
Automating functions in multi-agent control
systems: supporting the decision process

M. D. Harrison, P. D. Johnson and P.C. Wright
Department of Computer Science, University of York,

Heslington, York, YO10 5DD. UK
{mdh,pcw}@cs.york.ac.uk

Abstract

A challenge for designers of safety critical systems is to recognise
that human issues are critical to their safe automation.
Appropriate techniques for taking account of these issues should
be integrated into the design process. This paper provides a brief
introduction to a two-step decision procedure for deciding how to
automate an interactive system. The method has received
preliminary evaluation in aviation and naval contexts. It is
intended for use early in the development of systems in larger
scale collaborative settings with the aim of improving their safety
and performance. The method aids the designer in identifying
how to take advantage of the benefits offered by automation so
that it does not interfere with the operator’s ability to perform his
or her job.  It does this by guiding the matching of functions to a
set of defined roles.

1 Introduction

For the automation of complex processes to be achievable with flexibility and
safety, the need for procedures1 that help decide how to automate becomes more
important. Work systems are often complex interactive systems involving many
people and many technology components. The work that is involved must be
implemented in a way that is most compatible with roles that are designed for the
people involved. Any automation should satisfy general criteria such as minimising
workload, maximising awareness of what is going on, and reducing the number of
errors. This paper is concerned with these procedures, known as function allocation,
and as such is centrally concerned with the design of safety critical systems.

A number of methods of allocation of function have been developed since the
early 1950s.  In the main
                                                          
1 If they exist, see [Fuld 2000] for the case against existence.



•  They fail to recognise fully the context in which the functions are to be
automated. Functions are considered in isolation using general capability lists
that describe what people are better at and machines are better at. More
enlightened methods based around task analyses (for example MUSE, [Lim &
Long 1994]) do not give explicit account of the environment in which the
functions are performed. A richer description of the context for the analysis
needs to be described.

•  They are difficult to apply. They depend on an understanding of human factors
that requires considerable training. For example the KOMPASS method [Grote
et al. 2000] describes criteria for complementary system analysis and design
such as process transparency, dynamic coupling, decision authority and
flexibility. These criteria are described in terms that are very difficult  to
interpret by systems engineers.

•  Methods do not use design representations that are familiar to systems
engineers. Allocation decisions are usually binary. As a result a function is
given the attribution “to be automated” or not and  consequently must be
described at a low level of granularity. Functions are not presented in a form
that is easy to assimilate and use by software or systems engineers.

•  They focus on the individual relationship between human and device and do
not take into account the broader collaborative system and the roles defined
therein.

•  They offer no guidance about how dynamic allocation of function should be
implemented. This problem becomes more relevant as the possibility of
dynamic adaptation becomes more realistic.

More recently, methods of function allocation have emerged ([Older et al. 1997] and
[Johnson et al. 2001b] for reviews) that take more account of some of these issues.
Two methods: referred to herein as the ‘Sheffield method’, developed at the Institute
of Work Psychology, University of Sheffield [Older et al. 1996] and the ‘York
method’, developed at the Department of Computer Science, University of York
[Dearden et al. 2000] overcome some of the deficiencies described above but not all.
In particular, the Sheffield method is weak on use within a design context and the
York method does not address the collaborative issue. What we describe here is a
modest extension to the York method aimed at addressing some of the concerns
about collaborative issues. Further extensions, not discussed here for lack of space,
aim to integrate the inputs and outputs to the method with the notations of UML
[Rumbaugh et al. 1999].

 If function allocation were to be made an explicit step in the systems engineering
development process, it would provide an ideal point to integrate human factors
techniques into the development process. The desire for such integration exists
because human factors techniques offer solutions to problems faced by engineers in
the design of highly automated control systems. Designers of such systems face a
dichotomy that can best be illustrated by way of an extreme design philosophy, that
of automating everything possible. In a modern control system this could be
achieved for a high proportion of the functions and has several advantages. Human
operators are a source of error, and by minimising their role these risks can be
reduced. Automation also offers the potential for greatly reducing costs. However,



Bainbridge [Bainbridge 1987] notes that this design philosophy is flawed because
humans cannot be eliminated entirely. When situations arise that the automation
cannot handle, the operators are expected to step in and resolve the situation. Their
ability is impaired by the high levels of automation that have been introduced,
resulting in out-of-the-loop performance decrements and loss of situational
awareness.  An alternative design philosophy would be to keep the operator in the
loop and to view the automation as assisting the operator. The design goal is to take
advantage of the benefits offered by automation, but to do so in a way that does not
impede the operator’s ability to perform his or her role. The achievement of this goal
is difficult because it requires the combination of two disciplines, systems
engineering and human factors engineering, neither of which alone can provide the
solution.

