
Case-Based Reasoning Systems for Knowledge Mediation

A.D. Griffiths, M.D. Harrison and A.M. Dearden

Human-Computer Interaction Group, Department of Computer Science,
University of York, Heslington, York YO10 5DD,

United Kingdom

Tony.Griffiths or Michael.Harrison @ cs.york.ac.uk

ABSTRACT: A knowledge mediation system eases the transfer of knowledge between two communities of
practice. We describe one such system, based upon case-based reasoning, which reuses cases representing
previous instances of mediation between two different communities. The system’s specific purpose is to support
management processes to plan the maintenance and operation of a utility distribution network, by mediating
knowledge from the conceptual world of engineers in the business. This paper focuses on two particular issues.
The first is the means by which a case is represented so that it characterises an instance of translation between the
two conceptual worlds and the second concerns the mechanisms in the system for adapting the previous case to
the current problem.

KEYWORDS: Knowledge mediation, case-based reasoning, communities of practice.

1. INTRODUCTION
Recent literature in Computer Supported Co-

operative Work has drawn attention to problems that
arise in the interface between so-called communities
of practice (Wenger, 1998). In order to carry out their
work efficiently, communities of practice typically
make use of a specialised vocabulary, which eases
communication about the work that has to be carried
out. In addition, repetition and the internalisation of
particular forms of work mean that their activity may
be based substantially on implicit and tacit
knowledge. However, specialised vocabularies are
not necessarily understood by adjacent communities
and differences in language and knowledge mean that
the boundary objects (Star, 1995) which provide
potential interfaces between the two communities can
be interpreted quite differently from the two
perspectives. A process of knowledge mediation is
therefore needed when knowledge and information is
moved between the two communities to provide the

translations and transformations that will allow the
communication to be assimilated by the receiving
party.

This paper is concerned with the proposal that
software systems, if correctly designed, can make a
contribution to improved knowledge mediation
between different communities of practice. We
describe a specific development, which is designed to
mediate knowledge between two such communities in
response to the need for detailed and rapid
interactions between the two groups of workers.

Although the system has not been completed we
have prototyped parts of it. These parts will be
described in the current paper, along with the relevant
design issues. In a future paper we shall describe the
evaluation of the system. The development is
intended to explore generic issues of technology and
knowledge mediation. Its specific purpose, however,
is to support business planning carried out by
company managers. We have taken, as a case study,

the task of business planning undertaken by Northern
Electric Distribution Limited (NEDL or ‘the
business’). NEDL is an asset management company
within the recently privatised Northern Electric
group. NEDL owns and operates a large network
distributing electricity to consumers in the Northern
Electric area. ‘Business planning’ in this context
means deciding how money will be spent on
maintaining and operating the distribution network.
This is a difficult task; one engineer told us that the
situation of the business is characterised by
“… increasing expectations, falling revenue and an
ageing system”. Pressure is placed on the business by
the scrutiny of an external regulator appointed by the
government. The regulator has power to penalise the
company if very high standards of reliability are not
met while at the same time cutting the charges, which
may be made by the business for the transport of the
utility. The business must consider all its activities
carefully!

Business planning is an uncertain process.
However, some of the uncertainty currently
associated with the process could be resolved by
information which is already ‘known’ or recorded
within the organisation, but requires substantial
transformation or interpretation to answer business
planning questions in forms that are posed by
business managers. In particular, the engineering
teams who make up the majority of the headquarters’
staff of the business are routinely involved in creating
or accessing a number of rich sources of information.
These include the current maintenance policy of the
business, the asset registry, including information
about the age and condition profile of the components
of the distribution network, and fault records
detailing the incidence of failures in different parts of
the network. All of this information is potentially
very relevant to issues arising in business planning,
but is not accessible directly by the business planners.
It is only currently accessible through interaction and
negotiation with the engineering personnel since the
knowledge, tacit or otherwise, held by the engineers
about the existence, location and structure of this
information and about how its representations should
be interpreted, is not necessarily shared by the
business planners.

The motivating concept behind our ‘knowledge
mediation tool’ is therefore to increase the value of
information sources already available within the
business by decreasing the cost of exploiting this
information within the community of practice of the
business managers. We argue that technology
supporting knowledge mediation between the
conceptual world of the business planners and the
conceptual world of the engineering teams might

decrease the cost to the business planners of
accessing some of this information, reducing some of
the uncertainty about future outcomes associated with
business planning through the provision of extra
information. In addition, by reducing the cost to the
business managers of obtaining information in
relevant forms, the scope of the analytical
investigations that might be carried out in the course
of business planning is broadened.

