
Towards usable and relevant model checking techniques for the analysis of
dependable interactive systems

Karsten Loer and Michael Harrison
BAE SYSTEMS Dependable Computing Systems Centre

Department of Computer Science, University of York
York, YO10 5DD, UK

{Karsten.Loer, Michael.Harrison}@cs.york.ac.uk

Abstract

Model checking is a formal technique for the automated
analysis of system models against formal requirements.
Once a suitable model and property have been specified, no
further interaction by the analyst is required. However, this
does not make the method necessarily user friendly since
the checker must be provided with appropriate and complex
input data. Furthermore, counter-examples generated by
the system are often difficult to interpret. Because of this
complexity, model checking is not commonly used, and ex-
haustive exploration of system models based on finite state
descriptions is not exploited within industrial dependable
systems design. The paper describes the development of an
integrated collection of tools around SMV, intended to make
it more accessible to practicing software engineers and in
particular those concerned with the human interface issues
in complex safety critical systems.

1 Introduction

An obstacle to the take-up of formal methods is the in-
comprehensibility of the notations and tools that underly
them. In practice only the originators of the methods or
committed (usually academic) users will accept the cost
of them. Model checking, a process that involves the ex-
haustive analysis of finite state descriptions appears to be a
promising approach to making the benefits of formal meth-
ods more accessible to designers.

The paper focusses specifically on one such
tool, the SMV model checker and its derivatives
[Cimatti et al., 2002]. It describes the development of
an integrated system based on SMV, intended to make
it more accessible to practicing engineers (a group of
engineers developing human computer interfaces within
the avionics industry). The integrated system includes

interfaces that make information available to designers in
a comprehensible form. Although model checking has
usability advantages because it is a decidable approach to
analysis, there are also disadvantages.

1. The initial specification of the model is expressed as a
state transition diagram using notations such as SMV.
These notations must be learnt and may be counter-
intuitive particularly if, as in our case, designers are
human factors experts. The number of states in these
models can quickly explode and techniques must be
adopted to manage the number of states.

2. The notation for specifying the properties, usually
modal or temporal logic, is difficult to understand and
to apply. Only a subset of possible property types are
available, for example representational properties are
not possible.

3. The form of the result is difficult to interpret. The an-
swer is either true or a trace is presented which is a
counter-example. The answertrue may actually mean
that the property has been wrongly formulated and is
therefore vacuously true. Even when false, it is diffi-
cult to make sense of the traces that arise as counter-
examples. In practice because model checking is an
iterative process involving a process of property refine-
ment it is important to make these counter-examples as
helpful as possible.

2 System models and property patterns

Models involved in the development or derivation of re-
quirements in the avionics and automotive domains are of-
ten expressed as statecharts [Harel, 1987]. Specifications of
system models are either validated by structured analysis,
for example by simulation or testing, or verified by formal
proof.

Property Patterns

Occurrence Order

Absence

Universality

Bounded
Existence

Existence

Precedence

Chain
Precedence

Response

Chain
Response

Scope: Q Q Q QRR

Global

Before Q

After Q

Between Q and R

After Q until R

Figure 1. Property specification patterns [Dwyer et al., 1999].

Property CTL template for property
reachability AG EF(〈target configuration〉)
mutual exclusion AG !(〈configuration1〉 & 〈configuration2〉)
robustness INVAR ! 〈triggering condition〉;

AG (〈starting configuration〉 -> EF(〈target configuration〉)
effect visibility

(appropriateness) AG(〈starting configuration〉) -> AF(〈display configuration〉)

(timeliness) AG(〈starting configuration〉 & 〈input signal〉)
-> AF(〈target configuration〉 & event counter = n)

recoverability AG(〈starting configuration〉 & 〈input signal〉)
-> EX EF(〈starting configuration〉)

consistency AG (〈input signal〉) -> AX(〈intended target configuration(s)〉)
flexibility AG(〈starting configuration〉 & 〈reset counter〉)

-> EF(〈target configuration〉 & 〈input counter = m〉);

Table 1. Usability queries [Loer and Harrison, 2001].

In the context considered, Statecharts are used to explore
issues such as moding behaviour. Degani in his OFAN ap-
proach [Degani, 1996] has imposed additional structure on
Statecharts to make their relevance to interactive systems
more explicit. This is achieved by decomposing statecharts
into orthogonal sub-states modelling:control elements–
description of the control elements;control mechanism–
model of the device functionality;displays– description of
the output elements;environment– model of relevant envi-
ronmental properties;user tasks– sequence of user actions
that are required to accomplish a certain task. Constraints
are established on these models which represent critical cir-
cumstances relevant to what the user can do for example
when the mode changes or where there is no possibility
of simple recovery. In order to explore all possible (sen-
sible and non-sensible) user inputs exhaustively the system
is often analysed with a limited task model with the aim of
analysing paths that broadly follow likely user behaviours.

