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ABSTRACT 
A possible route to managing workload peaks facilitated 
by advances in technology is to use Dynamic Function 
Allocation, in other words to design work so that it is 
possible to switch adaptively between levels of 
automation. In the main, current approaches to Dynamic 
Function Allocation assume that functions are to be 
serviced as soon as possible, and in order of arrival. 
These methods utilise online allocation decisions along 
the human-automation resource dimension. Dynamic 
Function Scheduling takes a different approach and 
considers the organisation of functions along a joint 
human-automation timeline using scheduling 
mechanisms  developed for real-time embedded systems. 
This paper highlights the limitations of Dynamic 
Function Allocation as currently considered and argues 
for the introduction of a temporal dimension to work 
design. Time -related trade-offs faced by the system 
designer (e.g. flexibility vs. simplicity) and the operator 
(e.g. value-based scheduling decisions) are discussed. 
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INTRODUCTION 
Time is an ubiquitous and often inconspicuous property 
of physical and psychological processes. At almost 
every level of granularity, temporal structures can be 
identified. “Time is nature's way of keeping everything 
from happening at once”, as Woody Allen put it. 
However, although processes necessarily unfold in time, 
this is not of itself a property of primary scientific 
interest. Indeed, many disciplines adopt a Newtonian 
view and treat time as a background variable that “flows 
equably, without relation to anything external.” This is 
true in both psychology and computer science, though 
notable exceptions can be found. Computer science, 
despite the strong influence of non-temporal logics and 
computational theory, is also concerned with designing 
systems that can adapt reliably to the temporal 
contingencies and requirements of the environment. 
This  focus has resulted in useful models for scheduling 
concurrent tasks under conditions of scarce processing 
resources. In human factors engineering, queuing 
models (e.g. Walden and Rouse, 1978) have been used 
to address similar problems. In psychology, time  
perception was an issue for many early researchers such 

as Wilhelm Wundt and William James. Interest in time 
subsided when psychology adopted the information 
processing paradigm and state transition models from 
Artificial Intelligence, where temporality is reduced to 
pure sequence. Recent years have seen a revival in the 
psychology of time, and research is now going beyond 
the traditional interest in the psychophysics of time to 
cognitive models of temporal memory, temporal 
perspective and time as information. Few attempts have 
been made at unifying the diverse notions of time across 
different disciplines. Exceptions are Fraser’s (1978) 
model of ‘temporalities’ and, with a more socio-
psychological focus, Doob’s (1971) ‘taxonomy of time’. 

Time and work 
Psychological aspects of time in human factors are often 
reduced to problems of reaction times and the duration 
of elementary actions and cognitive operations. While 
time is fairly well understood and modelled at this fine-
grained level of behaviour (e.g. the ‘Keystroke-Level 
Model’, Card, Moran and Newell, 1980), many 
temporal phenomena on a wider temporal horizon are 
still elusive. Advances in the cognitive psychology of 
time (see for instance Block, 1990; Friedman, 1990; 
Macar, Pouthas and Friedman, 1992; Michon and 
Jackson, 1985; Prabhu, Drury and Sharit, 1997; 
Roeckelein, 2000) have triggered a new interest in 
temporal issues in human factors (for instance, Decortis, 
De Keyser, Cacciabue and Volta, 1991; De Keyser, 
1995; De Keyser, Ydevalle and Vandierendonck, 1998; 
Grosjean and Terrier, 1999; Hollnagel, 1991, 2001; 
Svenson and Maule, 1993). These studies are concerned 
with temporal awareness and anticipation, temporal 
planning and control, temporal errors, and decision 
making under time stress. Despite this progress in 
human factors, the work design and automation 
literature has so far given little consideration to 
temporal organisation. 
It is important to emphasise that this line of research is 
not following a Taylorist agenda – we are not proposing 
a return to time-and-motion studies. On the contrary, 
where Taylorism sees the operator as a mainly reactive, 
event-driven agent who has to adapt to the rhythm of 
the system, our interest is in the operator’s active 
shaping of the joint human-automation timeline. Instead 
of breaking work down into elementary, disconnected 



units, this approach aims at understanding behavioural 
integration on the operator’s temporal horizon. 