The remainder of the paper discusses the design of
a prototype ‘knowledge mediation’ system, designed
in response to these issues. Section 2 outlines the
system and explains the role played by Case Based
Reasoning. Section 3 describes the notation used to
describe cases so that they are instances of translation
between conceptual worlds. Section 4 describes the
means by which the system supports the adaptation of
a retrieved case to the current problem.

2. A ‘KNOWLEDGE MEDIATION
SYSTEM’

The designated role of our prototype system is to
facilitate knowledge mediation so that information,
which previously was only accessible to the business
managers by interaction with the engineering
community, is made available at a decreased cost.
Fortunately, most of this information is stored in the
form of relational databases on electronic media.
Other relevant knowledge, which is currently only
represented on paper, could also be coerced into this
form. The knowledge mediation system will stand as
a proxy for the engineers who currently access these
information sources, allowing the business managers
greater independent access to the information. To
achieve this, the system must do two things:
• It must provide a user interface where the

business manager may express requirements for
business planning information and be presented
with this information appropriately aggregated in
an accessible form.

• It must encode the engineer’s knowledge of the
databases and provide the processes, which will
translate and transform the information into forms
that are digestible by the business manager.

In our system, the former is provided by a spread-
sheet style interface where the business manager can
create schematic representations of the required
information, while the latter is provided by the
knowledge-based technology of case-based
reasoning. These two aspects of the system are
explored in the following sub-sections.

2.1 User Interface to the Knowledge
Mediation System

I really need to know
how old our oil-filled

switches are?

‘Business planning
domain’

Real-world pressures, opportunities and constraints

Planning decisions to be made giving rise to
requirements for information

‘User Interface’

component “is a switch”

COMPONENTS AGE OF COMPONENT

‘Typed’ information space of objects and properties
relevant to ‘business planning’

‘Intuitive’ table manipulation operations

User’s spreadsheet skills

Figure 1: The user interface to the knowledge
mediation system

Figure 1 illustrates the requirements for the user
interface to the knowledge mediation system. The
business manager must be given the means to
translate requirements for information arising during
the business planning process into some kind of
formal representation of those requirements. For this
purpose, we are developing a graphical represent-
ation for the conceptual structure of tables. We
assume that the idiom and usage of the spreadsheet
package are familiar to business managers (a
legitimate part of the business planning domain) and
in this way we have attempted to minimise the
additional skills that must be assimilated by the user
of the knowledge mediation system. Associated with
the table representation are a set of ‘intuitive’ table
manipulation operations by which requirements for
information can be expressed. These operations are:
(1) Specifying a type which indicates what kind of
object is described by each row of the table. In
general, the types in the script language must be
recognisable categories of object from the point of
view of the business manager. Types playing a
prominent role in our prototype system include assets
of the business, sub-types of asset such as network
components or operational locations, or associated
entities such as fault incidents or maintenance tasks.
In addition, the user may specify combinations of
types in a single table.
(2) Adding data requirements to the table. These
indicate what is wished to be known about the entities
which are represented by the records (rows) of the
table. They are properties of the different types of
object known to the system and are shown in the
graphical representation as additional columns added
to the table representation. In Figure 1, the ‘Age of
Component’ has been chosen as a data requirement.

(3) Adding conditions to the table. These determine
the choice of rows (records) that are to be included in
the table. The table represented in Figure 1 will
contain only components of a certain subtype
(‘switches’).
(4) Aggregating tables. The user can specify
aggregations of tables in order to create a digestible
summary of information, for example summing items
of expenditure according to geographical location or
using budget headings showing the type of
expenditure.

I really need to know
how old our oil-filled

switches are?

