (B1CONTENT==0 or B1CONTENT==2))
or in(BUCKET2)
or (in(BUCKET3) and (B3CONTENT<2))]

This design does not prevent the user from acknowledging and then doing noth-
ing about the problem. Checking the same properties, including the assumptions
about the forgetful user, produces Sequences 7 and 8 in Fig. 7.

4.4 User tasks as context

The OFAN models have been used without a USER TASKS component so that
the model checker can explore all possible interactions between the user and
the system. However, in the course of the analysis the analyst might wish to
further constrain the exploration to typical uses of a system as defined by task
descriptions. Tasks either capture the designer’s anticipation of system use, may
be the operating procedures that are imposed by the operating company or
regulatory authorities, or may arise as a result of careful study by task analysts
of the work that a user must carry out.

Analysis can be performed automatically in a style akin to the state explo-
ration approach of [Fields, 2001] where assumptions about user and environment
behaviour are specified as invariants or temporal logic models. The addition of
user task models focuses the analysis to two perspectives:

1. System behaviour can be investigated assuming a given user behaviour.
Hence it is possible to see if the system responds adequately to a given user
input and how different versions of the system specification — or different
system designs — respond to the same user input.

2. System reactions to particular deviations of user behaviour can be exam-
ined. For example, it might be appropriate to explore whether the system
response to particular user deviations remains within tolerable bounds. A
similar technique that makes use of rule-based system descriptions is de-
scribed in [Fields, 2001, Chapter 4].

Analysing and modelling context in mobile systems to support design 17

The analysis of the system response to a specific user behaviour requires the
specification of that behaviour in terms of states and events in a parallel stat-
echart module. This module is designed to be concurrent and to interact with
the remaining modules of the specification. The resulting state machines can be
viewed as observer automata [Bérard et al., 2001].

With a user task description in place the aim of the analysis that is carried
out here is to check (i) if the state that marks task completion can be reached
establishing the general possibility of completing the task with the system, and
(ii) how that state can be reached (via exploratory analysis) thereby investigating
the conditions under which the task can be completed. A focus of interest in the
second step might be, for example, to consider unwanted side effects during the
task execution, like additional and potentially hazardous user activities that are
not task related.

In a related approach by [Marrenbach and Leuker, 1998] normative user task
models are generated from GOMS models. These models are then used as drivers
for a simulation. The evaluation is then performed manually on the basis of
automatically generated simulation protocols [Melchior, 1987].

4.5 Task models for checking system adequacy

In this section, a simple task is considered before considering a particular task
that achieves the same goal as was discussed in the last section.

A simple task Fig. 8a shows the goal hierarchy for task:

“Once all pumps are off, switch pump 1 ON (after at most n steps delay).”
The corresponding statechart specification in Fig. 8b defines this task as a se-
quence of interleaved “wait” and “decision” states. In this task model the initial
state represents a user waiting for all pumps to be OFF. The waiting period
ends and the task state machine proceeds to the next state when the triggering
condition of the exiting transition becomes true. This condition specifies that
the user senses from the states of the DiSPLAYS module that all pumps are off.
The second state represents the user’s decision to click the ON/OFF icon of
pump 1 at some point in the future. If the user decides to click the icon, the
machine proceeds to the next step and eventually arrives in the final state. If
the user decides to wait, a self-loop is taken and the state machine remains in
the current state.

The self-loops can be taken n times before the task must progress. Failure
to progress within the time limits (that is, a delay error in [Hollnagel, 1991])
or the generation of additional actions (that is, an intrusion error) leads to a
transition into the VIOLATION state. The analysis of the system can then be
performed under the assumption that the VIOLATION state is never reached.

A less trivial task Fig. 9a shows the specification of the task “Produce sub-
stance C”. This task can be decomposed into a sequence of sub-tasks and actions
that can be mapped directly onto events in the OFAN model. The translation of

18 Karsten Loer and Michael D. Harrison

0. Switch pump 1
ON

plan 0.

