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Abstract 

Engineers of safety critical systems are beginning to recognise that human 
issues are critical to their safe automation, and that appropriate techniques 
for taking account of the people in the system should be integrated into the 
design process. This chapter gives a brief introduction to a two-step 
decision procedure that can be used to help decide how to automate an 
interactive system. The procedure is intended for use early in the 
development of systems in larger scale collaborative settings with the aim of 
improving their safety and performance. Two issues are particularly 
important. The first concerns the appropriate choice of automation so that 
the tasks designed for the different roles satisfy criteria that have 
significance from a cognitive perspective. The second is to understand the 
mapping from concepts of function allocation to notations that are 
meaningful and usable by system engineers. The method has received 
preliminary evaluation in aviation and naval contexts. 

Introduction 

As the automation of complex processes becomes more achievable the 
need for system engineering procedures that help decide how to automate 
becomes more important to the safety and flexibility of automation use. 
Work systems are often complex interactive systems involving many people 
and many technology components. The work that is involved must be 
                                                           
1 In press, Handbook of Cognitive Task Design ed. E. Hollnagel. 



  

  

implemented in a way that is most compatible with roles that are designed 
for the people involved. The implementation must satisfy general criteria 
such as minimising workload, maximising awareness of what is going on 
and reducing the number of errors. The basic problem therefore is to 
reduce the cognitive demands of the tasks being performed by the people 
involved in the system while maintaining fully their ability to function 
within their given roles. This chapter is concerned with these procedures, 
collected together in a process known as function allocation. It is also 
concerned with how these procedures can be integrated effectively with 
methods and representations that are used by system engineers. While many 
function allocation methods have been designed to be used by human 
factors experts, relatively little attention has been paid to the linkage of 
these methods to system engineering. 

Allocation of function has evolved since the early 1950s. Methods that 
have been developed are problematic for a number of reasons. 

 
•  Context: They fail to take proper account of the context in which the 

functions are to be automated. Functions are often considered in 
isolation using general capability lists describing what people are better 
at and machines are better at (Fitts, 1951). If context is to be considered 
it is presumed to be done implicitly by the appliers of the method. The 
cognitive task is therefore considered in isolation from the environment 
in which it is to be performed.  

•  Comprehension: They fail to be comprehensible and applicable by 
engineers. They depend on a firm understanding of human factors. For 
example the KOMPASS method (Grote et al., 2000) describes criteria 
for complementary system analysis and design: process transparency, 
dynamic coupling, decision authority and flexibility. These criteria are 
difficult to interpret. Methods do not use design representations that are 
familiar to system engineers. Allocation decisions are usually binary and, 
as a result, functions are identified as to be automated or not. This 
means that they must be described at a low level of granularity.  

•  Collaboration: They fail to recognise that the system is more than a single 
human and a single device. They do not take into account the broader 
collaborative system, the roles defined therein or the design of cognitive 
tasks that bridge across roles. They offer no guidance about how 
dynamic allocation of function should be implemented. This problem 
becomes more relevant as the possibility of automating a system 
dynamically, when necessary or appropriate, becomes more realistic. 

 



  

  

Recent methods of function allocation have been developed to overcome 
some of these problems. In particular, one developed at the Institute of 
Work Psychology, University of Sheffield (Older et al., 1997) aims to 
overcome context problems while taking account of collaborative aspects of 
the organisation. Another method developed at the Department of 
Computer Science, University of York (Dearden et al., 2000) makes the 
decision procedures more explicit while also having a strong emphasis on 
context. This method also provides a clear representation for 
implementations of functions that automate some parts but not all of the 
functions (hereafter called partially automated functions).  

Another approach which, although relatively weak at supporting the 
decision process or representing the context in which the functions are 
performed, has a strong representation of the output of the method in 
terms of a classification of levels of automation. These methods of 
automation classification, particularly (Parasuraman et al., 2000), are useful 
for introducing the important automation categories for different phases of 
the function. They work well in aiding the production of an output format. 
However, they are relatively difficult to convert into implementation for any 
given situation.  

This chapter proposes a modest extension to the method described in 
(Dearden et al., 2000) aimed at addressing some of the concerns about 
collaboration and also ties more effectively to a format that can be 
understood by system engineers. In this method, roles can be assigned to 
parts of a function thereby defining some of the collaborative characteristics 
required in performing the function. In order to link with the requirements 
of system engineers, the system and modelling language UML (Unified 
Modelling Language) is used to represent elements required in the process 
of function allocation. 

UML is a notation for describing different views of a system using 
different kinds of diagrams (Rumbaugh et al. 1999). It presumes an object-
orientated design approach but, within this approach, provides a range of 
techniques for modelling important features of the design in a standardised 
notation. UML is of considerable interest in industry, particularly to those 
companies that are attempting to satisfy external requirements for human 
factors integration such as military organisations. The representations of 
UML can be used to describe the inputs and outputs to the method. If 
function allocation is to be made an explicit step in the system engineering 
development process then it must offer solutions to problems faced by 
engineers in the design of highly automated control systems. In practice 
function allocation is not often performed as an explicit step because results 
are perceived to be imprecise and benefit is unclear. Engineers recognise 



  

  

that human operators are a source of error and attempt to solve this 
problem by minimising their role. The assumption is that doing this will 
have the effect of reducing these risks. Inevitably, situations arise that the 
automation cannot handle. In these circumstances the operators are 
expected to step in and resolve the situation. Because operators have been 
“out of the loop” their ability is impaired.  The view of allocation of 
function is to keep operators in the loop in relation to their roles and to 
view automation as assisting them – it is therefore a problem of cognitive 
task design. The cognitive task design goal is to take advantage of the benefits 
offered by automation, but to do so in a way that does not impede the 
operators’ abilities to perform their roles. The achievement of this goal is 
difficult because it requires the combination of two disciplines, system 
engineering and human factors engineering, neither of which alone can 
provide the solution.  