‘Business planning domain’

‘User Interface’
component “is a switch”

COMPONENTS COMMISSIONING DATE

‘Technical Domain’ SELECT tab1.ASST_ID, tab2.MANUFACTURER,
tab2. MANUFACTURER_TYPE,
tab1.ASSET_STATUS_CHANGE_DATE AS
“COMMISSIONING DATE”

FROM
ASSETS tab1, COMPONENTS tab2

WHERE
tab1.ASST_ID = tab2.ASST_ID AND
tab1.CMPT_TYPE = ‘SWCH1’ AND
tab1.ASSET_STAGE_TYPE = ‘COM’ ;

Knowledge of SQL data-
base language & data-
base schema is needed to
construct query

Knowledge of engineering
concepts is needed to
interpret information
encoded in the data-base

Figure 2: Internal functions of the knowledge
mediation system

Figure 2 illustrates the requirements for the internal
processing functions to be provided by the knowledge
mediation system. The schematic representation of
‘information required’ must be translated into an
executable database query in order to populate the
business model created by the business manager.
Many different kinds of knowledge are needed to
carry out this translation and to transform the
retrieved data into the form required by the user. The
following kinds of knowledge, needed to use a
database system and presumably part of the tacit
knowledge of the engineering community, can be
differentiated:
(1) Schematic Knowledge: knowledge about what
different kinds of information are available and where
this information can be accessed; detailed knowledge
about the way in which the represented information
has been organised. In the case of relational
databases, this includes knowledge of the way in
which the information is divided up into relations and
the names of the attributes defining each relation.
(2) Procedural Knowledge: procedural knowledge
and skills necessary for accessing the information. In
the case of relational databases, this includes
knowledge of the SQL query language through which
the databases are accessed.
(3) Usage Knowledge: knowledge about the way that
the database has been populated in practice;
knowledge about the completeness of different

representations of information and about the
reliability of any information recorded.
(4) Interpretative Knowledge: domain knowledge
about the ‘meaning’ of any represented information,
and particularly knowledge about how this can be
translated into knowledge at the ‘business level’.
We have chosen to take a ‘case-based’ approach to
the representation and manipulation of this
knowledge. This choice is explained in more detail in
the next sub-section.

2.2 Case-Based Reasoning in the
Knowledge Mediation System

Case-based reasoning (CBR) systems (Dearden &
Harrison, 1997) are knowledge-based systems which
use a memory of relevant ‘past’ cases to interpret or
solve a new problem situation. “Rather than creating
a solution from scratch, a reasoner using case-based
reasoning recalls cases similar to its current problem
situation and solves or interprets a problem by
reasoning with past solutions and interpretations”
(Rissland and others, 1989). Case-based reasoning
offers a number of advantages for building software
systems in large and complex domains such as the
one we have described. In particular, the knowledge
content of the system can be built up incrementally,
as the system is used. This may be achieved by
simply adding new cases to the case memory as they
are created in the course of problem solving. As a
result of this process, the knowledge of the system
will be most comprehensive in precisely those areas
where the system finds most use.

In order for case-based reasoning to be used
successfully, there must be a stable correspondence
between problem situations and solutions to those
situations. A solution, which is a sufficient response
to a particular situation on one day, must suffice
again on a different day if the same problem recurs.
In addition, it must be possible to identify when a
new problem situation is different but analogous, or
sufficiently similar, to a previously occurring
problem for which a solution is known. In a rich and
changing environment such as business planning, it
may not be clear that these conditions can be met.
However, we felt justified in assuming a number of
characteristics of interactions between business
managers and engineers, after a careful investigation
of the work environment. The first assumption is that
there is sufficient stability about work in the
engineering domain. The sources of information will
remain sufficiently static that it makes sense to
consider the reuse of previous instances of access to
these information sources. The second assumption is
that, although business-planning scenarios might vary

widely and appear to be unique to the current
situation, the procedures by which these scenarios are
analysed may have a significant degree of
commonality. With these assumptions it makes sense
to explore the role of an Interactive Case Memory (a
form of CBR system where precedent cases are
retrieved and re-used in co-operation with a user of
the software system) as a basic technology for the
Knowledge Mediation System.

The case-based knowledge mediation tool will
therefore provide a record of previous examples of
business planning episodes where the “engineering
community” provided information in response to
requests by the business managers. This memory will
be in the form of sets of tables of information of the
kind manipulated in the user interface of the
knowledge mediation system along with the
executable database queries necessary to populate the
tables. The interface provides access to these
previous episodes in terms that are meaningful to
business managers and supports adaptation of the
“nearest” example so that it can be used to inform the
scenario currently being evaluated.