Structure of the paper 
The next section introduces Dynamic Function 
Allocation, a work design concept, and discusses some 
unresolved issues and limitations of this approach, 
relating both to system design and operation. To provide 
a temporal perspective on work design, an outline of the 
Dynamic Function Scheduling approach (Hildebrandt 
and Harrison, 2002) is presented. Time-related trade-
offs in system design and operations are discussed.  

DYNAMIC FUNCTION ALLOCATION 
One of the defining features of modern work is its 
dynamism. Processes unfold rapidly and sometimes in 
unexpected ways, resource constraints have to be 
accommodated online, actions have to be synchronised 
and coordinated, information needs to be updated and 
distributed, plans have to be revised and adapted. 
Automation, introduced to help the human operator 
handle this complexity, can produce new problems by 
removing the operator from the control loop and leaving 
him/her unaware of the state of the system in case of a 
failure. To address the problems of all-or-nothing 
automation and static Function Allocation methods, 
where a level of automation is selected at the design 
stage, Dynamic Function Allocation (sometimes also 
called ‘Adaptive Automation’) provides systems with 
multiple levels of automation, and decision rules to 
switch between them at runtime (see Scerbo, 1996, for 
an overview). Empirical evaluations, mostly based on 
microworld simulations of production line tasks, air 
traffic control or aviation scenarios, suggest significant 
improvements in situation awareness, handling of faults 
and workload peaks, and overall productivity (e.g. 
Endsley and Kaber, 1999; Moray, Inagaki and Itoh, 
2000; Parasuraman, 1993; Walden and Rouse, 1978; 
Rencken and Durrant-Whyte, 1993; Tattersall and 
Morgan, 1997). 
The Dynamic Function Allocation literature is diverse. 
Studies differ in the problems they address (mainly 
workload and situation awareness), the control over 
level-of-automation switches (human-initiated, 
automation-initiated, or comparisons of distinct blocks 
of trials under different automation levels), the levels of 
automation provided (full automation vs. full human 
control or automation scale), and the decision rule used 
to switch between them (human-initiated, critical event 
logics, workload- or model-based logics). Despite the 
multitude of empirical basic research, these approaches 
have not yet been translated into a unified, mature 
design method (see Hancock and Scallen, 1998, for 
some recommendations). As few Adaptive Automation 
systems are available outside the aviation domain (e.g. 
Morrison, 1993), the long-term benefits and problems of 
this approach are as yet difficult to assess. The 
following two sub-sections discuss a number of 
unresolved issues relating both to the design and 
operations of Adaptive Automation systems. 

Design considerations 
To be more adaptive than all-or-nothing automation 
approaches, Dynamic Function Allocation provides a 
number of different levels of automation for a given 
system. For instance, Sheridan’s (1981) widely cited 
automation scale, which applies most readily to 
information processing and problem solving purposes, 
comprises 10 distinct levels (for a more recent scale, see 
Endsley & Kaber, 1999). Implementing this diversity is 
likely to be a major challenge. Not only must the 
designer develop and test a variety of different solutions 
for the same function, but also provide a sensitive and 
reliable decision logic, which might involve workload 
and context measures. The costs and benefits of this 
development effort are not currently discussed, and it is 
unclear how easily the current scales can be adapted to a 
variety of application domains. 
Current research in this area tends to assess the effects 
of Adaptive Automation for single, isolated functions. 
In these studies, the relevant aspect of the automation 
decision is the effect on workload and situation 
awareness, and not the potential, more specific 
implications for the servicing of other functions. Even 
when multi-task paradigms are used, the functions are 
often not strongly causally related. However, as 
functions in modern socio-technical systems are usually 
highly inter-connected, the effects of a mode change in 
one function might have significant implications for a 
whole network of other functions. The requirements of 
the specific problem or problem-solving strategy might 
be a much stronger constraint on the automation 
decision than workload reduction and maintaining 
situation awareness (see next section). Before Dynamic 
Function Allocation can develop into a mature work 
design method, it has to be able to take account of the 
inter-dependencies of functions and the contexts in 
which they might occur (see Harrison, Johnson and 
Wright, 2002, for an example of such an approach in 
static Function Allocation). 
The only option for workload balancing in Dynamic 
Function Allocation is automation – ‘Dynamic’ here 
refers to a decision on the resource axis, not on the 
timeline. In so far as the decision is based on 
performance data or critical events, the method has a 
temporal element, but it often takes into account only a 
narrow, retrospective temporal window around the 
decision point. As the specific effects of the allocation 
decision for the future timeline are not usually 
considered, this approach can be characterised as 
‘snapshot allocation’. However, understanding 
workload in practice will need to allow considerations 
of the operator’s pro-active, future oriented behaviour. 