1-2-3

1. Wait until all 2. Switch pump 1 3. Wait until
pumps are OFF ON n pump 1 is ON

a) HTA description

=0 USER_TASKS\

wait_until_
all_pumps_OFF

'

[in(PIONOFFdark) and in(P20ONOFFdark) and(inP30ONOFFdark)
and in(P4ONOFFdark) and in(PSONOFFdark)]
decision_switch_

- : e

P1_ON
[i<=n]/click_P1ONOFF:;i:=0

/) /8
Z % wait_until_
_8 . PI_ON
T i | en o
é S E 35 [en(P1ONOFFilluminated)]

VIOLATION END_OF_TASK
.

b) Statechart specification

J

Figure 8. Specification for USER TASK: “Once all pumps are off, switch pump 1 ON
(after at most n steps)”.

this linear task yields a sequence of interleaving wait and decision states again
(Fig. 9b).

The only flexibility allowed by these specifications are the non-deterministic
choices in the “decision” states. The task model in Fig. 10 illustrates how a more
complex user behaviour can be modelled, including plans containing loops and
an explicit erroneous user action. In state choose_option, the user can opt to
wait before he proceeds with the task. Additionally, the user might decide to
repeat the process of adding substrate A to the plant (decision loop in plan 1 of
Fig. 10a).

Finally, there is a possibility that the user chooses to perform a non-accepted
operation (erroneous input — see task 2a in plan 0 of the task hierarchy). In
this case substance A would be released into the environment using pump 5.
According to requirement PSR1 this is supposed to be ruled out by the system
logic, so that state “00PS” should not be reachable. The model checker can be
used to analyse if this requirement holds. Modelling erroneous user behaviour
can be useful, if during the model-checking analysis erroneous behaviours are to
be ruled out, except for explicitly tolerated errors.

Analysing and modelling context in mobile systems to support design 19

0. Produce
substance C

plan 0.
1-2-3-4-5-6
1. Insert substrate 2. Feed process 3. Wait until 4. Pump product 5. Wait until 6. Open pump 5
Ato plant X with substr. A pump 3 stops C to tank 1 pump 3 stops q
plan 1. plan 2. plan 4.
11-1.2 1-22 41-42
1.1. Open pump 1 [1.2. Close pump 1 | 2.1. Switch pump 3 || 2.2. Switch pump 3| |4.1. Switch pump 3 || 4.2. Switch pump 3
k I Ol m FWI n ON o BWD p
i 3 ”
a) Decomposition of task: “Produce substance C”.
(" /=0 USER_TASKS 0
[i>k] &> li<=klfi=i+1 -
S —
li<=k]/click_P2ONOFF - - " ‘
li<=k]/click_PSONOFF
[en(P1ONOFFilluminated)]
fi>1] decision_switch_ D
li<=lfi=ie]
li<=l)/click_P2ONOFF P1_OFF
— [i<=l)iclick_PIONOFF:i=0
li<=l)/click_PSONOFF
[i==m+1]
li<=m]/click_P1ONOFF
[i<=m}/click_PSONOFF - - -
;/ it_until li<=m/click_P3ONOFF:i:=0 D li<=m}fizie1
[en(P3ONOFFilluminated)]
[i<=nlfiz=i+1
ef | [
g| S
z|.z
g['c
A
[en(P3ONOFFdark)]
decision_switch_ ie=pli=it]
P5_ON
li<=ql/
click_PSON

b) UseR TAsK specification of the task hierarchy.

Figure 9. USER TASK specification for task: “Produce substance C”.

20 Karsten Loer and Michael D. Harrison

0. Produce
substance C

plan 0.
do 1
then do 2a
or2v-3-4-5-6-7-8 o
1. Insert substrate 2a. Open pump 5 2b. Feed process 3. Wait until 4. Pump product
Ato plant a. Open pump X with substr. A pump 3 stops Cto tank 1 -
Plan 1. add more
11— 12— gubstrate? plan2. plan 4.
YES 2b.1-2b.2 41-42

’ 1.1, Open pump 1 H 1.2, Close purmp 1 ‘ ’2bv1.swwg,: pump 3‘ ’2bv2.SwF|§:Ithump 3‘ ’4.1. Swng:‘ pumpSHA.Zv Swg(;l/’leump 3

a) Task hierarchy with decision steps.