Several research issues are important here not only
to the CBR community but also from a human
computer interaction point of view:
(1) How to represent the cases in a way that supports
the demanding requirements just stated. The ‘script
language’ that we have developed for this purpose is
described in Section 3, below.
(2) How to re-use knowledge represented in this
language in the context of a new business planning
situation. One particular problem is that some of the
information represented in our cases, i.e. the data-
base queries associated with each table, is not
comprehensible to the user. If the most similar case in
the case memory is only a partial match to the current
problem situation, then the user of the system will be
unable to adapt these parts of the case and, instead,
automated adaptation must be carried out by the
system. These mechanisms of adaptation are dis-
cussed in Section 4, below.
(3) Whether it is possible to populate a case-base so
that the processes of matching and adaptation
described in Section 4, below, are feasible. These
issues will be considered as part of the future
evaluation of our prototype system.

3. REPRESENTATION OF
MEDIATED KNOWLEDGE

We have developed a ‘script language’ to represent
instances of translation between the conceptual
world of the business manager and the conceptual

world of the engineering teams. In terms of
knowledge mediation, three main requirements have
applied to the development of this language:
(1) Each case contains a table or set of tables
representing the information required by the business
manager and its desired presentation.
(2) Each case must include, in addition, the
executable database queries that are needed to
populate the table specified by the business manager.
(3) Each case must be represented in a way which
facilitates the adaptation of retrieved cases to meet
the needs of a new problem situation.

Existing notations for representing tables, relations
and database queries are insufficient for a number of
reasons. With respect to requirements (1) and (2)
above, the script language plays a mediating role in
bridging two different levels of representation. One is
the conceptual structure of the table, as presented to
the business manager in the user interface of the sys-
tem, and the second is the implementational structure
of the table, where the table structure is described by
database invocations which must be provided by the
engineering community of practice. At the first level,
the elements of the table structure, specifically the
conditions and the data requirements, are recog-
nisable concepts in the business-planning domain and
are named in terms chosen by the business manager.
At the second level, these ‘user level’ concepts must
be implemented in terms of the actual values and
parameters which are recorded in the mediated
information sources. This dual structure is not
reflected in current table representation languages,
which maintain only a single level of representation.

With respect to requirement (3), adaptation of
existing table representations is difficult because con-
ventional table description languages fail to express
any rationale. For example, these languages will list
the selection criteria which must be satisfied by any
record that is to be included in the table, but do not
show why each condition has been included or diff-
erentiate the roles played by the different conditions.
In addition, there may be dependencies between
conditions, which mean that it does not make sense to
delete one of the conditions without deleting a
number of them. Again, these dependencies are not
normally represented. Without the explicit represent-
ation of the conceptual structure of the table,
adaptation of existing table representations by any
means, whether manual or algorithmic, is difficult.

Our approach, therefore, has been to develop a
representation language which provides a restricted
but sufficient sub-set of the manipulations possible in
existing table manipulation languages. This language
describes the table both at the conceptual (user) level

and the implementational (internal) level. It also
organises table descriptions into meaningful chunks,
where elements of the implementation level, which
share in translating a user-level concept, are grouped
together in a single syntactic unit.

Each table is represented in the script language by
a sentence of the following form:
TABLE(NAME(TABLE_NAME),

OF(TYPE),
CUSTOMISERS(CUSTOMISERS),
PRESENT(PRESENTATION))

TABLE_NAME simply names this table for ref-
erence by other table descriptions. The TYPE, CUST-
OMISERS and PRESENT keywords are interpreted
cumulatively to reconstruct the represented table.

Firstly, the TYPE expression records the type
assigned to the table by the system user (see Section
2.1, above). In particular, the script language is
designed to represent combinations of types. For
example, each row of a table might contain asset
characteristics along with details of a maintenance
task associated with that asset.

Secondly, the CUSTOMISERS clause modifies the
‘base-table’ defined by the TYPE expression. A
‘customiser’ is either an additional data requirement
or a condition added to the definition of the table.

Thirdly, the PRESENTATION of a table provides
the rest of the information needed to display the table.
This includes; the name given to each of the columns
of the table; the order in which the columns of the
table will be presented to the user; the aggregation of
the rows of the table. An ‘aggregation attribute’
associated with each column of the table specifies the
aggregation of the table. An aggregation attribute is
either the name of an aggregation operator (COUNT,
SUM, MIN, MAX etc) or the term NONE which
indicates that the column is an aggregating column.