This paper describes one method of function allocation. The method is a modest
extension of the York method [Dearden et al. 2000], that in addition provides the
means to allocate function to multiple roles, as would be found in a collaborative
system. The paper’s structure is the following. Section 2 gives a brief description of
the method and then describes in more detail what is required as input to the method,
and what is produced as a result. Section 3 provides a more detailed description of
the method in particular the decision steps that are taken. Section 4 concludes by
briefly describing further extensions for which there is no space to elaborate, and
discusses further directions.

2 Inputs and outputs to the method

2.1 Introduction

Our method refines a set of function definitions in two steps. A function describes a
unit of work that is to be performed by the proposed system. In the first step the
functions are matched to a set of predefined roles. These roles capture the high level
function of the agents. The aim is to decide how closely these functions fit the roles
in a set of given scenarios. Functions that are entirely subsumed within a role are
proposed to be “totally manual within the role” – to automate would in effect
remove part of the agent’s role. Functions that can be separated entirely from any of
the roles, and for which it is possible to automate, are designated as “to be
automated”. In practice few functions fit into either of these categories. In the
second step, the functions that are left are considered in more detail in order to
decide what aspects of them should be automated. In the following sub-sections we
describe function, role and scenario in more detail. Other inputs to the method, for
example: description of the technology baseline, mandatory constraints and
evaluation criteria are also required as inputs.  Function, role and scenario are
however the minimum needed to get a reasonable understanding of the method. The
output of the method is a set of functions. These functions will either be described as
manual or totally automated, or in the case of the partially automated functions, a
further description is required of how the function is to be automated.



2.2 Role

Whereas in the early applications of allocation of function, the problem was to
decide what people are good at and what machines are good at, recent methods have
questioned this assumption. Usually the appropriateness of automation is
contextually determined. It makes more sense to be specific about how compatible
the tasks are with the various roles specified for the various personnel than to ask the
more simplistic question: “would it be sensible for a human to do this?”. In practice
role is difficult to define. It makes sense to consider it as an activity that can be
performed either by human or machine. Normally it will not be necessary to produce
a statement for a machine’s role, but there may be exceptional circumstances where
it may be appropriate.  For example, the envelope protection provided in a fly-by-
wire aircraft could be clarified through an explicit role statement. Doing so would
help to ensure that functions are not allocated in a way that prevents the machine
from being able to keep the plane within the safety envelope.

An example of a role statement for the captain of a civil transport aircraft is:
The captain is the final authority for the operation of the airplane.
He must prioritise tasks according to the following hierarchy:
safety, passenger comfort and flight efficiency.

In the context of a single seat military aircraft, an example role statement for the
pilot might be:

The pilot is the final authority for the use of offensive weapons and
for evasive manoeuvres. The pilot is responsible for mission
planning, tactical and strategic decision making and co-
ordination with other aircraft. The pilot is responsible for the
management of systems to maximise the probability of successful
mission completion.

2.3 Functions

Work systems perform functions or units of work. Examples of what we mean by
function include “finding the current position of the vehicle”, “withdrawing cash” or
“detecting a fire”. In order to perform function allocation, a set of such functions is
required. Although in practice, identifying and determining a function is largely a
matter of expert judgement, some characteristics of a function can be determined
that aid this process.  A function is an activity that the man-machine system is
required to be capable of performing in order to achieve some result in the domain
under consideration. Functions do not contain any indication of who or what
performs them [Cook & Corbridge 1997]. For example, ‘key in way-point’ is not a
function because it implies that the operator enters the way-point manually, whereas
‘set way-point’ does not. Functions can be seen as being related to functional
requirements as used in systems engineering. As function allocation is a design
technique, a set of functional requirements will be available from which to derive
functions. Care has to be taken when doing so because functional requirements often



contain indications about who or what should perform the function. Such
information needs to be removed.