Usability engineers often work with requirements that
are derived from generic design principles and guide-
lines [Dix et al., 1998, chap.4], and usability heuristics
[Nielsen, 1992]. Formulating these requirements, particu-
larly as temporal logic formulae required by model check-
ers can be difficult not just for usability engineers but also
software engineers. To ease this translation Dwyeret al.
suggest “patterns” of properties of finite-state verification
[Dwyer et al., 1999]. From an extensive literature review

a list of 555 property specifications have been extracted
with mappings to different formalisms (CTL, LTL, Quan-
tified Regular Expressions). Most of these specifications
can be assigned to one of eight patterns in the context of
five different scopes (i.e. the range of a model execution
where a pattern must hold) – see Figure1. In the inter-
active systems domain, efforts to use the generic design
principles to do this analysis more systematically include
[Paterǹo, 1996, Campos, 1999]. Through the use of OFAN

all models have the same top-level structure and generic
templates can be based on the common structure. For ex-
ample, [Loer and Harrison, 2001] suggest the usability tem-
plates listed in Table1. Some of these templates are covered
by, or can be derived from Dwyeret al.’s property specifi-
cation patterns. It should be noted, that although the OFAN

structure supports the instantiation of usability properties,
the toolkit is applicable to statecharts in general.

3 Easing diagnosis based on output: trace vi-
sualisations

Once a model of the system and requirements have been
given to the SMV model checker they can then be used to
verify the requirements in every possible execution state.
If a property does not hold, a trace is produced that gives
a sequence of steps leading from an initial state to a sys-

2

tem state that violates the given property. A correctly in-
terpreted trace can be used to assess how to modify either
the model of the system or the specification of the require-
ment. Alternatively, the analyst might decide that the result
is interesting but should be investigated from a different per-
spective using a different method. The raw traces produced
by the model checker do not support this decision process
adequately. A tool is therefore required for the visualisa-
tion of the data in the trace. In practice, usability engineers
wish to consider these traces as scenarios and in order to do
so add contextual information based on domain experience
describing possible situations that are of interest.

SMV tools produce tables as output that present the val-
ues of variables against each step. Such tables are suitable
for a mechanical analysis, but hard to read by human ana-
lysts. In a user study (using a technique [Monk et al., 1993]
for getting feedback from users) a variety of visualisations
were evaluated. During the session aerospace engineers and
critical system researchers used prototype versions of the
system focussing mainly on the output displays and pro-
vided feedback about several notations. In addition to ta-
bles other visualisations were investigated, including natu-
ral language scenario templates, scenario scripts, message
sequence charts, operational sequence diagrams (OSDs)
[Beevis et al., 1994], and model animation. The partici-
pants found tables and OSDs to be the most useful static
scenario visualisations.

4 The IFADIS toolkit

A prototype of an integrated toolkit has been developed
that performs or supports the tasks of model translation,
property development, and trace visualisation. A state-
chart model of the system is produced (using the STATEM-
ATE toolkit [Harel et al., 1990]). The model is imported to
the IFADIS tool and a SMV model is automatically gener-
ated for both, the SMV version of Cadence Berkeley Labs1

and NuSMV [Cimatti et al., 2002]. This translation is per-
formed by a compiler using the algorithm described by
[Clarke and Heinle, 2000].

The analyst then identifies the kind of property to be
analysed using either Dwyer’s patterns for the analysis of
system properties or a list of templates for usability prop-
erties. Once chosen, the scope under which the property is
supposed to be analysed is selected. The system retrieves
the appropriate temporal logic template and asks the user to
instantiate it with the appropriate variables extracted from
the system model (see Figure2). Alternatively, the analyst
can choose from more abstract properties (e.g. “Can all
states be reached?”, “ Can all events in module X be fired?”)
which are then instantiated automatically by the tool.

1 Seehttp://www-cad.eecs.berkeley.edu/˜kenmcmil/

The system then checks the property and output is pre-
sented currently using an enhanced tabular view. An op-
tional process diagram in the top part of the tool displays
where the user currently sits in the process.