The script language representation of the problem-
solving episode in Figure 1 is shown below:
TABLE(
NAME("Age of switches”),
OF(tp(components, [])),
CUSTOMISERS(
DEF(cond, "is a switch”, components,
CMPT_TYPE = "SWCH", []),

DEF(data, "Age of Asset”, assets,
ASSET_STAGE_TYPE = COM,
global :: CURRENT_DATE -
ASSET_STATUS_CHANGE_DATE),

PRESENT([
(“ASSET #”, NONE, ASST_ID),
(“COMPONENT DESCRIPTION”, NONE),
(“AGE OF COMPONENT”, NONE)]))

This example illustrates the mediating role played
by the script language. A condition such as “is a
switch” is a concept from the business planning
domain and is displayed and manipulated in the user
interface of the system. The script sentence shown
above links this concept to its translation in the
language of the data-base schema: CMPT_TYPE =

"SWCH". Similarly, the data requirement “Age of
Asset” is associated with the condition and formula
which translate this element of the ‘conceptual
structure’ of the table into a piece of executable data-
base query. ‘Real world’ translations may obviously
be much more complex.

The similarity between representations of
conditions and data requirements is deliberate, since
we found that, although the distinction between the
two is meaningful at the user level, in practice the two
may require both a logical condition and a number of
additional columns to be added to the data-base
query. We asked an informant to demonstrate how
items of plant, which had been replaced during the
course of a recent asset replacement programme,
could be identified in the asset database. In the course
of this, the informant proceeded to translate the
‘commissioning date’ of a piece of plant (the date on
which the asset entered service). The informant
indicated the data-base attribute which recorded this
information but simultaneously added the condition
“ASSET_STAGE_TYPE = ‘COM’ ” to the selection
criteria in the query.

4. RE-USING MEDIATED
KNOWLEDGE

Case-Based Reasoning systems are based around a
characteristic series of processing steps e.g. (Aamodt
and Plaza, 1994), where, following the presentation
of a description of the current problem situation,
stored cases which are potentially relevant to the new
problem are retrieved from the case memory. These
are inspected to determine which are most similar to
the current situation; the selected cases are adapted to
create solutions for the current situation and so on.
Many variants of each of these steps have been
explored according to the representational form given
to the stored cases. Our task was to develop a case-
based reasoning cycle, which could exploit cases
encoded in the script language described in the
previous section.

4.1 Retrieval of Stored Cases
Methods for the efficient retrieval of cases in a

structured representation such as ours have been
discussed in (Plaza and others, 1996; Tammer and

others, 1996). In these methods, an incomplete frag-
ment of case is presented to the case memory, which
returns the most similar, complete, stored case. This
style of operation fits the requirements of knowledge
mediation, since cases expressed in the script
language of section 3 combine information from both
the business planning viewpoint (the ‘conceptual’
structure) and the engineering viewpoint (the
‘implementational’ structure). However, the business
planner using the system is only required to describe
the information required on the ‘conceptual’ level,
i.e. from the business planning point of view; the role
of the case memory system is to provide relevant
complete cases from which the missing ‘implement-
ational’ level can be inferred.

The partial case representation, which will act as a
query to the case memory system, is created through
the interactions described in section 2.1, above.
These operations create a graphical ‘table schema’
representing the information required by the user
(Figure 1, above) and an internal representation of
the same information in a sentence of the script
language. Section 3 emphasised how the script
language associates the ‘name’ of each element of a
table specification with its ‘translation’. However,
only the name of the element is provided by the user
when a query is being created. These ‘names’ are
chosen by the user from a list presented by the
knowledge mediation system of elements which have
already been defined in the cases held in the case
memory. If the user believes that the concept being
introduced into the query is genuinely new, then a
new ‘name’ may be added. In either case, the system
places a special ‘null’ term into the script language
term to mark the location of the missing translation.
Thus the user only provides those parts of the case
representation corresponding to the conceptual
structure of the table. Cases are retrieved by matching
this partial case fragment to the more complete cases
stored in the case memory.

The case memory and its associated retrieval
mechanisms are currently being implemented.