It is important that functions are defined from a holistic and evenly balanced
perspective across the systems components. Otherwise bias will adversely affect
decision-making about how functions should be automated. It is therefore necessary
to be aware of what viewpoint the functional requirements are taking so that this
neutrality can be achieved. Functions can be defined at a variety of levels of
granularity, and are often arranged hierarchically. Taking a top-down hierarchical
approach can be a useful aid to function elicitation. Descending the hierarchy
reveals both a decrease in the complexity of the function and in the size of the sub-
system required to perform it. At the top of the hierarchy will be those functions that
can only be performed by the system as a whole. Further down will be those
functions that are performed by a team or department. Even further down are those
functions that can be performed by a single operator with the aid of automation.
Finally at the bottom are those functions that can be performed entirely by a single
operator or machine. The overall pattern will depend upon the size of the system
being modelled.

2.4 Scenarios

Traditionally, function allocation methods presume that the suitability of a function
for automation is based on an individual function. We have noted already that this
ignores the complex interactions and dependencies between activities of work. To
overcome this, the method considers the allocation of functions together as groups
within the context of a scenario. This allows the designer to appreciate the
interactions between the functions.  Scenarios should be selected that focus upon
situations relevant to critical decision criteria, for example workload or situation
awareness. They should represent all the functions that have been selected in a range
of contexts. For example, if the system is in the field of civil aviation and workload
has been identified as a decision criterion then scenarios focusing upon take-off and
landing would be chosen (among others such as emergency conditions) because
these periods are recognised as having a high workload.

As the method only considers those functions used within the current scenario, the
designer must ensure that every function occurs in at least a minimum of one
scenario and ideally several. It is important to ensure that a wide variety of scenarios
are used so that confidence can be placed in the results. In order to achieve this,
scenarios should be selected that cover all the normal operating conditions of the
system.
There is a wide range of sources for possible candidate scenarios:
•  The experience of practitioners in previous systems
•  Incident and accident reports for previous systems
•  Scenarios developed during the business modelling stage of the system life

cycle
•  Use cases and scenarios in the previous systems development documentation or

training manuals



When a scenario is adopted, the description of what happens is likely to be at an
event level. For example, if the scenario is describing some current possibility with
the baseline architecture, these events will be expressed in implementation
dependent terms. It is therefore necessary to transform these scenarios into a form in
which the account of what happens is translated into functional terms. The functions
being unbiased towards the implementation, will be less likely to be tied to the
assumptions made in the baseline. It must be noted however that a general problem
with this sort of approach is that  there will be some bias.

It is unlikely that all of the candidate scenarios will be useful for the purposes of
function allocation, or that they will be in the correct format. The designer therefore
will have to select those appropriate and document them. Checking that they are
appropriate will involve transforming each of them into a format based on functions
rather than events. The scenario representation is based on a modified version of the
scenario template for THEA [Pocock et al. 2001]. The template used for the scenario
descriptions is shown in Figure 1.

UC# The name of the use-case
Scenario 1 - Each use-case can have a number of scenarios
Environ-
ment

A description of the environment within which the system is
operating when the scenario occurs.

Situation A description of the state of the system at the start of the
scenario. Are all the operators on duty, are there any known or
unknown faults in the system etc.
Step Event
1 The main sequence of events that take place

during the scenario. This includes events that
happen in the environment, events that effect the
system and the actions that the system must
perform.

Sequence
of events

…
Step Event
1 Variations upon the main sequence of events are

recorded as event extensions.

Event
extensions

…
Scenario 2

Figure 1 Scenario input template

The scenario as illustrated in Figure 1 is taken as a starting point. This description is
then transformed. The events and event extensions headings are changed to
functions and function extensions. The account of what happens in the scenario is
re-expressed using the set of functions rather than the event descriptions. This
process can be a useful check that the functions are expressed at an appropriate level
and whether they incorporate too much implementation bias. The functional
scenarios are then used as the basis for the two decision procedures.



2.5 The nature of the output

Traditionally function allocation methods provide two allocation options H (human)
or M (machine). It is assumed therefore that functions are at a very low level so that
such binary decisions can be made. In many cases the designer’s interest lies with
those higher level functions that require some form of collaboration between
operator and machine. It is the determination of where this automation boundary lies
that is of critical importance. Rather than working with numerous low-level
functions to determine this boundary, it is easier to work with the parent functions
and to declare them as partially automated. Of course there are many ways in which
the operator and machine can interact in the fulfilment of a function. There is
therefore a need for the designer to specify how the partnership will operate.