USER_TASKS

[in(P1ONOFFdark) and in(P2ONOFFdark) and(inP30ONOFFdark)
and in(P4AONOFFdark) and in(PSONOFFdark)]

[i>k] decision_switch_ [i<=klfi:=i+1
P1_ON
fi<=kJclick_P2ONOFF -0 [i<=kJ/click_PIONOFF:i:=0
[i<=kJ/click_PSONOFF — <oy
wait_until_ click_P1ONOFF;i:=0
[1ON “acceptable
A e
[en(P1ONOFFilluminated)]) deviation
VIOLATION li>1] li<=]/iz=it1

decision_switch_
P1_OFF

[i<=l]/click_P2ONOFF

[i<=I)/click_PSONOFF

[i<=I)/click_P1ONOFF;i:=0

li<=m]/click_P30ONOFF;i:=0

: : [i<=m]/i:=i+1

wait_until_
P3_ON

“normal progress" [i<=m]/click_PSONOFF:i:=0
[en(P3ONOFFilluminated)]
o — - [icmnfimis] wait_until_
decision_switch_ “erroneous P5_ON
[i<=n]/click_PSONOFF P3_FWD task :
[i<=n J/cn:k,;so-l\lol-r [i<=n]/click_P3FWD;i:=0 specification!" en(PSONOFFilluminated)]

wait_until_
P3_FWD

[en(P3DIR_FWDilluminated)]

wait_P3STOP
N
~
END_OF_TASK

b) Corresponding statechart specification

Figure 10. Specification of a USER TASK with decision alternatives.

5 Conclusions

In many stages of the analysis it became clear that the suggested hand-held
device can be an aid to the operator in the plant. However, the moded interface
with its limited display capabilities requires a number of additional activities in
order to access functions. This increases the potential for omission errors that

Analysing and modelling context in mobile systems to support design 21

might arise, particularly as a result of a loss of contextual awareness. Initial
analysis revealed the need to modify the design by adding an interlock, and the
analysis was repeated for the altered design. During the analysis of the modified
design, all property specifications that were created for the original design were
re-used.

In conclusion it can be argued that none of these devices on its own provides

optimal support for the work activities in such a processing plant. As argued
in [Nilsson et al., 2000] computerised “centralised control room” activities and
manual “in the plant” activities are inseparable. In a follow-up analysis it would
remain to be shown if the combination of control interfaces provides suitable
support. In particular, one would need to show that multiple control devices do
not interfere or create situational awareness problems, especially if more than
one plant operator is involved. However, the analysis of such issues requires
the development of more comprehensive OFAN models, which also increases the
resource requirements for model checking.
Many of the issues that arose from the analysis could have been found manually.
The techniques presented here however offers a thorough exploration of the state
space which will be valuable in revealing unforeseen consequences of the design.
The paper demonstrates how a number of modes of analysis can be used to
explore contextual issues in the design of a handheld control device used to
replace the displays and control of a central control room. Simple properties
associated with the underlying system can be investigated as a sanity check that
the system model has appropriate semantics.

The paper demonstrates a method of capturing key characteristics of the con-
text model using a statechart description where discrete states represent spatial
regions. Explorations were achieved by comparing and considering sets of se-
quences of actions that reach a specified goal state. No assumptions are made
about user behaviour initially. The paper then demonstrates how user constraints
might be used in order to explore subsets of the traces that can achieve the goals.
The intention is that a human factors expert or a domain expert may be pro-
vided with sufficiently rich information that it is possible to explore narratives
surrounding the traces generated. These experts may also assist the process of
adding the appropriate constraints to the properties to be checked.