The chapter describes the proposed method in two passes. The first 
pass (next two sections) describes the essentials of the method while the 
second pass describes how the method provides support for the system 
engineering process. The next section gives a brief description of the 
method and describes in more detail what is required as input and what is 
produced as a result. This is followed by a more detailed description of the 
method, in particular the decision steps that are taken. The link between the 
allocation of function method and UML is then considered. The final 
section contains a brief description of possible further extensions to the 
method. It is possible to get an appreciation of how the method works 
without getting into the detail of UML. The process is fully described 
without reading the UML sections. 

The ingredients of  the method 

Introduction 

The problem is to take a set of functions, describing the work that the 
system is to do in the contexts in which the work is to be carried out, and to 
decide how to automate them. The procedure for automating functions 
involves two decision steps. Firstly, functions are matched to defined roles 
that capture high-level functions of the agents. In practice, it is often 
difficult to be clear about these roles at the outset. Initial definitions will be 
refined iteratively therefore through successive applications of the method. 
The aim is to decide how closely these functions fit the roles in a set of 
given scenarios. Functions that are entirely subsumed within a role are 



  

  

proposed to be “totally manual within the role” – to automate would in 
effect remove part of the agent’s role. Functions that can be separated 
entirely from any of the roles and for which it is possible to automate are 
designated as “to be automated”. In practice few functions fit either of 
these categories. The functions that are left are therefore considered in 
more detail to decide what aspects of them should be automated. By this 
means automation can be designed in order to support specified roles most 
effectively. The effect therefore is to design cognitive tasks for the different 
roles specified and to render them in a form that can be employed by a 
system engineer. 

In the following sub-sections we describe function, role and scenario in 
more detail. Other inputs to the method, for example: description of the 
technology baseline, mandatory constraints and evaluation criteria are also 
required as inputs. We leave a discussion of some of these issues until the 
section in which we consider UML aspects in more detail and others we 
ignore in order to maintain a clear description of the method.  Function, 
role and scenario are the minimum needed to get a reasonable 
understanding of the method. The output of the method is a set of 
functions that can either be described as manual or totally automated and a 
set of partially automated functions. The format for partially automated 
functions is indicative of how they should be implemented.  

Role 

The aim is to consider the match between function and role as well as 
whether functions contain aspects that are most appropriate for humans or 
for machines. The machine or technology part of the system will be 
described generically as a device in what follows. In practice the design of 
roles, whether human or device, takes account of human considerations 
such as capability and training as well as the overall balance of the work 
design. Often, whether or not a function should be automated and how 
much it should be automated, depends on the context in which the function 
is performed. It makes more sense to be specific about how compatible the 
tasks are with the various roles specified for the various personnel in the 
particular contexts than to ask the question: “would it be sensible for a 
human to do this?” in isolation.  

In practice role is difficult to define. It is an activity that can be 
performed either by a human or a device. Normally it is not necessary to 
produce a statement for a device’s role but there are circumstances where 
doing so is helpful in providing scope for the definition of a technology 
component.  For example the envelope protection provided in a fly-by-wire 
aircraft (in other words the boundaries beyond which pilot manoeuvres are 



  

  

judged to jeopardise the safety of the aircraft) could be clarified through an 
explicit role statement. Doing so would help to ensure that functions are 
not allocated in a way that prevents the device from being able to keep the 
plane within the safety envelope.  

An example of a role statement for the captain of a civil transport 
aircraft might be: 

The captain is the final authority for the operation of the airplane. The captain must 
prioritise tasks according to the following hierarchy: safety, passenger comfort and flight 
efficiency. 

 
In the context of a single seat military aircraft an example role 

statement for the pilot might be: 

The pilot is the final authority for the use of offensive weapons and for evasive 
manoeuvres. The pilot is responsible for mission planning, tactical and strategic decision 
making and co-ordination with other aircraft. The pilot is responsible for the management 
of systems to maximise the probability of successful mission completion. 

 
These roles may be taken as a starting position subject to refinement as 

the allocation process unfolds. Ambiguities may be removed, assumptions 
may be seen as inappropriate, incoherence between roles may be resolved, 
role definitions changed to establish function integrity and vice versa. 

Functions 

A function or unit of work (an activity that the system - people and devices 
- is required to be capable of performing in order to achieve some result in 
the domain) might include “finding the current position of the vehicle”, 
“withdrawing cash” or “detecting a fire”. Although in practice, identifying 
and determining a function is a matter of expert judgement, some 
characteristics are important to prevent premature commitment to a means 
of automation.  A function does not contain any indication of who or what 
performs it (Cook & Corbridge, 1997). For example, “key in way point” is 
not a function because it implies that the operator enters the way point 
manually, whereas “set way point” does not. Functions are related to, and 
can be derived from, the functional requirements used in system 
engineering. The assumption made in this process of function allocation is 
that, unlike typical practice, indications about who or what should perform 
the function are removed at the requirements stage.  