4.2 Structure Matching & Adaptation
The knowledge mediation system must now

compute a single representation in the script language
which combines all the relevant information from the
script representing the user's query and from the
scripts retrieved as cases from the case memory. We
call the process that carries out this transfer of
knowledge ‘structure matching and adaptation’. This
process is based on algorithms described in (Jantke,
1994; Plaza, 1995) for transfer of knowledge between
structured case representations. Taking a similar

approach, our process proceeds in two steps:
Structure matching. Taking the ‘query’ script with
each of the retrieved cases in turn, the system
calculates the ‘intersection’ of the two representations
by ‘matching’ one representation onto the other. This
results in a new sentence in the script language that
represents precisely what the two scripts ‘have in
common’ (i.e. their similarity). The process also
generates two series of operators, which specify a
series of transformations by which the two original
scripts could be recovered from their intersection.
These two series of operators thereby encode the
differences between the query and the retrieved case.
Adaptation. The two initial scripts are set on one
side, and the adaptation process takes as input their
intersection and the two operator traces. The
adaptation process traverses these two lists in turn,
using a set of heuristics to decide whether the
operation to recover the query script or the retrieved
script should be used. The result is a hybrid of the
query and the retrieved case. In particular, the
adaptation process is required to replace any ‘null’
terms representing missing translations of user
concepts in the query script with translations of those
concepts derived from the retrieved cases. However,
our implementation in fact does more than just filling
in missing translations - elements of the retrieved
case representing the context of use of the translated
concept, such as other elements which refer to that
element or the associated aggregations, may also be
transferred to the query script.

We have developed a set of heuristics for structure
matching and adaptation in the script language
described in section 3, and have implemented a
‘structure matching and adaptation engine’ based on
these heuristics.

4.3 Manual Refinement of Cases
The automatic process, described above, for the

adaptation of retrieved cases, is an heuristic one, as in
fact are all case-based reasoning processes. A
necessary final step therefore is that the user of the
system must ensure that the information that has been
retrieved by the knowledge mediation system through
the execution of the computed script is in fact the
information that was expected. We envisage that the
use of the knowledge mediation system is an iterative
and interactive process. The knowledge mediation
system must support at least three further
interactions:
Validation of the results of knowledge mediation.
In case there is any doubt about the information that
has been presented by the knowledge mediation
system, the user must be able to inspect the formulae

into which each of the elements in his query has been
translated. Here, there are issues about how to
support the comprehension of user as the ‘knowledge
mediation threshold’ is crossed, which we hope to
explore in the remainder of the project.
Iterative refinement of the user's query. Even
where there is no doubt about the translation of the
user’s query, we would expect the user of an
interactive system such as this to refine the concept of
what information is required iteratively through
interaction with the data that is available. The
structure matching and adaptation process uses the
same representational space for the inputs and
outputs of case-based reasoning. It is therefore
straightforward to use the same facilities of the user
interface as have been used to create the initial
representation of the requirement for information to
refine the user's query.
Incremental addition of mediation knowledge. A
final possibility is that the system contains no suitable
precedent for the translation of the user's requirement
for information into an executable database query. In
this case, the knowledge mediation system must
provide facilities for a suitable translation to be
provided by the engineering community of practice
and this translation to be added to the case memory.
In this way the knowledge base of the system is
incrementally extended and future breakdowns can be
avoided.

5. CONCLUSIONS
It has been argued for a number of years that

knowledge-based systems should be designed to
empower users to carry out their tasks (Woods and
others, 1994; Fischer and others, 1991). This
suggestion may be contrasted with the ‘expert
system’ philosophy of knowledge-based systems
which attempts to solve problems on behalf of rather
than in co-operation with the user. Our version of a
‘knowledge mediation system’ has aimed from the
start to support the task of business planning rather
than to automate or constrain it. Our approach to this
has been two-fold. On the one hand, we began our
development by using methods of enquiry developed
for general “non knowledge-based” software
development, for example scenarios-based methods
(Carroll, 1995) and contextual enquiry (Beyer and
Holtzblatt, 1998). Through these methods we sought
an understanding of the work to be supported so that
we could envisage the ways in which the technology
might impact the work system. On the other hand, we
argue that our knowledge mediation tool has the
potential to empower users. The recall of previous
instances and comprehension of their connection with

the current problem instance in terms that are relevant
to the business manager provides access to detailed
knowledge about the current state of the business so
that it can be directed to supporting decision making.
The algorithms that support the reuse of these
previous instances and their matching to the current
problem provide an appropriate level of control of the
information that is relevant to the current problem.