5 Conclusions and future work

A framework and a prototype implementation for the
analysis of dependable interactive systems has been devel-
oped. The framework supports property checking for de-
pendable systems in general and some aspects of usability
analysis in particular. It was developed with the require-
ments of industrial designers in mind. The proof of concept
prototype has been customised to the requirements of a par-
ticular aerospace environment but we believe the ideas are
applicable to a wider field.

Future work will concentrate on more sophisticated
proof strategies that make use of fairness constraints and
invariants. More systematic approaches that guide differ-
ent user groups in property selection using “wizards” will
be developed. The tool should not only support the anal-
ysis in different stages of the process but integrate effec-
tively into the development process. For this reason a proof
management system is desirable which will, among other
things, keep track of the analysis history. Since many of
these managerial issues depend on company procedures, or
even project-specific procedures, the tool should become
more customisable and be sufficiently flexible to cope with
changing demands.

6 Acknowledgements

This work is funded by the BAE SYSTEMS Dependable
Computing Systems Centre. We thank the BAE SYSTEMS
engineers for their support.

References

[Beevis et al., 1994]Beevis, D., Bost, R., D̈oring, B.,
Nordø, E., Oberman, F., Papin, J.-F., Schuffel, H.,
and Streets, D. (1994). Analysis Techniques for
Man-Machine Systems Design. Technical Report
AC/243(Panel 8)TR/7, North Atlantic Treaty Organiza-
tion, Defence Research Group.

[Campos, 1999]Campos, J. C. (1999).Automated Deduc-
tion and Usability Reasoning. PhD thesis, Department
of Computer Science, University of York, UK.

[Cimatti et al., 2002]Cimatti, A., Clarke, E., Giunchiglia,
E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., and Tacchella, A. (2002). NuSMV 2: An
Open Source Tool for Symbolic Model Checking. In

3

http://www-cad.eecs.berkeley.edu/~kenmcmil/

Figure 2. IFADIS property editor (Usability templates and strategies).

Computer-Aided Verification (CAV ’02), Lecture Notes
in Computer Science. Springer-Verlag.

[Clarke and Heinle, 2000]Clarke, E. and Heinle, W.
(2000). Modular Translation of Statecharts to SMV.
Technical Report CMU-CS-00-XXX, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh,
PA 15213.

[Degani, 1996]Degani, A. (1996).On Modes, Error, and
Patterns of Interaction. PhD thesis, Georgia Institute of
Technology.

[Dix et al., 1998] Dix, A., Finlay, J., Abowd, G., and
Beale, R. (1998).Human Computer Interaction (2nd edi-
tion). Prentice Hall Europe.

[Dwyer et al., 1999]Dwyer, M. B., Avrunin, G. S., and
Corbett, J. C. (1999). Patterns in property specifications
for finite-state verification. In21st International Confer-
ence on Software Engineering, Los Angeles, California.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual for-
malism for complex systems.Science of Computer Pro-
gramming, pages 231–274.

[Harel et al., 1990]Harel, D., Loachover, H., Naamad, A.,
Pnueli, A., Politi, M., Sherman, R., Shtull-Trauring, A.,

and Trakhtenbrot, M. (1990). STATEMATE: A Working
Environment for the Development od Complex Reactive
Systems. IEEE Transactions on Software Engineering,
16(4):403–413.

[Loer and Harrison, 2001]Loer, K. and Harrison, M. D.
(2001). Formal interactive systems analysis and us-
ability inspection methods: Two incompatible worlds?
In Palanque, P. and Paternó, F., editors,7th Interna-
tional Workshop on Design, Specification and Verifica-
tion of Interactive Systems (DSV-IS 2000), volume 1946
of Lecture Notes in Computer Science, pages 169–190.
Springer-Verlag.

[Monk et al., 1993]Monk, A., Wright, P., Haber, J., and
Davenport, L. (1993).Improving your human-computer
interface: a practical technique. Prentice-Hall.

[Nielsen, 1992]Nielsen, J. (1992). Finding usability prob-
lems throught heuristic evaluation. InProc. of ACM
CHI’92 Conference on Human Factors in Computing
Systems, pages 249–256, New York. ACM.

[Paterǹo, 1996] Paterǹo, F. D. (1996). A Method for For-
mal Specification and Verification of Interactive Systems.
PhD thesis, Department of Computer Science, Univer-
sity of York, UK.

4

	1 Introduction
	2 System models and property patterns
	3 Easing diagnosis based on output: trace visualisations
	4 The IFADIS toolkit
	5 Conclusions and future work
	6 Acknowledgements