Functions can be defined at a variety of levels of granularity and can be 
arranged hierarchically. In the same way as task analysis, a top down 



  

  

hierarchical approach can be a useful aid to function elicitation and is also 
helpful in deciding what level of granularity of function can be used most 
effectively in the decision process. Descending the hierarchy reveals both a 
decrease in the complexity of the function and in the size of the sub-system 
required to perform it. At the top of the hierarchy, functions may be 
performed by a team or department, while at the bottom by a single 
operator with the aid of automation.  

 

Scenarios 

Function allocation methods such as the “Men are better at, Machines are 
better at” approach presume that the suitability of a function for 
automation is based on an individual function. They use capability lists 
usually based on the so-called Fitts’ List described in Table 1 (Fitts, 1951). 
Using this approach, functions are matched against the lists and, on the 
basis of the match, a decision is made whether to automate the function or 
not. 

 
Men are better at… Machines are better at … 
Detecting small amounts of visual, 
auditory or chemical energy 

Responding quickly to control 
signals 

Perceiving patterns of light or 
sound 

Applying great force smoothly and 
precisely 

Improving and using flexible 
procedures 

Storing information briefly, erasing 
it completely 

Storing information for long 
periods of time and recalling 
appropriate parts 

Reasoning deductively 

Reasoning inductively Doing many complex operations 
at once 

Exercising judgement  

Table 1: Fitts’ List 
 
As has been noted already, these capability lists ignore the complex 
interactions and dependencies between activities of work. To overcome this 
the method described here considers groups of functions structured in the 
context of a scenario. This allows the designer to appreciate the interactions 
between the functions and therefore to understand more effectively those 
contextual factors that might influence the design of the cognitive tasks 
entailed by function allocation decisions.  Scenarios focus upon situations 



  

  

relevant to the decision criteria that are used to decide what level of 
automation is appropriate Examples of such criteria include workload and 
situation awareness. Scenarios aim to represent the functions under 
consideration in a range of contexts. For example, in the field of civil 
aviation where workload has been identified as a decision criterion, take-off 
and landing may be chosen as important as a basis for scenarios (among 
others such as emergency conditions) because these periods are recognised 
as producing high workload.  

The method only considers those functions used within the current 
scenario and therefore the analyst must ensure that every function occurs in 
one scenario and ideally several. It is important to ensure that a variety of 
scenarios are used covering the range of activities that the functions will 
engage in. In order to achieve this, scenarios should be selected that cover 
all the normal operating conditions of the system. There is a wide range of 
sources for possible candidate scenarios, for example: 

 
•  The experience of practitioners in previous systems 
•  Incident and accident reports for previous systems 
•  Scenarios developed during the business modelling stage of the system 

life cycle 
•  Use cases and scenarios in the previous systems development 

documentation or training manuals. 
 

Scenarios often entail a detailed account of what happened in a set of 
circumstances. They are therefore concrete in terms of the actions that are 
described. If the scenario is describing some current possibility with the 
baseline architecture, these events will be expressed in implementation 
dependent terms. Once a scenario is elicited therefore, the description must 
be re-expressed neutrally in terms of functions (using the initial list of 
functions) rather than the baseline actions. The format for representing 
scenarios is based on a modified version of the scenario template for 
THEA (Pocock et al., 2001), and employs the UML format for scenarios 
described in (Cockburn, 2001), see Table 2. 

This scenario description is then transformed. The events and event 
extensions headings are changed to functions and function extensions. The 
account of what happens in the scenario is re-expressed using the set of 
functions rather than the event descriptions. This process can be a useful 
check that the functions are expressed at an appropriate level and whether 
they incorporate too much implementation bias. The functional scenarios 
are then used as the basis for the two decision procedures. 



  

  

The nature of the output 

Function allocation methods typically consider functions at a very low level 
and provide two allocation options H (human) or M (machine). In many 
cases the designer’s interest lies with those higher-level functions that 
require some form of collaboration between operators and the devices in 
the system. The process is therefore concerned with how to implement 
these higher level functions in terms of how the collaboration or 
automation boundaries work. By this means, the cognitive tasks that are 
relevant to the potentially various human roles may be understood. Rather 
than working with numerous low-level functions to determine this 
boundary it is easier to work with the parent functions and to declare them 
as partially automated. Of course there are many ways in which the 
operators and devices can interact to execute a function and there is a need 
for the designer to specify how the collaboration will be achieved.  
 
 
UC# The name of the use-case 
Scenario 1 - Each use-case can have a number of scenarios 
Environment A description of the environment within which the 

system is operating when the scenario occurs.  
Situation A description of the state of the system at the start of 

the scenario. Are all the operators on duty, are there any 
known or unknown faults in the system etc.?  
Step Event 
1 The main sequence of events that take place 

during the scenario. This includes events that 
happen in the environment, events that cause 
changes to the system and the actions that the 
system must perform. 

Sequence of 
events 

…  
Step Event 
1 Variations upon the main sequence of events are 

recorded as event extensions.  