Traces can form the basis for scenarios that aid exploration of potential
problems in the design of mobile devices, e.g. the additional work that would
be involved for the system operator if subtasks are inadvertently omitted in
achieving the goal. The tool can also be used to find recovery strategies if an
operator forgets to store control elements.

While this paper outlined the technical solutions for restricting the analysis,
it will be necessary to devise strategies for appropriate guidance with respect to
(i) finding an efficient sequence of analysis steps and (ii) devising a strategy for
the introduction of appropriate assumptions on “component” behaviour. In this
context proof planning strategies will be required that avoid unnecessary future
analysis steps based on current analysis results. Finally, the size of the models
that can be analysed is limited. Suitable techniques and heuristics for semantic
abstraction of system models need to be devised to avoid the state explosion

22 Karsten Loer and Michael D. Harrison

problem. However, the size of models that can be dealt with is encouraging and
this situation can be improved through appropriate abstraction and consistency
checking.

References

[Abowd and Mynatt, 2000] Abowd, G. and Mynatt, E. (2000). Charting past, present
and future research in ubiquitous computing. ACM Transactions on Computer-
Human Interaction, 7(1):29-58.

[Bérard et al., 2001] Bérard, M., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A.,
Petrucci, L., and Schnoebelen, P. (2001). Systems and Software Verification. Model-
Checking Techniques and Tools. Springer.

[Cadence Berkeley Laboratories, 2000] Cadence Berkeley Laboratories (2000). Ca-
dence SMV Homepage. http://www-cad.eecs.berkeley.edu/ kenmcmil/smv/.

[Cimatti et al., 2002] Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore,
M., Roveri, M., Sebastiani, R., and Tacchella, A. (2002). NuSMV 2: An Open Source
Tool for Symbolic Model Checking. In Larsen, K. G. and Brinksma, E., editors,
Computer-Aided Verification (CAV ’02), volume 2404 of Lecture Notes in Computer
Science. Springer-Verlag.

[Clarke et al., 1999] Clarke, E., Grumberg, O., and Peled, D. (1999). Model Checking.
MIT Press.

[Degani, 1996] Degani, A. (1996). Modeling Human-Machine Systems: On Modes, Er-
ror, and Patterns of Interaction. PhD thesis, Georgia Institute of Technology.

[Dix et al., 2000] Dix, A., Rodden, T., Davies, N., Trevor, J., Friday, A., and Palfrey-
man, K. (2000). Exploiting space and location as a design framework for interactive
mobile systems. ACM Transactions on Computer-Human Interaction, 7(3):285-321.

[Dwyer et al., 1999] Dwyer, M., Avrunin, G., and Corbett, J. (1999). Patterns in
property specifications for finite-state verification. In 21st International Conference
on Software Engineering, Los Angeles, California.

[Fields, 2001] Fields, R. (2001). Analysis of erroneous actions in the design of critical
systems. PhD thesis, Department of Computer Science, University of York, Hesling-
ton, York, YO10 5DD.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8:231-274.

[Hollnagel, 1991] Hollnagel, E. (1991). The Phenotype of Erroneous Actions: Implica-
tions for HCI Design. In Weir, G. and Alty, J., editors, Human-Computer Interaction
in Complex Systems, pages 1-32. Academic Press.

[Holzmann, 2003] Holzmann, G. (2003). SPIN Model Checker, The: Primer and Ref-
erence Manual. Addison Wesley.

[Horrocks, 1999] Horrocks, I. (1999). Constructing the User Interfaces with State-
Charts. Addison Wesley.

[Huth and Ryan, 2000] Huth, M. R. A. and Ryan, M. D. (2000). Modelling and rea-
soning about systems. Cambridge University Press.

[Leveson, 1995] Leveson, N. G. (1995). Safeware: System Safety and Computers.
Addison-Wesley Publishing Company Inc.

[Loer, 2003] Loer, K. (2003). Model-based Automated Analysis for Dependable Inter-
active Systems. PhD thesis, Department of Computer Science, University of York,
UK. pending.

