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Abstract: Function allocation, as a process used in the construction of dependable 
complex systems, is a significant aspect of the design and implementation of 
interactive systems. It involves a documented and rational process for deciding 
what aspects of the system should be controlled by which human roles in the 
system and how the system should be automated to support these roles 
effectively. As computer systems have become more advanced, and the control 
of systems more complex, the notion of dynamic function allocation becomes 
increasingly desirable where in certain situations the automation may take over 
or give back function to the human user. In this paper we explore a further 
variant of dynamic function allocation that reflects typical work activity where 
the dynamic scheduling of activities takes place on the time dimension. The 
paper discusses this approach to dynamic function allocation called dynamic 
function scheduling and discusses the role that timed model checking may 
play in helping identify dependable dynamic function scheduling solutions. 
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1. INTRODUCTION 

Complex work systems typically involve teams of people co-operating 
and using technology to achieve work goals. These goals are usually 
achieved under time constraint. In order to achieve them in a timely and 
reliable manner, the implementation of the functions that achieve the goals 
may vary according to situation. How functions are most reliably 
implemented in different situations is a vital and somewhat under-
represented aspect of building a dependable system. This topic is dealt with 
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in research into dynamic function allocation – see (Hancock and Scallen, 
1998) and (Scerbo, 1996) for an overview. The overall focus of this work is 
about how automation can be used adaptively, according to the current 
demands on the system, and the capabilities and workload levels of the 
agents involved, in order to offer optimal support to the human operator. 

The problem of function allocation is to take a set of functions that 
describe the work that the system is to do, in the contexts in which the work 
is to be carried out, and to decide how these functions should be 
implemented by the roles that are defined within the system. Methods are 
required that will enable system engineers both to take task descriptions and 
consider how the actions within the tasks should be implemented, and to take 
specific dynamic function allocation designs and analyse their implications. 
Typically the methods that exist are concerned with static allocations, that is, 
the decision about how roles are allocated to function occur at design time, 
see for example (IJHCS, 2000). In practice, it makes sense to consider the 
appropriateness of different configurations in different situations under 
different conditions of workload and different requirements of criteria such 
as situation awareness. Hence an in-car navigation system may have a 
different level of automation in which certain default inputs are presumed 
when the car is moving or in gear than when the car is stationary and in 
neutral. 

In addition to sharing and trading functions among humans and 
automation, it may be possible to change the way functions are allocated in 
time in order to meet the required deadlines. Given that many modern work 
situations are rapidly evolving or highly scheduled, it is surprising how few 
human factors studies have attempted to make a conceptual or empirical 
contribution to understanding the temporal organisation of work – however, 
see for instance (DeKeyser, 1995), (Svenson and Maule, 1993) or 
(Hollnagel, 2000) for exceptions. Of particular relevance for designing 
function scheduling processes is a better understanding of temporal 
awareness (Grosjean and Terrier, 1999) and of the use of time as information 
(Michon, 1990), (Block, 1990). The authors are aware of little work that has 
been published on analytic approaches to function allocation, such as the 
analysis of a hydraulics system by (Doherty et al., 2001) using the HyTech 
hybrid checker (Henzinger et al., 1997). 

There are a number of properties of temporal decision processes that are 
important to be understood if dynamic function scheduling is to enhance the 
dependability of systems. These include: (i) task arrival rates, 
(ii) predictability of task arrival, (iii) the agents' awareness of task arrivals 
and event durations (and situation awareness in general), (iv) the agents' 
control mode (event-driven or anticipative; scrambled, opportunistic, tactical 
or strategic), (v) the uncertainty about future system states, monitoring and 
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control lags, (vi)  the pre-emptability of tasks, (vii) the deadlines of tasks 
relative to each other, (viii) a task's contribution to the system's objectives 
(value), (ix)  the current priorities among system objectives, (x)   the 
available resources and their service rates, (xi)  the compatibility of 
concurrent tasks, (xii) the feasibility of combining, interleaving, postponing 
or dropping tasks, and (xiii) the discretion for satisficing and trading-off 
among system objectives. 