Event 
extensions 

…  
Scenario 2 

Table 2: Scenario input template 
 
One possible approach is to use a classification that defines levels of 
automation with the aim that engineers recognise how to implement the 



  

  

particular level. The allocation of function method then provides advice 
about appropriate automation in terms of level. A number of such 
classification schemes have been suggested. For example, (Sheridan & 
Verplanck, 1978) suggest a classification of levels in which decisions and 
control pass progressively from the human to the device. Later authors have 
produced alternatives. Kaber and Endsley provide ten levels of automation 
(Kaber & Endsley, 1997). Billings suggests seven levels of management 
automation (Billings, 1991). For each function that the designer defines as 
being partially automated there would be an indication of what the level of 
automation would be. (Parasuraman et al, 2000) goes further and suggests 
guiding the decomposition of functions into four broad classes: information 
acquisition, information analysis, decision and action selection, and action 
implementation. These functions are then automated according to Sheridan 
and Verplanck’s scale. In summary, all these approaches have in common 
the difficulties that: 
 
1. They assume a spectrum of levels of automation between human and 

device. In practice a number of different roles may carry out different 
functions. 

2. They provide solutions that are not sufficiently clear to form a basis for 
engineering implementation of the functions. 

 
 
 Information Decision Action 

Collect  Propose  
Integrate  Evaluate  
Configure  Modify  

Planning the 
response 

Initiate 
response 

 Select  

Approve  

Supervise 
ongoing 
execution 

Monitor 
progress 

 Identify 
exceptions 

 Revoke 
authority 

 

Supervise 
termination 

Determine 
output 
content 

 Identify 
completion 

 Stop process  

Action Execute 
actions 

  

Table 3: The IDA-S template 
 



  

  

The approach used here, called IDA-S, (Dearden, 2001), provides more 
hooks for thinking about partial automation. It is based on Malinkowski et 
al.’s (1992) framework for adaptive systems and is capable of expressing all 
types of automation provided by the various classifications, splitting into 
four components that have common features with (Parasuraman et al. 
2000). The top level components are Information, Decision, Action and 
Supervision (hence IDA-S). Each component is further split into a number 
of elements, each describing a particular aspect of the function. The 
designer specifies which role is responsible for performing that aspect of 
the function. If the element is not applicable within the context of the 
function then it is marked not applicable (n/a).  

 
Function F1 Plan route 
Solution Sol6 Plot way-points 

 

Design 
solution 

The navigator plots a number of way-points describing the 
destination and the route required. 
The electronic chart evaluates the proposed route based upon 
its knowledge of navigation and sailing, proposing any changes 
or conflicts it identifies. 
The navigator can modify the route as required and approve 
the route. 
The electronic chart then calculates the distances and bearing 
between the points. 
The navigation officer supervises the entire process. 

 Information Decision Action 
Collect N Propose N
Integrate N Evaluate E
Configure N Modify N

Planning the 
response 

Initiate 
response 

N Select N

Approve  

Supervise 
ongoing 
execution 

Monitor 
progress 

C Identify 
exceptions 

C Revoke 
authority 

C 

Supervise 
termination 

Determine 
output 
content 

E Identify 
completion 

N Stop process C 

Action Execute 
actions 

N  

Table 4: Solution to plan route 
 



  

  

The elements in the Information component cover issues such as which 
role integrates the information required to carry out the function, and which 
role is responsible for initiating a response. The Decision component covers 
such issues as which role proposes what plan/action to take, evaluates it, 
modifies it and selects one if there is more than one possibility. The Action 
component covers which role carries out the action. The Supervision 
component covers such issues as which role monitors the performance of 
the action, identifies exceptions and revokes the action if necessary. It 
allows the designer to express precisely how the function is implemented in 
terms of the various roles that are responsible for these aspects of the 
function. The given solution is indicated by placing the role identifiers in 
appropriate cells of the template.  

Consider, for example, the automation of a function used in scenarios 
related to ship navigation, for example “plan route”. One solution is 
described in Table 4 in the format required by the method. This function 
allocation assumes the roles: Navigator (N), Electronic Chart (E) and the 
Navigation Officer or Command and Control (C).  

The IDA-S definition clarifies how to develop an implementation that 
satisfies the requirements. The informal description, under the heading 
“Design solution” in Table 4, states in English which roles are responsible 
for what aspects of the function. The IDA-S representation invites the 
analyst to consider how to decompose the function and to consider which 
role should be responsible for what aspect of the function. 

The method: two decision steps and consolidation 

The approach contains two decisions. The first decision provides a first cut 
at how much automation to provide and hence prevents the system from 
being under- or over-automated. The second decision refines the situations 
where some level of automation is appropriate for a function. This step 
makes it easier for the analyst to work towards tasks that optimise 
performance, workload or situation awareness for example in the context of 
the different scenarios. The procedures aid the process of deciding what 
tasks are to be designed for what roles. 

 

Can it be matched entirely to role? 

Once roles, functions and scenarios have been defined the first decision 
step concerns which functions can be totally allocated to one of the roles 
(these roles may be device or human). Each scenario is considered in turn. 



  

  

The functions that are employed within the scenario are identified. The 
designer bases decisions about automation of these functions on their use in 
the context of the scenario under consideration. Suitability for total 
automation is not based solely upon the technical feasibility of a solution. It 
is also based upon the function’s relation to the roles. If a function is not 
seen to be separable from an operator’s role then it cannot be totally 
automated, as doing so would interfere with the operator’s ability to do the 
job effectively.  There are two dimensions to the trade-off.  
 