One possible approach is to use a classification that defines levels of automation.
[Sheridan & Verplanck 1978] suggest a classification of levels in which decisions
and control pass progressively from the human to the machine. Later authors have
produced alternatives. Kaber and Endsley provide ten levels of automation [Kaber &
Endsley 1997]. Billings suggests seven levels of management automation [Billings
1991]. For each function that the designer defined as being partially automated,
there would be an indication of what the level of automation would be. The
difficulty with this approach is that defining which level of automation is required
does not necessarily define what it means for the particular function to be
implemented. Another problem with such an approach is that some solutions for
functions may not fit into any of the classifications.

The approach we take is to provide a conceptual framework for thinking about
partial automation. The framework makes use of the [Malinkowski et al. 1992]
framework for adaptive systems and is capable of expressing all types of automation
provided by the various classifications. A function is first split into four
components: Information, Decision, Action and Supervision. Each component is
further split into a number of elements, each describing a particular aspect of the
function. The designer specifies which role is responsible for performing that aspect
of the function. If the element is not applicable within the context of the function
then it is marked not applicable (n/a).

The elements in the Information component cover issues such as which role
integrates the information required to carry out the function, and which role is
responsible for initiating a response. The Decision component covers such issues as
which role proposes what plan/action to take, evaluates it, modifies it and selects
one, if there is more than one possibility. The Action component covers which role
carries out the action. The Supervision component covers such issues as which role
monitors the performance of the action, identifies exceptions, and revokes the action
if necessary.

This framework (called IDA-S, see [Dearden 2001]) allows the designer to
express precisely how the function is implemented in terms of the various roles that
are responsible aspects of the function. This is done by placing a role identifier in an
appropriate cell in the IDA-S template. In the case of the function: “calculate point
to point information”, one possible solution might be that the navigator selects two
points upon the chart, that is the current fix and next way-point. The navigation



system calculates the distance, time and bearing to the way-point. In Figure 2, the
required roles are placed in the appropriate cell of the grid. In some cases, where
more than one role appears to be appropriate, they may all be placed in that cell.  A
complication, such as this, may suggest that the function has not been sufficiently
refined at the stage of selection, and may suggest a need to revisit the function

definitions and the scenarios. The IDA-S definition clarifies how to develop an
implementation that satisfies the requirements.

3 The method: two steps and consolidation

3.1 Totally automated or wholly manual?

Once roles, functions, scenarios, and so on, have been defined the first step involves
deciding which functions can be totally allocated to one of the roles (these roles may
be system or human). Each scenario is considered in turn and the functions, that are
employed within the scenario, are identified. The designer bases decisions about
automation of these functions on their use in the context of the scenario under
consideration. Suitability for total automation is not based solely upon the technical
feasibility of a solution. It is also based upon the function’s relation to the roles. If a
function is not seen to be separable from an operator’s role then it cannot be totally
automated. Doing so would interfere with the operator’s ability to do the job
effectively.  There are two dimensions to the trade-off.

Firstly, each function is considered in relation to the feasibility of automating it.
The concern here is with the cost and technical possibility. Secondly, the function is
matched against the set of roles. The roles are likely to continue to be refined as the
design evolves. In Figure 3, two roles R1 and R3 are relevant to the given scenario.
In practice, a function may be separable from all roles, and technically feasible and
cost effective to automate, in which case the function may be totally automated.
Alternatively it is possible that the function maps entirely to one of the roles, and is
infeasible to automate, in which case the function is totally performed within that
role. In most cases however functions fit into neither category. In this situation the

Allocation Information  Decision  Action  
Collect  Propose  Approve  
Integrate  Evaluate    
Configure  Modify    

Planning 
the response 

Initiate 
response 

 Select    

Supervise 
ongoing 
execution 

Monitor 
progress 

 Identify 
exceptions 

 Revoke 
authority 

 

Supervise 
termination 

Determine 
output 
content 

 Identify 
completion 

 Stop 
process 

 

Action Execute 
actions 

 

 

Figure 2: The IDA-S template 

 



function is to be “partially automated”. There are usually a number of ways in which
partial automation may be achieved, and this is the subject of the second trade-off.
The first decision procedure is made traceable through the matrix in Figure 3. Notice
that a function may appear in more than one row because it relates to several roles,
but may only appear in one column because feasibility to automate is invariant.