Analysing and modelling context in mobile systems to support design 23

[Marrenbach and Leuker, 1998] Marrenbach, J. and Leuker, S. (1998). Konzept zur
evaluierung technischer systeme in der entwicklungsphase. ITG Fachbericht: Technik
fiir den Menschen, 154:103-113.

[Melchior, 1987] Melchior, E.-M. (1987). Protokollanalyse als methode zur erfassung
des wissensstandes wahrend des lernprozesses beim erlernen der bedienung komplexer
gerate. In Trainingsverfahren und Lernverhalten, pages 72-81. Deutsche Gesellschaft
fiir Luft- und Raumfahrt e. V.

[Nilsson et al., 2000] Nilsson, J., Sokoler, T., Binder, T., and Wetcke, N. (2000). Be-
yond the control room: mobile devices for spatially distributed interaction on in-
dustrial process plants. In Thomas, P. and Gellersen, H.-W., editors, Handheld and
Ubiquitous Computing, HUC’2000, number 1927 in Lecture Notes in Computer Sci-
ence, pages 30—45. Springer.

[OFAN model for the hand-held device]

24 Karsten Loer and Michael D. Harrison

USER_INTERFACE
~N

-
[TEMPORARY_ELEMENTS |
4 A
PUMPI_CONTROLS & PICTRLINVIS
(en(POS2) or [in(TWOCOMPONENTSB1) ex(POS2)[not(in TWOCOMPONENTSB1)
or in(ONECOMPIB1) or in(ONECOMP1B3 or in(ONECOMPIB1) or in(ONECOMP1B3)
PICTRL_VIS or in(TWOCOMPONENTSB3)]) or in(TWOCOMPONENTSB3))] or BSLCTSIG
P1ONOFF | PIVOLUM | PIVOLUP | PIVOLDOWN
PIONOFF | PIVOLUME isp_ | ._,I PIVOLUP | | PIVOLDOWN |
SETSRor | DAR o) DARK | 0>| DARK
O/ lin(®PMPLONI [ap-PIVOLUIMES ool tap_PJVOLUP/ I tap_PIVOIDOWN/
. tap| PIONOFF/ s = \
i | ap_PIVOLUME/ | SETNEW)OL_SIG | SETNEWVOL_SIG
Pl 3 - | PIVQL, SIG | |
UNS PIONOFF I SOLDI(S;’— PIVOLUME | PIVOLUP | | P1VOLDOW] |
ILLUMINATED (N ILLUMINATED | ILLUMINATED| ILLUMINATED
PUMP3_CONTROLS | PUMPS,
P3CTRL_INVIS ! PSCTRL_INVIS | <@
(en(POS6) or [in(TWOCOMPONENTSBI1) ex(POS6)[not(in(TWOCOMPONENTSB1) ex(POSS)[Iol(in N (enfPOSS) or [in(TWOCOMPONENTSB2)
or in(ONECOMP3B1) or in(ONECOMP3B2) or in(ONECOMP3B1) or in(lONECOMP3B2) or BSLCT? 1G [or fn(ONECOMP5B2) or in(ONECOMP5B3)
P3CTRL_VIS| or in(TWOCOMPONENTSB2)]) or in(TWOCOMPONENTSB2))] or BSLCTSIG P or 1 TWOCOMPONENTSB3)])
T
|
PIONOBERSTP3ONOFF |~ P3BWD :P3FWD P3DIR_FWD [PTRE PSONOFF
>
DAR SETNIG or ! ! DARK | DAR QNDISP
| tap_P3BWD/ | tap_P3FWD/ SEYSIG o