This paper shall focus on a subset of these issues in the context of a 
particular system. The aim is to assess the role that timed model checking 
can play in helping to understand the trade-offs associated with decisions 
and thereby illustrate how the design of dynamic function allocation in 
general, and dynamic function scheduling in particular, can be aided by such 
checking. The paper is concerned with analysis techniques to support further 
exploration of dynamic function scheduling. 

 In Section 2 a case study based on a paintshop (Hildebrandt and 
Harrison, 2003) is introduced that illustrates a simple situation in which 
decision to delay or interrupt a function can be of value. Although it is 
relatively uncomplicated, this system raises important issues about the 
appropriate use of analysis techniques and problems associated with scaling 
these techniques. In Section 3 the uppaal (Larsen et al., 1997) model of 
the paintshop system is described, and this is used as the basis of the analysis 
in Section 4. The uppaal hybrid model checker is capable of finding traces 
or counter-examples where constraints are broken. In a work design process, 
these traces can be used to generate scenarios where the timing constraints 
are violated. These scenarios form the basis for developing more appropriate 
scheduling and resource allocation mechanisms. The paper describes the 
model, the constraints that were used, and discusses the results of checking a 
variety of safety properties. The paper concludes with a discussion. 
Conclusions are drawn about how these techniques might be used more 
systematically, and objectives for future work are discussed. 

2. CASE STUDY 

The purpose of the example is that the following features of the design 
may be considered. 
1. How resources can be allocated flexibly among multiple functions. 
2. How functions can be allocated to agents along the system's time-line. 
3. The action sequence of operators and what overall strategies for the 

implementation of a given function may be available. For instance, 
decisions may have to be made regarding the postponement, interleaving, 
synchronisation, speeding up or slowing down of function servicing, or 
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regarding manual or automatic control. It may be appropriate to attach a 
notion of “value” to functions to describe the relative importance of a 
function and to allow the creation of priority structures among concurrent 
functions. Temporal properties of functions and agents are parameters in 
the decision process as well as variables that can be manipulated, i.e., 
temporal decisions are both based on and about time. 

incoming boxes painted boxespaint stationsoverflow storage queuing area

 

Figure 1. Sketch of the paintshop (Hildebrandt and Harrison, 2003). 
 

Paintshop involves a conveyer belt that transports boxes to two parallel 
paint stations (Figure 1). Items to be painted enter the system at varying 
frequencies. A monetary reward is earned depending on the number of boxes 
painted, the number of boxes spoiled and any repair costs incurred. This 
system is also designed as a micro-world experiment and actual user 
strategies have been explored using experiment rather than model checking 
(Hildebrandt and Harrison, 2003). Boxes arrive at a distribution lift that 
allocates items to one of the stations. This process can be done automatically 
whereby the system allocates the box to an empty station. It can also be 
achieved by the operator overriding the decision of the distribution algorithm 
by using the ‘up’ and ‘down’ buttons forcing the lift in the specified 
direction. Once the designated production line becomes available, the box is 
moved onto the paint station and the lift returns to the default position. The 
paint station can be set to automatic mode (which is the default) or manual 
mode. In automatic mode, the paint station will automatically specify the 
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number of coats to be painted. The paint cycle for each coat of paint consists 
of a spraying period and a drying period. With each paint coat, the box 
whose initial colour is white will become darker. The rate of paint flowing 
through the nozzles is displayed just above each production line. The flow 
rate may decrease if nozzles become blocked or increase if the nozzle leaks. 
The paint process can also be performed manually. To paint an item, the 
operator has to click on a box and keep the mouse button pressed for a 
specified period of time. After this period the item will assume the new 
shade. If the mouse button is released before the minimum paint time the 
box is not painted and a spoiled box is released. In the model described in 
the next section, painting takes five time units in the automatic case and two 
time units in the manual case. When a nozzle ceases to function properly it 
can be repaired or replaced. Replacing a nozzle incurs no time cost but does 
incur a certain monetary cost. Repairing the nozzle incurs no monetary cost 
but causes a delay before the nozzle can be used again. In both the micro-
world experiments and the model the cost and time variables were 
manipulated. Depending on the rate at which boxes arrive at the station, the 
state of the nozzles and the strategy used to employ the paint stations a 
certain proportion of the possible boxes will be painted. Boxes can fail to be 
painted and therefore rejected either because the appropriate procedure has 
not been carried out inside the paint station or because the queue of boxes 
waiting to be painted exceeds a certain number. 