Figure 3. The first trade-off

When this process has been completed, a set of functions has been produced that
can either be totally automated or are entirely subsumed within a role. These
functions go no further in the process. The remaining functions go forward to the
next stage of the allocation of function process. These functions are represented
using the IDA-S framework defined above.

3.2 Candidates for the second step

The second decision procedure is concerned with comparing alternatives with a
“baseline” solution in the context of a scenario. Often the baseline is the current
design, but it may be that, in the case of a completely new concept, there may be a
more conservative design possibility. It is assumed here that an initial process is
engaged in where the designer constructs a number of alternatives for each function
listed from the scenario. These alternatives may allocate different roles to elements
of the IDA-S template. For example, in the case of “calculate point to point
information”, we could consider one solution in which the navigation system might
propose alternative routes from which the navigator selects the most appropriate,
while in another no such choice is provided. The reason for choosing particular
representations may be random or based on some assumptions about the abilities of
the off-the-shelf technologies available to the project. The options for all these
functions are then rated in relation to a criterion such as workload or performance in
comparison with the “baseline” design.

When all the options for all the functions have been produced, and the primary
concern identified, the options are entered into a second matrix (see Figure 4). The
design options used in the baseline should also be included in the cell that is labelled

State of automation 
research vs. 
relation to role 

Role Existing 
with 
immediate 
access 

Existing in 
competitor 
systems 

Low 
risk/low 
cost R&D 

High risk 
or high 
cost R&D 

Infeasible 

Separable ALL  Sol1    
R1      Role related 

information or 
control 

R3      

R1      Role critical 
information or 
control 

R3      

R1      Central to role 
 R3      
 



“no significant improvement in primary concern”. The alternative solutions are then
placed in the table. Two criteria decide where the solution should fit. The first
depends again on the feasibility of the particular solution, how easy will it be to
implement with existing technology. The second requires a judgement about the
effect of the solution, in the context of the scenario, in terms of the criteria
(workload, performance, situation awareness). The judgement here is whether the
function solution causes an improvement or deterioration to the primary criterion
and the consequent effect on the other criteria. All these judgements are carried out
in relation to the baseline design. It would be expected that some solutions will do
better while others will do worse. It is intended that the designer uses expert
judgement, but it could be that the situation requires a more careful human factors
analysis of these decisions.

Each potential solution is placed in the matrix. At the end of the process it will be
possible to derive a set of best candidates that are the solutions that are most
favourable in relation to the criteria and are technically feasible. This process is
achieved by searching from the top left of the matrix selecting new design options.
If a design option for a function is selected, then all other options for that function
are deleted from the table. If a design option is selected from the ‘high risk research
and development’ column, then an alternative, low risk solution should also be
considered as a ‘fall-back’ position.  Hence in Figure 4 two options are provided for
a function F.1.2.4. Both are implementable because they are available on competitor
systems. However the second solution is preferable because while it results in an
improvement in performance compared with the baseline solution, it has no
deleterious effect on any of the secondary concerns such as workload.

After a number of options for functions have been selected, the designers should
re-evaluate the scenario and consider whether or not the primary concern should be
changed as a result of the decisions made so far. For instance, consider a scenario in
which high workload is the primary concern. If new partially automated solutions
are selected, that significantly reduce the expected workload, then a different
concern such as performance or situation awareness may now be more significant. If
the primary concern is changed, then options for the remaining functions are re-
arranged in a new matrix reflecting the changed priorities. Option selection then
proceeds as before, starting with the options that provide the greatest improvement
for the new primary concern. This procedure iterates until one design option has
been selected for every function.

One possible outcome of the procedure is that some functions cannot be
successfully allocated, without making use of options from the high risk research
and development column, or from a row involving a ‘large deterioration’ with
respect to a secondary concern within the scenario. If this occurs frequently, and
cannot be solved by generating alternative design options, this may indicate a need
to review the system requirements, or to review assumptions about the number and
role of human operators in the system.

When a design option for each function has been selected, the scenario is re-
analysed using the proposed allocations as the set of baseline designs. The purpose
of this re-analysis is to identify any new functions that may be an emergent
consequence of the new design. Such functions could include, for example, a
requirement to co-ordinate two separate functions that control the same system



resources (e.g. ‘terrain following’ and ‘missile evasion’ both use the aircraft’s
control surfaces). Design proposals for the partial automation of these functions are
made.