tap_P3ONOFH PN pfEWDDISP_SIG | p3wD. SIG PSBWDDISP_SIG | p3pwD_SIG ! tap_PSONOFF/ [in(PMP3| ON)
P3ON_SIG | of PFONDISP_ - | of P3ONDISP_ . | PSON SIG
\p_P3ONOFF/ | P‘SBWDDISP,SIG of | UNSETSIG FTSFWDDISP,SIG o) | = tab_P3ONOFF/
P30OFF_SIG | [in(PMP3_BWD)] | [in(PMP3_FWD)] PsONDISP. PSOFF._SIG
Psos Ssg P30ONOFF \ P3DIR_BWD \ P3DIR_FWD I | uNSeTsiG PSONOFF
UNSETSIG | ILLUMINATED | ILLUMINATED | ILLUMINATED | ILLUMINATED
N ! /
[PERMANENT_ELEMENTS |
T T
BUCKET_SLCT_BUTTON | COMPONENT_DEL_BUTTON | COMPONENT_GRAB_BUTTON
el CGRABBTTN/
@>{BSBTTN_RELEASED] | @»|CDBTTN_RELEASED | CGBTTN_RELEASED CGRAB_LONGSIG
| ressCDELBTTN | pressCGRABBTTN
pressBIBTIN opgprryy | © wlcDB(BTTNG | " relCGRABH CDBTTN_DELAY
BSLETSIG | D | AB
[BDBTTN_PRESSED | | [CDBTTN_PRESSED \
(N J
CONTROL_MECHANISM
(BUCKETS N
("~ BUCKET2 N
(CGRABLINGSIG and (CGRABLINGSIG and
[in(POS6)])/ EMPTYB2 [in(POS3)])/
B2CONTENT:= 'CONTENT:=2
CrRMvSIG/ B2ZCONTENT==0 cpyysicy
B2CONTENT:=0 B2CONTENT:=0
—
B3CONTENT:: ONECOMP3B2| B]CONTENT::]IMTB
/ BUCKET! \ CRMVSIG CGRABLONGSIG CRMVSIG CGRABLONGSIG]
, , [in(TWOCQMP3B2Y/| [in(POS5)// B2CONTHNT==3 [infTWOCOMPIB2)/ | [in(POS6))/
{5}?;;2370510 and EMPTYBI (CGRABL{S‘(Gps(;g 6")’]‘3 B2CONTENT:=1 | B2CONTENT:=3 B2CONTENT:=2 B20ONTENT:13
BICONTENT:= BICONMENT—0 CONTENT:=2 [PSLCTS] TWOCOMPONENTSB2
CRMVSIG/ CRMVSIG/ CSLCTSIG
BICONTENT:=0 BICONTENT:=0
L [rwocomp1B2] «——Jrwocomp3B2
ONECOMPIBI |5 armremi INTB g iconmant=m " L ONECOMP3BI _ CSLCTSIG)
CRMVSIG CGRABLONGSIG CRMVSIG CGRABLONGSIG ‘ BSLCTSIG
[in(TWOCQMP3B2)/| [in(POS6))/ BICONTENT==3 [inTwOCOMPIB2} [in(POS2))/ Ve ~
BICONTENT:=1 BICONTENT:=3 BICONTENT:=2 | BICONTENT:13 BUCKET3
(CGRABLINGSIG and (CGRABLINGSIG and
CSLTC\¥SIEOMPONENTSBI (in(POS3)1 EMPTYB3 (in(POS)]
BSLCTSIG B3CONTENT:= B3coNMENT=0 CONTENT:=2
|TWOCOMP 1B1|«———TWOCOMP3BI CRMVSIG/ CRMVSIG/
q CSLCTSIG) B3CONTENT:=0 B3CONTENT:=0
—
ONECOMP1B3I BICONTENT== IMTB B3CONTENT==2 IONECOMP3B3
CRMVSIG CGRABLONGSIG CRMVSIG CGRABLONGS$IG|
[in(TWOCOMP3B2J/| [in(POS2)}/ B3CONTENT==3 [in(TWOCOMPIB2]/| [in(POS5)]/
B3CONTENT:=1 B3CONTENT:=3 B3CONTENT:=2 B3CONTENT:=3
TWOCOMPONENTSB3
? CSLCTSIG
[rwocomp1B3|«—Jrwocomp3B3
CSLCTSIG
- J
o J

Figure 11. OFAN model for the hand-held device: The USER INTERFACE and CONTROL
MECHANISM modules.