The main issues in implementing case-based
reasoning processes as part of our prototype
knowledge mediation tool have been to do with
developing a suitable representation for the storage of
cases in the case memory, and to find appropriate
algorithms for the retrieval and re-use of these
representations. In particular we have focussed on the
script language, although we have also attempted to
outline the ways in which stored cases are exploited
by re-use. The main requirement on the script
language is to be able to associate concepts which are
meaningful to the business managers using the
knowledge mediation system with the translation of
those concepts into data-base invocations and
formulae which will construct the required
information from the available data sources. This
requires structuring the language so that each
syntactic element of the language corresponds to a
meaningful conceptual element of the query. The
SQL database language does not have this property;
if an arbitrary sequence of tokens is deleted from an
SQL query, the resulting string will almost certainly
not be a well-formed query. Our script language is
designed so that removing any of the constituent
elements of a script will result in a new script which
still has a valid interpretation, and in addition the
chunk that has been removed is a separable and
independent piece of knowledge.

Future evaluation of the system in the context of
use should address a number of issues associated with
knowledge based tools of this kind, for example: 1)
Problems of ‘false certainty’ associated with
automatic translation. 2) Problems of breakdowns
where the system is not providing the appropriate
level of knowledge. We have created a proxy for the
engineer, but still need to enlist the engineer to fill in
gaps in the knowledge of the system.

Acknowledgements: We acknowledge with gratitude
the support of Northern Electric Distribution Ltd and
the UK Engineering and Physical Sciences Research
Council (Grant GR/K84752).

REFERENCES
Aamodt, A. and Plaza, E. (1994) Case-Based

Reasoning: Foundational Issues, Methodological
Variations, and System Approaches, Artificial

Intelligence Communications, 7(1), 1994.
Beyer, H. & Holtzblatt, K. (1998) Contextual Design.

Morgan Kaufmann.
Carroll, J. M., editor (1995). Scenario-Based Design:

Envisioning Work and Technology in System
Development. John Wiley & Sons.

Dearden, A.M. & Harrison, M.D. (1997) A Software
Engineering Model for Case Memory Systems.
Computer Journal 40(4) pp. 167-182.

Fischer G., Lemke A.C., Mastaglio T. and Morch A.I.
(1991) The role of critiquing in cooperative
problem solving. ACM Transactions on
Information Systems, 9(3):123-151, April 1991.

Jantke, K.P. (1994) Nonstandard concepts of
similarity in case-based reasoning, in Bock H-H.,
Lenski W., and Richter M. M. (eds.), Information
Systems and Data Analysis. Proc. 17th Annual
Conference of the Gesellschaft fur Klassification,
March 1993. Springer-Verlag.

Plaza, E. (1995) Cases as terms: A feature term
approach to the structured representation of cases,
in Veloso M. and Aamodt A. (eds.), Case-Based
Reasoning Research and Development: Proc.
ICCBR-95. LNAI vol. 1010, Springer Verlag.

Plaza, E., Lòpez de Màntaras, R. and Armengol, E.
(1996) On the Importance of Similitude: An
Entropy-based Assessment, in Smith I. and Faltings
B. (eds.), Advances in Case-Based Reasoning:
Proc. EWCBR-96. LNAI vol. 1168, Springer
Verlag.

 Rissland, E.L., Kolodner, T. & Waltz, D. (1989)
Case-based reasoning from DARPA: Machine
learning program plan, in K. Hammond, editor,
Proc. DARPA Case-Based Reasoning Workshop,
May 1989, pp. 1-13. Morgan Kaufman.

Star, S.L. (1995) The Politics of Formal
Representations: wizards, gurus and organizational
complexity, in Star S.L. (ed.), Ecologies of
Knowledge, Work and Politics in Science and
Technology. SUNY Press.

Tammer E.-Ch., Matuschek D., Jantke K.P., and
Steinhöfel K. (1996) Learning Case Classification
for Improving Case-Based Reasoning, in
Proceedings: 9. Fachgruppentreffen Maschinelles
Lernen der GI Fachgruppe 1.1.3, Universität
Chemnitz-Zwickau March 1996, Chemnitzer
Informatik- Bericht CSR-96-06, ISSN 0947-5125.

Wenger, E. (1998) Communities of Practice:
learning, meaning and identity. Cambridge
University Press.

Woods, D.D., Johannesen, L.J., Cook, R.I. & Sarter,
N.B. (1994) Behind Human Error: cognitive
systems, computers and hindsight. CSERIAC
SOAR 94-01