Operator considerations 
Among the primary concerns for Dynamic Function 
Allocation methods is the loss of situation awareness. 
As this phenomenon can occur under long periods of 
automation, Parasuraman (1993) suggested that 
automation levels should switch periodically, even 
without being triggered by critical workloads, to keep 



the operator in the control loop. However, this approach 
could be problematic if the manual operation cycles of 
various different functions are not well synchronised, 
creating the risk of task interference. Confusion can also 
be caused if automation levels switch too quickly and 
frequently as a result of insufficient inertia in the 
decision logic, or if the decisions are intransparent to the 
operator. 
Another critical issue in Dynamic Function Allocation 
is complacency or over-reliance on automation 
(Parasuraman, Molloy and Singh, 1993). Especially if 
the automation is fairly reliable (but still not perfect), 
operators could be lulled into a false sense of security 
and thereby neglect their supervisory duties. The 
authors suggest that vigilance could be encouraged by 
“simulat[ing] a variable -reliability system by including 
(at variable intervals) artificial failures that would 
require an operator response”. On the other hand, some 
studies (Harris, Hancock and Arthur, 1993; Tattersall 
and Morgan, 1997) have documented human failure to 
engage automation even when available. More 
specifically, Harris et al. report that fatigued participants 
failed to use automation, even though they might  
benefit most from automatic support. Unfortunately, as 
with most studies in this field, these papers report 
summary results and not individual strategies, making it 
difficult to generate explanations for these results. 
A problem of Dynamic Function Allocation, especially 
if allocation shifts are to be triggered by the human 
operator, is the added processing demand induced by 
the decision process (note that a similar problem occurs 
in real-time systems, where there is a trade-off between  
more sophisticated and effective scheduling algorithms 
and the processing time required to execute them). This 
problem becomes aggravated the more adaptivity a 
system provides, as more levels of automation have to 
be considered. Thus, a compromise has to be found 
between flexibility and simplicity. The computational 
complexity can be reduced when automation levels for 
different functions are not seen as independent of each 
other, but instead as bound up into automation 
configurations, with each configuration appropriate for 
a certain operation scenario. This perspective, seeing 
automation in the context of strategy choice, is not 
strongly developed in current approaches. 
Most current Dynamic Function Allocation concepts 
assume or require that all available levels of automation 
provide equal quality of solution, so that re-allocation 
decision can be based purely on the required workload 
reduction. While this assumption is feasible for some 
isolated automation scenarios, under a more naturalistic 
perspective, function servicing strategies often involve 
satisficing decisions and trade-offs. For instance, in a 
medical context, expert systems could be used by more 
junior staff as part of a backup strategy if advice from 
senior staff is unavailable. Similarly, unavailability of 
automatic medical equipment such as blood gas 
monitors or ventilators might require higher manual 
involvement, even though the quality of this treatment 

may be lower. In fault analysis, different levels of data 
integration (e.g. high integration with decision support 
or access to raw data) will be chosen according to the 
cognitive strategy of the operator, not necessarily for the 
workload reduction they provide. 