 
State of 
automation 
research vs. 
relation to 
role 

Role Existing 
with 
immediate 
access 

Existing in 
competitor 
systems 

Low 
risk / 
low 
cost 
R&D

High 
risk 
or 
high 
cost 
R&D

Infeas-
ible 

Separable ALL  Sol1    
R1      Role related 

information 
or control 

R3      

R1      Role critical 
information 
or control 

R3      

R1      Central to 
role R3      

Table 5: The first trade-off 
 
Firstly, each function is considered in relation to the feasibility of 
automating it. The concern here is with the cost and technical possibility (1st 
row Table 5). The system engineer must consider how feasible it would be 
to automate the function in terms of a spectrum of already possible to 
infeasible. The engineer therefore uses expert judgement to decide where 
best it fits. Secondly, the function is matched against the set of roles. The 
roles are likely to continue to be refined as the design evolves (1st column in 
Table 5). In the example, two roles R1 and R3 are relevant to the scenario. 
The functions are entered into the cells of the matrix as possible solutions 
or implementations of the function. Hence Sol1 is a possible 
implementation of a function that is separable from all the roles that have 
been defined, and can be automated using technology that exists in existing 
competitor systems.  



  

  

Two classes of functions can be distinguished using this trade-off. If a 
function can be separated from all the defined roles and is feasible (for 
example cost effective) to automate then it makes sense to totally automate 
it. On the other hand if the function is totally subsumed within one of the 
human roles, whether or not it can be automated feasibly, it makes sense to 
consider it as totally manual within the role. These functions can be 
identified by finding the functions that are “central to role” (rows 3 & 4 in 
Table 5) and appear in one of the high risk or infeasible columns (columns 
6 & 7 in Table 5). However it is also likely that other functions that are 
central to one role may also be considered to be “manual” because it is 
important to that role’s activity that they perform the function manually 
however easy it is to automate. The class of functions that contains both the 
“wholly separable” and “entirely within role” types is not considered further 
in the method. If the function is to be automated then the means of 
automation is dealt with in some other component of the general 
development process. The interface to this functionality is of no concern 
here. Notice that a function may appear in more than one row because it 
relates to several roles but may only appear in one column because 
feasibility to automate is invariant. This leaves functions that are to be 
“partially automated”. There are usually a number of ways in which partial 
automation may be achieved.  Choosing the most appropriate is the subject 
of the second trade-off that will be considered next.  

The function “plan route” discussed earlier is critical to the role 
“navigator” (N) and related to the role “navigation officer” (C). In addition 
it might be reasonable to assume, depending on system engineering 
judgement, that the automation can be achieved through low risk / low cost 
research and development. Hence a potential solution to this function fits 
into the “partially automated” category and must be considered further. On 
the other hand, in the context of the definition of the “pilot” role defined 
earlier for a military aircraft, a function such as “fire missile” is central to 
role and, although it is technically feasible to automate, would be defined as 
manual even if there were no mandatory requirement to ensure that this 
should happen. 

Candidates for the second step 

The second decision procedure is concerned with comparing alternative 
IDA-S solutions defining partial automation possibilities with a “baseline” 
solution. The aim is to obtain, in the first instance, a set of most favoured 
IDA-S representations for each scenario in the sense that these function 
implementations have the most beneficial effect under criteria such as 
workload or situation awareness in the context of the scenarios. When this 



  

  

has been done for each scenario, the choices are consolidated into a set of 
choices for the system as a whole. The result of this analysis will be to 
produce an implementation reflecting the function allocation decisions. 
Hence implementations will be produced that support most effectively the 
roles that are engaged in the scenario. Tasks will, in effect, be designed so 
that function implementations gather information, support decisions and 
support the most appropriate mechanisms for action and supervision 
optimally in the context of a set of criteria. In each scenario, comparison is 
made with the baseline design. Often the baseline is the existing design that 
is currently the subject of modification but there are circumstances where a 
new concept is being designed, where the most conservative of the design 
alternatives may be considered. 

The rating process  

Having constructed a number of alternative possibilities for each function 
listed from the scenario, these candidates are rated using a second matrix. 
An example of possible alternatives in the case of “calculate point to point 
information” would be for example: the navigation system might propose 
alternative routes from which the navigator selects the most appropriate; or 
no such choice being provided. The reason for choosing particular 
representations may be random or based on some assumptions about the 
abilities of the off-the-shelf technologies available to the project. The 
options for all these functions are then rated in relation to a criterion such 
as workload or performance in comparison with the “baseline” design.  

In practice a collection of criteria will most likely be relevant to the 
current scenario, for example it may be appropriate to consider workload 
but not to the detriment of situation awareness. It is possible that the 
relation between the criteria will be uncertain, so for example improving 
workload may have a negative effect on situation awareness. The second 
decision is therefore made in relation to a “primary concern” (the most 
important criterion) in the context of the potential parallel effect on the 
other relevant criteria.  

This decision step, therefore, takes all the options that have been 
produced for all the functions relevant to the scenario, and the primary 
concern identified, and enters them into a second matrix (see Table 6). The 
design options used in the baseline should also be included in the cell that is 
labelled “no significant improvement in primary concern”. The alternative 
solutions are then placed in the table. Two criteria decide where the solution 
should fit. The first depends again on the feasibility of the particular 
solution, how easy will it be to implement with achievable technology. The 
second requires a judgement about the effect of the solution in terms of the 



  

  

criteria (workload, performance, situation awareness etc.). The judgement 
here is whether the solution causes an improvement or deterioration to the 
primary criterion and what the consequent effect will be on the other 
criteria. This process is therefore significant in understanding cognitive load.  
 