3. THE MODEL 

The uppaal tool (Larsen et al., 1997) was chosen to perform the 
modelling and analysis, as it permits the analysis of networks of linear 
hybrid automata with clocks whose rates may vary within a certain interval, 
is readily available and easy to use. The makes it possible to take different 
temporal reference systems into account, for example, the real-world 
frequency of items on the belt and the operator’s perception of the frequency 
under varying workload. Automata may communicate either by means of 
integer variables (which are global) or by using binary communication 
channels. Communication occurs as a result of two process synchronisations 
using receiving actions a? and sending actions a!. Guards are used to 
describe the circumstances in which communications can take place. 
Automata may be guarded by conditions involving clocks that can be used to 
represent delays or time invariants. It is not within the scope of this paper to 
describe the syntax and semantics of  uppaal in detail, however the 
examples given below should be sufficiently clear to give the spirit of the 
approach. Uppaal provides tools for the simulation of systems – the state 
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transition diagrams are animated, and the inter-process communication is 
displayed as an animated message sequence chart. The tool also supports 
analysis by state exploration. Thus it is possible to express and check for 
reachability properties such as: 

 
1. “Is it possible to reach a state where the clock x is greater than 20?” 
2. “Is it possible to reach a state where all boxes have been painted?” 
 
It is beyond the scope of the paper to describe the details of the verifier 
– it suffices to describe both the properties that have been checked and those 
that could be checked. 

 
The model consists of seven concurrent processes. The physical 

characteristics of the system are modelled as follows: 
1. A dispatcher automaton dispatches objects to the incoming queue with a 

frequency that is determined by the workload – frequency is manipulated 
in the micro-world experiments. In the model that is illustrated in Figure 
2a constantly high workload is assumed. This is encoded in terms of 
frequency, i.e. a new box arrives on the belt every two units (i.e. 
workload=2, values representing a medium and low workload are 3 
and 4, see Section 4.5). In order to reduce the complexity of the analysis, 
the number of boxes in the model is limited to 10. While it is 
acknowledged that this is a great simplification in comparison to the real-
world continuous flows, this small model is sufficient for the purposes of 
this paper. 

a)

dispatcher

t<=workload

t>=workload, num>0
next!
t:=0,num:= num-1

t>=1
t:=0

b)

receive

finish?
painted+=1,
win+=1

painted<boxes

 

Figure 2. The (a) incoming and (b) receiving conveyor belts. (Key: t: clock, num: number of 
boxes yet to be dispatched, workload: encoding of workload as dispatch frequency, 
painted: number of finished boxes, win: win). 
 
2. The paint station automaton (see Figure 3) – of which there are two 

instances (station1 and station2) – models automatic and manual 
operation (top and bottom part of the automaton), fault occurrence and 
repair and replace costs. The severity of faults increases over time. A 
nozzle may break as soon as two items are painted but it will break for 
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sure once four items are painted. Repairs cost 24 time units (see locations 
repairingA and repairingM). For a particular user, replacing a 
nozzle costs four tokens (see user automaton discussed below – note 
that such costs can vary, for instance, depending on a user’s skills). 

auto

autoOccupied

u<=(durAuto)

manOccupied

u<=(durMan) manPainting
u<=(durMan)

manFinished

man

repairingA

u<=24

repairingM
u<=24

avail!

u:=0,
stationUsed:=1

fault<4

finish!
u>=(durAuto)

fault:=(fault<4 ? fault+1 : fault)

sbutton?
mstat==0

mstat:=1

u<(durMan)
sbutton?
u:=0, mstat:=0

u>=(durMan)
sbutton?
mstat:=0

avail!

u:=0,
stationUsed:=1

fault<4

finish!
fault:=(fault<4 ? fault+1 : fault)

mbutton?
leaveauto:=1

mbutton?

u>1
u:=0

replace?
fault:=0

repair?
u:=0,
rep:=1

u>=24
fault:=0,
u:=0

repair?
u:=0

u>=24
fault:=0,
u:=0

replace?
fault:=0

finish! fault:=4fault>2

u>=(durAuto), fault>2
finish!

fault:=4

 

Figure 3. The paint station (Key: u: clock, fault: fault severity, mbutton: toggle manual/auto-
matic painting, sbutton: press/release manual paint button, mstat: global flag denoting that 
manual painting is in  progress, leaveauto: decoration that flags a mode change to manual 
mode). 