DYNAMIC FUNCTION SCHEDULING 
Dynamic Function Scheduling (Hildebrandt and 
Harrison, 2002) brings a temporal perspective to 
workload-related problems in high-consequence 
systems, and also aims at understanding and designing a 
broader range of scheduling and satisficing phenomena 
in normal operations. It considers allocation along the 
joint human-automation timeline as a strategy in multi-
task servicing (Fig. 1). In this sense it goes further than 
the automation option considered in Dynamic Function 
Allocation. In addition to asking who should perform a 
function, it asks when and if a function should be 
performed, taking into account the agents’ current and 
predicted workload, available resources, service rates, 
and the configuration of other functions on the joint 
timeline. Scheduling options include postponing, 
swapping and dropping of functions. For instance, 
Hildebrandt and Harrison (2002) discuss a fault 
servicing scenario for an aviation hydraulics system and 
identify conditions where different scheduling strategies 
are appropriate (diagnose fault first, then fix it; switch to 
redundant circuit, then diagnose fault; drop function, i.e. 
ignore problem, if leak will not become critical before 
touch-down). Arguing that scheduling is an ubiquitous 
problem, the authors also discuss a supermarket 
checkout scenario, where both function allocation and 
scheduling can be observed: if a customer cannot pack 
the items quickly enough, the cashier will often switch 
from his/her prima ry function of scanning the items to 
assisting the customer in packing in order to optimise 
overall throughput. From an allocation perspective, part 
of the packing function has been re-distributed to the 
cashier. From a scheduling perspective, the operator has 
postponed the primary function (scanning) to increase 
performance of the joint packing function (note that this 
decision could be context dependent: if the cashier is 
fatigued, the delay in packing could provide a welcome 
break). A combination of scheduling and allocation is 
characteristic of most multi-agent systems. 

 

 
 
Figure 1. Conceptual differences: Dynamic Function 
Allocation (left) allocates on the resource dimension (a). 
Dynamic Function Scheduling (right) allocates on the 
resource (b) and/or the temporal dimension (c). 



Value-based function scheduling / strategy selection 
Dynamic Function Scheduling considers both temporal 
and quality-related aspects (‘value’) of a function, and 
considers the trade-offs involved in trying to 
accommodate concurrent functions in a given time 
frame. To address some of the limitations of current 
Dynamic Function Allocation, the approach 
distinguishes between functions and the strategies 
available for servicing a function. This results in two 
different notions of value: one is a measure of the 
contribution a function makes to the overall system 
objectives and is used in planning, i.e. to prioritise and 
order concurrent functions by comparing their values 
(for example, in aviation the highest priority is given to 
safety-related functions, followed by passenger comfort 
and economy). In the above example, the value of 
assisting in packing becomes greater than the value of 
continuing scanning when items pile up. The other 
notion of value is a measure of the quality of solution a 
particular strategy (possibly involving a certain level of 
automation) provides in servicing a certain function. It 
is used to select among the different strategies available 
for servicing a function. Seeing the hydraulics example 
as a case of strategy selection (though it also involves 
scheduling), the decision to ‘diagnose first, fix second’, 
‘fix first, diagnose later’ or ‘drop function’ will depend 
on the utility of obtaining a closer diagnosis, the time 
required for the diagnosis, the time available for fixing 
the problem, current workload, and the stage of the 
mission. Though these computations can, in theory, 
become very complex, most expert operators will have 
developed efficient heuristics and decision rules to 
assess the dynamics of the problem and resolve speed-
quality trade-offs in strategy selection (e.g. Amalberti 
and Deblon, 1992). 
Both notions of value are closely related; a lower-value, 
but faster, strategy may have to be selected if there is 
insufficient time (or resources) for executing the higher-
value, but slower, strategy by the function’s deadline. 
The quality of the selected strategy will, in turn, affect 
the value of the function itself. To reason about such 
relations, it is useful to introduce the notion of urgency, 
which can be obtained by relating the time required and 
the time available for servicing a function or executing a 
strategy. The urgency approaches 1 as the function gets 
closer to its deadline. If the ratio exceeds 1, the function 
cannot be serviced in time, and might have to be 
dropped. 
A further dimension is added by assuming that values 
change over time. The value of servicing a function may 
be lower when the function is far from its deadline than 
when it is very close to it. Similarly, a strategy that 
requires a shorter execution time than an alternative 
strategy will have a higher relative value when the 
deadline is close than when the deadline is still a long 
time away. When applied to actual work situations the 
concept of value will have to be extended to represent 
dynamic changes over time and to allow for linear or 
non-linear value functions. It will also be necessary to 

integrate the notions of value and utility in the 
psychological literature on judgement and decision 
making. 