 
Primary concern: Performance 
State of automation 
vs. level of 
improvement 

Suggestion 
is 
immediately 
available 

Available 
on 
competit
or 
systems 

Low 
risk, 
low 
cost 
R&D 

High risk or 
high cost 
R&D 

Large improvement 
in primary concern, 
no deterioration in 
secondary concerns 

 
 

 
 

 
 

 

Improvement in 
primary concern, no 
deterioration in 
secondary concerns 

 
 
 

F1.2.4 
Sol 2  

 
 

 

Improvement in 
primary concern 
minor deterioration 
in secondary 
concerns 

 
 

F1.2.4 
Sol 1  

  

Improvement in 
primary concern, 
large deterioration in 
secondary concerns 

    

No significant 
improvement in 
primary concern 

    

Large deterioration in 
primary concern 

    

Table 6: Identify partially automated functions  
 
All these judgements are carried out in comparison to the baseline design. It 
would be expected that some solutions do better while others do worse. It 
may be that the analyst uses expert judgement, but it could be that the 
situation requires a more careful human factors analysis of these decisions. 



  

  

In this case it may make sense for a team to be involved and for the 
workload analyses or situation awareness calculations to be performed by 
appropriate experts. 

In the case of the function “calculate point to point information”, if 
workload were the primary criterion and situation awareness the secondary 
criterion, the process might be as follows. If the baseline assumption was  
to be that the function was performed entirely manually, then solution 1 in 
which optional routes are presented to the navigator, would improve 
workload with no deterioration to situation awareness (because alternative 
route information is judged to be key to situation awareness by human 
factors experts). Solution 2, in which no options are presented, would also 
improve workload but would in the judgement of human factors experts 
cause minor deterioration to situation awareness. 

 

Choosing the best candidates  

Each potential solution is placed in the matrix. At the end of the process it 
will be possible to derive a set of best candidates, solutions that are most 
favourable in relation to the criteria and are technically feasible. By this 
means tasks will be designed in the scenario contexts. This process is 
achieved by searching from the top left of the matrix, selecting new design 
options. If a design option for a function is selected, then all other options 
for that function are deleted from the table. If a design option is selected 
from the ‘high risk research and development’ column, then an alternative, 
low risk solution should also be considered as a ‘fall-back’ position.  In 
Table 6 two options are provided for a function F.1.2.4. Both are 
implementable because they are available on competitor systems. However 
the second solution is preferable because, while it results in an improvement 
in performance compared with the baseline solution, it has no negative 
effect on any of the secondary concerns such as workload. 

After a number of options for functions have been selected, the 
designers should re-evaluate the scenario and consider whether or not the 
primary concern should be changed as a result of the decisions made so far. 
For instance, consider a scenario in which high workload is the primary 
concern. If new partially automated solutions are selected that significantly 
reduce the expected workload, then a different concern such as 
performance or situation awareness may now be more significant. If the 
primary concern is changed, then options for the remaining functions are 
re-arranged in a new matrix reflecting the changed priorities. Option 
selection then proceeds as before, starting with the options that provide the 



  

  

greatest improvement for the new primary concern. This procedure iterates 
until one design option has been selected for every function. 

One possible outcome of the procedure is that some functions cannot 
be successfully allocated without making use of options from the ‘high risk 
research and development’ column, or from a row involving a ‘large 
deterioration’ with respect to a secondary concern within the scenario. If 
this occurs frequently, and cannot be solved by generating alternative design 
options, this may indicate a need to review the system requirements, or to 
review assumptions about the number and role of human operators in the 
system.  

Emerging functions  

When a design option for each function has been selected, the scenario is 
re-analysed using the proposed allocations as the set of baseline designs. 
The purpose of this re-analysis is to identify any new functions that may be 
an emergent consequence of the new design. Such functions could include 
for example a requirement to co-ordinate two separate functions that 
control the same system resources (for example, in one domain we 
considered, we recognised that both ‘terrain following’ and ‘missile evasion’ 
had similar IDA-S characterisations and could be combined as variants of 
the same function). Design proposals for the partial automation of these 
functions are made. Hence the task is redesigned in the light of the analysis. 

If new functions are identified, then designers must consider whether 
their impact upon criteria such as performance, workload or situation 
awareness is acceptable. If the emergent functions do create an 
unacceptable situation, then the selection matrix is revisited to consider any 
options that might improve outcomes for the emergent functions. This may 
result in changing the level of automation, or may result in changed 
selections for the original functions. Hence, if emergent functions are 
identified then steps of the process dealing with these are repeated, that is 
feasible design options are suggested for partially automating the emergent 
functions and the optimum choice is selected. These new functions may 
have unexpected effects on the work and therefore the whole process of 
function allocation must be considered again using these new functions. In 
situations where these functions might be particularly critical it may be 
necessary to find new scenarios in which combinations of features may be 
considered.  