3. The waiter automaton models the part of the system containing the queue 
of boxes waiting to be serviced by the paint stations as well as the lift 
that causes the boxes to be moved to one paint station or the other. It also 
models a repository for unpainted boxes that have fallen of the queue 
because the queue is too long, see Figure 4. 

4. The final physical element, the receiver, models the belt of finished items, 
see Figure 2b. 

3.1 The human interface and scheduling mechanism 

Two processes are designed to reflect what the user does. User dispatches 
conditional user inputs and models simple repair/replace decisions: “if the 
fault (variables p1fault and p2fault) is bigger than 3 and sufficient 
funds (variable win) are available, replace a nozzle, otherwise perform a 
repair”, see Figure 5a. 
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autowait

upwait

downwait
up?
p1clock:=0

wait<=4

wait>4
unpainted+=1, wait:=4

auto?
wait<=4

down?
p2clock:=0

wait<=4

auto?
wait<=4

down?
p2clock:=0

wait<=4

up?
p1clock:=0

wait<=4

wait>4
unpainted+=1,wait:=4

avail1?
wait-=1

wait>0,
wait<=4

wait>4
unpainted+=1,wait:=4

avail2?
wait-=1

wait>0,
wait<=4

newitem?
wait+=1

wait<=4

wait>0,
wait<=4
avail2?
wait-=1

wait>0,
wait<=4
avail1?
wait-=1

newitem?
wait+=1

wait<=4

newitem?
wait+=1

wait<=4

 

Figure 4. Boxes waiting to be channelled to the appropriate station (Key: wait: dispatched 
items waiting in queuing area, unpainted: overflow queue ot items failing to reach paint 
station, p1clock,p2clock: local clocks of paint stations). 

a)

thinking

p1fault>3,
win>=4
replace1!
win-=4

p2fault>3
repair2!

p2fault>3,
win>=4
replace2!
win-=4

p1fault>3
repair1!

b)

control

m1button!

m2button!

s2button!up!

down!

auto!

s1button!

 

Figure 5. Simple models of (a) a user who implements a simple strategy and (b) a random 
user  (Key: win: current earnings; p1fault,p2fault: fault severity of stations 1 and 2; 
repair1,repair2,replace1,replace2: repair/replace decision; auto: toggle 
automatic station selection; up/down: select paint station manually; m1button, 
m2button: toggle manual/automatic painting; s1button, s2button: press/release 
manual paint button). 
 

  The randomizer (Figure 5b) provides an alternative process to the user 
which dispatches unconditional user inputs that are consumed by other 
processes (“monkey at the keyboard” style) but only generated when no 
internal synchronisations can be performed. 
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4. THE ANALYSIS 

Analysis was performed on the system in a number of steps. Starting with 
some sanity checks to gain confidence that the model performs as intended, 
properties are then formulated in order to investigate possible scheduling 
decisions. 

4.1 Sanity Checks 

At this level properties are intended to assess whether the model provides 
the base functionality of the system effectively. Properties in this category 
include deadlock freedom and the reachability of system states that represent 
crucial system features, such as (i) different lengths of the drop-out queue, 
(ii) switching between automatic and manual paint mode, (iii) switching 
between paint stations and (iv) the concurrent operation of both paint 
stations. 

4.2 Reachability of system goals 

Once the results of the analysis in Section 4.1 give confidence that the 
model behaves as intended, the next stage is to assess whether system goals 
can be reached. For instance: 
 

P1: Can all n items be painted?  
The property (“E<> painted==n”) is true for 0≤n≤10. 