System design trade-offs 
For the designer, the main challenge related to Dynamic 
Function Scheduling is in deciding on the sequential 
flexibility or rigidity of the functions in the system. The 
order in which functions should be serviced can be 
constrained by their physical and logical nature (e.g. 
lowering the landing gear and landing), or by 
requirements and limitations of the human operator (e.g. 
biases in temporal reasoning or tendency to omit actions 
and confuse sequence in high workload situations). In 
many high-consequence domains such as aviation and 
power plant control, there is a need to provide rigid 
sequentialisation in the form of checklist procedures to 
avoid omissions and to ensure correct ordering. In other 
situations, procedural diversity might be necessary to 
operate in a dynamic environment. Flexibility is also 
necessary if the operator has to find solutions to 
unforeseen failures. Thus a compromise has to be found 
between the risk and the diversity provided by flexible 
temporal organisation. In terms of the hydraulics 
example mentioned above, this would involve analysing 
the benefits of the different strategies (diagnose-fix, fix-
diagnose, drop) in different scenarios, considering the 
operator’s decision effort for matching a strategy to a 
situation, and possibly considering a redesign of the 
function (using automation) and the physical system. 
The designer should also be aware of the overall 
temporal properties of the system. This includes the 
assessment of the expected function arrival rates, 
temporal properties of the functions (e.g. continuous, 
periodic, sporadic), service rates for human and 
automation, and the ability of the combined system to 
accomodate unexpected events on the timeline. This 
temporal inventory of the domain will be the basis for 
designing levels of redundancy and a function 
distribution policy that can achieve the required 
performance within acceptable workload levels. 

Operator trade-offs  
The operator’s value-based function scheduling and 
strategy selection often involves online satisficing 
decisions and speed-quality trade-offs (see discussion 
above). This can take the form of more shallow 
processing (e.g. in problem solving and decision 
making, Payne and Bettman, 1988), use of an 
alternative processing strategy (Sperandio, 1978), or 
‘buying time’ by slowing down the process itself (e.g. a 
production line). While these decision trade-offs 
strongly depend on the semantics of the specific 
function, temporal reasoning itself involves costs and 
benefits. Higher levels of temporal reasoning and 
awareness (Grosjean and Terrier, 1999) might support 
problem solving and situation awareness (provided that 
functions are sufficiently predictable), but will require 
close familiarity with the system and absorb attentional 
resources. 



A similar trade-off exists between control  (of the 
immediate system state) and planning (assembling a 
goal-directed action sequence or strategy). A more 
elaborate plan will simplify control decisions. With a 
rough or incomplete plan, control decisions will require 
more online reasoning. Either strategy might be 
appropriate depending on characteristics such as 
predictability, time pressure and operator capabilities. 
For instance, Amalberti and Deblon (1992) report that 
expert fighter pilots plan flight routes in more detail and 
consider more problem scenarios than less experienced 
pilots. 
There is often a correlation between the quality of 
planning and control decisions and the operator’s 
temporal horizon: if causes and effects are only assessed 
for the short term, or not at all, decisions tend to be 
erratic and based on arbitrary situational cues. 
Reasoning about a wider temporal window will take 
more potentially relevant factors into account. 
Hollnagel’s (2000) Contextual Control Model captures 
these differences in the quality of control by the notion 
of control modes (scrambled, opportunistic, tactical, 
strategic). Hollnagel (2001) explicitly discusses the role 
of time in losing and regaining control. 

Few studies have addressed temporal issues in planning 
directly. Smith, Hill, Long and Whitefield (1997) 
modelled planning and control of multiple task work in 
secretarial office administration and identified a number 
of control rules and planning heuristics for plan 
maintenance and revision, interruption handling, task 
switching and sharing, and prioritisation. 

CONCLUSION 
This paper introduced a temporal dimension to function 
allocation and discussed some of the trade-offs of 
temporal work organisation, both for the system 
designer and operator. To overcome the limitations of 
current Dynamic Function Allocation concepts, 
allocation along the joint human-automation timeline 
should be considered in addition to allocation on the 
human-automation resource dimension. If Dynamic 
Function Allocation is to be applied to a wider set of 
problems, automation decisions should be seen in the 
context of value-based strategy selection, allowing for 
speed-quality trade-offs. Dynamic Function Scheduling 
is a conceptual frame work that has the potential to 
analyse a wide range of scheduling and planning 
behaviour and provide guidance for the designer in 
assessing the risks and benefits of temporal flexibility in 
a system. Future work, using both microworld 
experimentation and case studies, should address 
problems of temporal reasoning, awareness, and 
temporal planning and control. 
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