  

  

Consolidation 

Once functions within each scenario have been allocated, any contradictions 
of allocation across scenarios are resolved. This is done either by changing 
one of the allocation decisions so as to resolve the conflict or by allowing 
automation levels to change across scenarios. Components of IDA-S 
allocations can be transferred from one role to another during the activity 
supported by the system. This redistribution typically occurs in response to 
a change in the environment or a change in the state of one of the agents.  
The designer must decide how the allocation of function changes and the 
extent to which the operator is involved in this process. In practice the 
change-over can be seen as another function that can be refined in the same 
way as any other function that emerges during the process. 

The following section describes in more detail how the method is 
integrated with UML. A reader only interested in the method may skip to 
the final section (Extension and Conclusions). 

Integration with UML 

Two further developments of the method make it more accessible to system 
engineers. The first reformulates the representations that are input and 
output for the method into UML (Rumbaugh et al., 1999). The second 
produces a representation of the mapping between the roles and system 
components. The aim of the first step is that the method can be more easily 
assimilated into existing system engineering practice and of the second that 
the implementation of roles may be more easily visualised. In other words 
an additional dimension is introduced, that of recognising how a role is 
implemented either as a human or a device within the system. In earlier 
sections issues of feasibility of automation were discussed without 
considering the architecture of the system.  

Integration of input 

The previous discussion of scenarios and functions has already indicated 
that they can be represented using UML’s use-case model. The advantage of 
this approach is that system engineers may use a UML supported design 
process (or profile) to develop the system’s design model based upon the 
use-case model. Function allocation can therefore be inserted into the 
development process at the point during which the use-case model (a 
representation of requirements) is transformed into the design model. 



  

  

A UML use-case describes a collection of scenarios related to an actor’s 
goal (Jacobson, 1995). The use-case is the general goal and scenarios are a 
sample set of means by which the goal can be achieved. This has a strong 
similarity with the goals, sub-goals, actions and plans of Hierarchical Task 
Analysis (Kirwan & Ainsworth, 1992). Each scenario contains a different 
description of who does what in order to fulfil the goal. At least one 
scenario must describe the normal set of steps taken to fulfil the goal 
successfully. The other scenarios can describe alternative ways of fulfilling 
the goal or ways in which the goal may fail to be fulfilled. Failure may occur 
because of operator error or mechanically induced faults or unexpected 
events in the environment. It must be made clear that any erroneous steps 
are not the required functionality of the system. Use-cases also describe 
what guarantees the system provides for the other stakeholders. Together 
the use-cases form a model of the system’s behaviour known as the use-case 
model.  

Use-case template 
 

Cockburn suggests a more detailed description of use-cases than proposed 
in the standard (Rumbaugh et al, 1999). He proposes that the sequential 
description of a use-case should consist of a sequence of steps each taking 
the form ‘Subject…verb…direct object… prepositional phrase’ (Cockburn, 
2001). The description can also include statements that control the flow, for 
example REPEAT <x1 - xx> UNTIL <condition> or STEPS <x1 - xx> 
ANY ORDER. Since a specific instance of behaviour in scenarios is being 
described, conditional branches such as the IF statement can be avoided.  

The scenario should describe the functions to be allocated but should 
not pre-empt allocation, therefore the system element (to be discussed in 
more detail below) responsible for performing the function should be 
unspecified unless it has already been formally decided. The scenarios 
associated with allocation of function are therefore grouped according to 
goal as defined by the use-case. The set of scenarios covering all the use-
cases should cover all the functions that are candidates for function 
allocation. 

An example of a use-case scenario is shown below. The example is 
based upon a ship navigating from open sea along a familiar channel into 
harbour. Only the main success scenario is shown. The description has 
three columns: step number; the role or roles that carry out the functions; 
the functions themselves in the order that they are to be performed. As the 
allocation of function is completed then the roles responsible for providing 



  

  

each function, extracted from IDA-S descriptions, can be inserted into the 
middle column, see Table 7.  
 
Step Role(s) Function Description 
1 Captain orders the ship into harbour 
2 Navigator/ Electronic chart plans the route into harbour 
3 GPS subsystem obtains the ship’s current fix 
4 Electronic chart plots the ship’s current fix 
5 Navigator/ Electronic chart calculates direction, time and 

appropriate speed to next 
checkpoint 

6 Navigator sends calculated information to 
helmsman as required 

7 Repeat steps 3 to 6 until ship 
is docked 

 

Table 7: A use case with roles 
 
In one of the preferred UML design processes, the so called Rational 
Unified Process (Rumbaugh et al., 1999a), the use-case model is created 
during the ‘Requirements’ workflow and is realised as an analysis model 
during the ‘Analysis and design’ workflow. The analysis model is a design 
model that ignores any specific implementation issues and may be used to 
implement an object oriented software analysis design using any object 
oriented language. The diagrammatic notations available to the analysis and 
design models can be used to produce views of the allocation of function.  

These tables provide the developer with a fuller description of the 
distribution of functionality than is possible using the use-cases. Table 8, 9 
and 10 give a full representation of the scenario in this format. Table 8 
provides the “characteristic information”, that is information about the 
general circumstances in which the scenario takes place. Table 9 provides 
the main success scenario, similar to that described in Table 7. Table 10 
describes related information that is valuable in understanding the 
circumstances in which the scenario takes place. 

Characteristic Information 
 
The characteristic information (Table 8) includes a description of the overall 
goal to which the scenario relates, the pre- and post-conditions that govern 
the specific circumstances of the scenario and the actors that are involved. 