 
When the negated property (here, the never-claim “A[] painted!=n” 

– “n items can never be painted”) is checked, the model checker produces a 
trace that can be simulated. Stepping through that trace, the analyst is guided 
through a scenario where both manual and automatic mode of painting are 
applied. The simulation and the sequence chart provided by uppaal can 
point to simple flaws or instances of unexpected behaviour of the model. In 
order to obtain a broader understanding of the reasons behind flaws, 
additional traces of similar instances are required. However, the tool only 
produces a single trace for each property. Additional traces, focussing on 
different aspects that may be considered contributing factors to a discovered 
problem, require a refinement of the property. For instance: 

 
P2: Can all n items be painted, using only a single paint station? 
For the analysis of this property the verifier shall explore only paths that 
involve a single instance of the paint station process. This is achieved by 
temporarily decorating the paint station by a write-once flag 
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stationUsed (see Figure 3) that cannot be reset and that would be set 
to 1 if the second paint station was used. Property P1 then needs to be 
extended by a condition “stationUsed==0”. 

4.3 Finding out minimal durations under different 
conditions 

Having considered properties associated with the verification of the 
model and with the reachability and mechanisms for achieving specific 
goals, the next stage is to consider temporal issues associated with the paint 
shop model. 

 
P3:  Can all n items be painted in m time units, using only a single paint 
station? 
“E<>(painted==n and stationUsed==0 and gtime==m)” 
This property was checked for different values m of a global clock gtime, 
in order to  establish the minimal duration2 (in this case 22 units for ten 
items, but the nozzle needs to be replaced at least twice, so the win is 
only two units – see first row of Table 1). Similarly, one can ask: 
 
P4: Can all items be painted in m time units, using both  paint stations? 
Again, a minimal duration of 22 time units was found. However, while 
the execution time remains the same this time, only one of the nozzles 
needs to be replaced, so the monetary win is six units. 
 

All traces above confirm that the fastest way to perform the work is to opt to 
paint it manually (compare top and bottom of Table 1). The effect the 
automatic strategy had on the duration was then analysed. 

 
P5: What is the minimal time required to paint all items automatically? 
Here, user intervention is recorded by decorating the paint-station 
automaton with a temporary global write-once flag leaveauto 
(following the procedure described for property P2 above). The minimal 
time required to paint all items without manual intervention and by using 
both stations is 29 units. 

 
 

 
2 From version 3.4 of uppaal it is possible to access execution duration for the trace that is 

generated. This is achieved using the “fastest” option within the “diagnostic trace” menu. 
This feature of the tool consumes a lot of resources and it turned out to be easier to use the 
cruder approach of iterating over m. 
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Table 1. Minimal paint durations for manual and automatic mode allowing replacement costs. 
Minimum required time for manual painting alone; allow replace 

number of items duration (win) 
1 2 3 4 5 6 7 8 9 10 

1 station    duration 
win 

4 
(1) 

6 
(2) 

8 
(3) 

10 
(4) 

12 
(1) 

14 
(2) 

16 
(3) 

18 
(4) 

20 
(1) 

22 
(2) 

2 stations   duration 
win 

4 
(1) 

6 
(2) 

8 
(3) 

10 
(4) 

12 
(5) 

14 
(6) 

16 
(7) 

18 
(8) 

20 
(5) 

22 
(6) 

 
Minimum required time for automatic painting alone; allow replace 

number of items duration (win) 
1 2 3 4 5 6 7 8 9 10 

1 station    duration 
win 

7 
(1) 

12 
(2) 

17 
(3) 

22 
(4) 

27 
(1) 

32 
(2) 

37 
(3) 

42 
(4) 

47 
(1) 

52 
(2) 

2 stations   duration 
win 

8 
(1) 

10 
(2) 

12 
(3) 

14 
(4) 

17 
(5) 

19 
(6) 

22 
(7) 

24 
(8) 

27 
(5) 

29 
(6) 

 
Table 2. Minimal paint durations for manual and automatic mode for maximising earnings. 
Minimum required time for manual painting alone; maximise win 

number of items duration (win) 
1 2 3 4 5 6 7 8 9 10 

1 station    duration 
win 

4 
(1) 

6 
(2) 