Primary concern: Performance
State of automation vs
level of improvement

Suggestion
is
immediately
available

Available
on
competitor
systems

Low risk,
low cost
R&D

High
risk or
high
cost
R&D

Large improvement in
primary concern, no
deterioration in secondary
concerns
Improvement in primary
concern, no deterioration
in secondary concerns

(6)
F1.2.4 Sol
2

Improvement in primary
concern minor
deterioration in secondary
concerns

(10)
F1.2.4 Sol
1

Improvement in primary
concern, large
deterioration in secondary
concerns
No significant
improvement in primary
concern
Large deterioration in
primary concern

Figure 4: Identify partially automated functions

If new functions are identified, then designers must consider whether their impact
upon performance, workload and situation awareness is acceptable. If the emergent
functions do create an unacceptable situation, then the selection matrix is revisited.
This may result in changing the level of automation, or may result in changed
selections for the original functions. Hence, if emergent functions are identified then
steps of the process dealing with these are repeated, i.e. feasible design options are
suggested for partially automating the emergent functions and the optimum choice is
selected.

3.3 Consolidation

Once the functions within each scenario have been allocated any contradictions of
allocation across scenarios are resolved. This is done, either by changing one of the



allocation decisions so as to resolve the conflict, or by allowing the function
allocation to be dynamic. Allocation conflicts may be resolved by choosing
solutions that are most favourable across the scenarios using the primary and
secondary criteria of the second trade-off. There may be situations where this global
compromise is difficult, if not impossible, to make and this may occur in
circumstances where the level of automation does not have to remain fixed.
Components of IDA-S allocations can be transferred from one role to another during
the activity supported by the system. Dynamic function allocation refers to the
process of redistributing functions amongst roles, with the goal of improving overall
system performance. This redistribution typically occurs in response to a change in
the environment or a change in the state of one of the agents assuming the role.  The
designer must decide how the allocation of function changes, and the extent to
which the operator is involved in this process. In practice, the change-over can be
seen as another function to be refined, in the same way as any other function that
emerges during the process.

When a function is redistributed amongst human agents it is often referred to as
workload sharing. When a function is redistributed between human and machine it is
often referred to as adaptive automation. Redistribution can either be human-
triggered or machine-triggered. Much current research focuses on dynamic
allocation in response to changes in workload. Triggers for reallocation also include,
for example:
•  Critical system events – adaptive automation is triggered if a system error

occurs
•  Performance measurement - degradations in human vigilance invoke adaptive

automation
•  Psychophysical assessment - dynamic assessments of human physiology drive

the decision as to whether to automate
•  Behaviour modelling - control allocations are used to achieve a predetermined

pattern of overall system functioning [Parasuraman & Mouloua 1996].
A detailed description of this stage of the process can be found in [Johnson et al.
2001a].

4 Extensions and conclusions

There has not been space to discuss the work that has been done to integrate the
method with notations and representations that are relevant and comprehensible to
systems engineers. The main steps here have been to develop an extension to the
use-case mechanism of UML [Rumbaugh et al. 1999] in order to provide a more
readily accessible representation of scenarios, and to use activity diagrams from
UML to describe IDA-S patterns. The difference between the templates described in
this paper and activity diagrams is that a further commitment needs to be made
about the sequence in which information, decision, action and supervision takes
place which is not contained in the IDA-S template. The UML proposal therefore
gives further guidance to the systems engineer about how to implement the
functions. More information about this is contained in the fuller paper [Johnson et
al. 2001a].



An important issue has been to keep the method sufficiently procedural and
straightforward that it can be used in practice. For this reason we are reviewing the
complexity of the IDA-S template. We are looking at alternatives that provide
attributes that are simpler to understand. An area where the method is perhaps too
simplistic and untried is the area of adaptive automation. It may be possible to do
better than assume (1) that automation adapts by function substitution and (2) that in
all cases the ideal result is achieved. In practice both assumptions may be false. As
noted by [Sperandio 1978], in discussions of air traffic control, different strategies
are adopted depending on the number of aircraft in the air space. Sequences of
functions making up procedures rather than individual functions are substituted. It
may also be appropriate that dynamic mechanisms should be prepared to shed
certain less critical functions in the face of hard deadlines. Both these issues are
discussed in a little more detail in [Harrison & Bernat 2001].
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