8 
(3) 

10 
(4) 

34 
(5) 

36 
(6) 

38 
(7) 

40 
(8) 

64 
(9) 

66 
(10) 

2 stations   duration 
win 

4 
(1) 

6 
(2) 

8 
(3) 

10 
(4) 

12 
(5) 

14 
(6) 

16 
(7) 

18 
(8) 

42 
(9) 

44 
(10) 

 
Minimum required time for automatic painting alone; max. win 

number of items duration (win) 
1 2 3 4 5 6 7 8 9 10 

1 station    duration 
win 

7 
(1) 

12 
(2) 

17 
(3) 

22 
(4) 

51 
(5) 

56 
(6) 

61 
(7) 

66 
(8) 

95 
(9) 

100 
(10) 

2 stations   duration 
win 

7 
(1) 

9 
(2) 

12 
(3) 

14 
(4) 

17 
(5) 

19 
(6) 

22 
(7) 

24 
(8) 

48 
(9) 

50 
(10) 

 
The remaining row in Table 1 was  obtained by analysing property P3 

extended by condition “leaveauto==0”. The analysis so far yields the 
following findings that might be used to devise operation strategies: 

 
1. Painting items manually is faster than automatic painting. 
2. Using both stations does not necessarily gain a time advantage over using 

a single station only. 
3. However, using both stations can save repair costs if the operator is 

prepared to take the risk and leave one station broken. 
 
It should be noted that the temporal properties of this stage could have 

been calculated in an alternative way by using a simple numeric model of the 
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processes. However, the additional effort of creating the uppaal model 
pays off when multi-valued decisions are considered, as the following 
section demonstrates. 

4.4 Focussing on monetary costs 

So far the analysis has only been concerned with temporal costs and 
effects. The following properties have been used to check temporal and 
monetary costs associated with replacing faulty nozzles. 

 
P6:  Can all boxes be painted without losing money? 
This property forces a search strategy where nozzle replacements are 
avoided. The resulting trace demonstrates that the task can be completed 
in 50 time units. The simulation demonstrates that both stations are used 
to paint in automatic mode until they break; then one station is repaired. 
 
P7: What is the shortest time for painting everything without losing 
money? 
The analysis yields that best performance (finishing the task in 44 time 
units) can be achieved, and the new trace suggests that this performance 
can only be achieved if manual control is selected. Again, both stations 
break, but the trace indicates that only one station needs to be repaired. 
 
P8: Can all items be painted without losing money, using only one paint 
station? 
This analysis is dual to P6, but focussing on a single paint station only 
(using the boolean flag procedure described in P3). This property is 
concerned with the robustness of the system and the additional temporal 
costs. The strategy exhibited by the model-checking trace could be used 
by an operator who does not have time pressure and therefore aims at 
maximising the win. 

 
Analysing the durations under the assumption that temporal costs are 

secondary to monetary costs (see summary in Table 2) reveals again that the 
best possible performance can be achieved by using both stations in manual 
mode, but the required duration increases to 44 units. 

The results produced so far give some indication of what a good 
operation strategy might be under temporal and monetary cost extremes. 
However, it remains the task of the system designer to resolve if any of these 
strategies are suitable, and if they should be implemented as part of the 
system or as part of the operator training. For an informed decision it also 
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remains necessary to draw on human-factors experience. A crucial additional 
factor that will influence this decision is the operator workload. 

4.5 Variable workload 

The analysis so far was performed assuming a constantly high workload, 
given by the dispatcher model in Figure 2a. The analysis can be repeated – 
using increasing, decreasing or alternating workloads – in order to collect 
insights about further strategies. Possible modifications of the dispatcher 
automaton are shown in Figure 6. However, for the purpose of this paper this 
analysis is omitted here. 

disp

t<=workload

t>=workload, num>0
next!
t:=0,num:= num-1,
workload := (num==7 ? 3 : workload),
workload := (num==3 ? 2 : workload)

t>=1
t:=0 disp

t<=workload

t>=workload, num>0
next!
t:=0,num:= num-1,
workload := (num==7 ? 3 : workload),
workload := (num==3 ? 4 : workload)

t>=1
t:=0 disp

t<=workload

t>=workload, num>0
next!
t:=0,num:= num-1,
workload := (num==7 ? 3 : workload),
workload := (num==5 ? 4 : workload),
workload := (num==3 ? 2 : workload)

t>=1
t:=0

 

Figure 6. Modelling (a) increasing, (b) decreasing and (c) alternating workloads. 

5. CONCLUSIONS 

This paper discussed the feasibility of using model checking techniques 
to explore scheduling constraints in dynamic production systems under 
worst-case fault conditions. How the process might help in articulating the 
problems that must be resolved by human factors experts has also been 
briefly considered. 

A number of problems emerged during the modelling and the analysis 
which could limit the utility of a model checking approach. First, model 
checking is not yet a light-weight method. Generating a state model is an 
effortful and time-consuming exercise, unless a model of the physical 
characteristics of the system has been produced in earlier stages of the 
design process. This is a problem which occurs equally with most other 
formal modelling approaches, such as for instance micro-world simulation 
and is reduced as the modeller’s skill increases. 

Simplification of some physical characteristics (see Section 3) makes the 
model less representative of the physical system, and failures related to the 
interactions of these non-linear processes might be missed. 

  Another problem is introduced when the human operator is to be 
modelled. It is important to make the right assumptions about the operator's 
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control mode (scrambled, opportunistic, tactical or strategic), the accuracy of 
the operator's temporal awareness (knowledge of available and required 
time, dynamics of change, probability of events, and so forth) and the 
operator's general situation awareness when modelling temporal reasoning 
performance. Formal modelling may improve the design process as it makes 
explicit the designer's assumptions about agents' capabilities, performance 
and availability, about the value and priority structure of functions in the 
system, and about the costs and benefits of a particular control strategy. 
Although the richness of naturalistic planning and control processes, and the  
complexity of scheduling decisions, may not be captured by these models, 
they help to assess how robustly a set of prototypical control strategies 
perform across a range of operational circumstances. This preliminary 
investigation explored only very simple strategies, and only analysed the 
effects on safety properties. These strategies tend to be focussed on extreme 
situations, such as gaining maximal earnings in a minimal duration. 
Consequently, the stated goal of  assessing under what circumstances certain 
action can and should be delayed is limited to extreme behaviour. This is 
useful, since it is often extreme situations where failure has particularly 
dangerous effects. Although solutions to resolve extreme situations are 
relevant, it is essential to also consider the “normal” operating conditions. It 
is argued that these techniques are also useful in posing the problems clearly 
that must be solved by human factors experts for the particular system. 

For the purpose of informing design decisions the value provided by 
traces that are obtained from the model checker is limited. The traces that are 
obtained represent single instances of behaviour that may indicate problems 
in the design. The uppaal tool supports the understanding of the 
component behaviour in a trace by providing animations of the automata. 
Additionally, the message sequence chart visualisation provides insights 
about the inter-process communication in the trace. However, single 
instances of behaviour rarely provide sufficient insights to discover problem 
tendencies. For a broader understanding of a problem, a set of traces that 
describe the same problem would be required. To our knowledge, no tool 
currently provides such information. The analysis of scheduling trade-offs 
will most likely require a combination of several different approaches. These 
will include queuing models, production scheduling models, simulation 
approaches, work and task analysis techniques, and experimentation. 

Future work will concentrate on assessing the contributions that each of 
these approaches can make towards improving our understanding of 
temporal planning and control, and their limitations in representing temporal 
properties. The appropriate method or methods for analysing flexible 
scheduling might be domain specific, as work domains themselves differ 
dramatically in their temporal properties (e.g. slow versus fast, synchronised 
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versus independent, continuous versus discrete, periodic versus aperiodic, 
concurrent versus sequential, event-driven versus self-paced). 

Work on elaborating the uppaal model of the paintshop continues. 
Parallel to this activity, a javascript micro-world simulation of the system 
has been developed in order to perform experimental studies (Hildebrandt 
and Harrison, 2003). In these studies, a human operator had the task of 
controlling  paintshop. The study is currently being evaluated, and the results 
will be used to refine the uppaal model. 
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