  

  

It also describes what a successful end condition would be as well as 
possible failure situations. Some of the information contained here may be 
used in formulating the extent to which different criteria are relevant to the 
scenario during the process of deciding the effect of alternative IDA-S 
solutions in terms of the criteria within the scenario. Human factors experts 
may use this part of the scenario to place their assumptions about the 
situation. 

 
Goal In Context: The goal is to navigate the ship from the open sea 

into and along a channel so that it safely comes 
into harbour.  

Scope: System 
Level: I User goal 
Pre-Condition: 1. Ship is in open sea close to harbour (less than 1 

hour away) 
Rationale for 
scenario: 

Approaching harbour is recognised as a high 
workload period for the navigation system. It is 
also a period during which the fixes and projected 
fixes must be highly accurate.  

Success End 
Condition: 

1. The ship is stationary  
2. It is alongside the correct point on the quay 
3. It has not hit anything 

Failed End 
Condition: 

1. The ship hits an object 

Minimal guarantees: 1. The ship will not be navigated into an 
obstruction 

Primary Role: Captain 
Stakeholder roles: 1. Crew – safety 

2. Helmsman - requires navigation information to 
steer the ship.  

Trigger Event: The order is given to sail into harbour 

Table 8: Characteristic Information 

Main Success Scenario 
 
Table 9 describes the main success scenario. This is the central scenario that 
will form the basis for function allocation in normal circumstances. There 
may be other scenarios that describe extreme or exceptional behaviour that 
may also be taken into account, and these may be used to consider 



  

  

circumstances where dynamic function allocation may be appropriate. Such 
decisions will mean that these scenarios will require modification to include 
functions that are concerned with the decision about which function to 
perform.  

In this particular example it is imagined that the function allocation 
process is in progress. The first step, that is the decision about whether 
functions should be totally manual or totally automated has been completed 
and the function in step 1 is entirely manual, performed by the captain role. 
The remaining steps involve functions for which appropriate IDA-S 
representations must be selected. 

 
Situation and 
environment: 

This scenario assumes that the ship is arriving at a 
familiar harbour for which an up to date chart is 
available. The approach takes place during daytime 
and in good weather. The ship is not obstructed by 
any other vessels and there are no technical or 
human failures.  

 
Step Role(s) Function Description 
1 Captain orders the ship into harbour 
2 <N/A> plans the route into harbour 
3 <N/A> obtains the ship’s current fix 
4 <N/A> plot the ship’s current fix 
5 <N/A> calculates direction, time and 

appropriate speed to next 
checkpoint 

6 <N/A> sends the calculated information 
to the helmsman as required 

7 Repeat steps 3 to 6 
until ship is docked 

Table 9: Main Success Scenario 

Related Information 
 
Related information that may be used by both system engineers and analysts 
in the allocation of function process provide the last element in the scenario 
description (Table 10). This information includes version and project 
schedule information as well as information about the frequency of the 
scenario, the roles that are involved and issues of accountability. 

 



  

  

Schedule: <Date/build the use case can be 
tested> 

Priority: Must 
Performance Target: <If applicable, how fast should this 

use case proceed> 
Frequency: Twice a month 
Super Use Case: Navigate 
Sub Use Case(s):  
Channel To Primary Role: Navigation officer accountable for 

navigation 
Secondary Role(s): <List the secondary roles, these are 

the roles the system kicks to get 
something done.  Note, the primary 
role kicks the system to get 
something done> 

Channel(s) To Secondary Role(s): <How do we get to the secondary 
roles> 

Table 10: Related role information 
 

Integration of output 

The output from the allocation of function method is not easily translated 
into UML. Two types of information have to be expressed. The first is the 
representation of the partially automated functions (the IDA-S 
representations defined in UML terms). The second issue has not yet been 
dealt with in the description of the method. A set of representations is 
required that describes how the roles are implemented in terms of the 
elements of the system. The IDA-S representations are expressed as UML 
activity diagrams. An activity diagram can be divided into a number of 
columns (called swim-lanes in UML) each of which is assigned a particular 
role. Any activities that lie within a column are the responsibility of that 
role. A partially automated function is expressed by creating a column for 
each role involved and by representing each element of the IDA-S as an 
activity placed in the appropriate columns (see Figure 1). This 
representation of partially automated functions requires a little more design 
commitment than the IDA-S matrix representation. In particular it requires 
the analyst not only to suggest partially automated solutions, in which the 
different roles perform different parts of the function, but also to decide the 
order in which these function components are performed. In practice, it 



  

  

appears that in order to understand which role performs what part of the 
function some idea of order is required. This extra detail provides important 
information that can be used in the assessment of workload or situation 
awareness. 

Figure 1: Representation of a partial function using an activity diagram. 
 
Hence in Figure 1 it is stated that collection, integration, configuration 

and proposing will be done in sequence by the device for the function 
set/adjust aimpoint. Evaluation, however, which is done next will be shared 
between the human and the device. The pilot will modify the information 
and select and authorise in the context of execution. 

Apart from brief mention of baseline architectures, little has been said 
about the system architecture in terms of which the function allocation is 
conceived. What aspects of the system will be feasible to automate or not 
for example? An important aspect of this description is to find a means of 
representing roles in terms of system components. The UML proposal 
provides tags or stereotypes for describing the system elements. These are 
the basic ingredients that engineers use UML to represent. Because UML is 
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intended to be used generically, it provides a notion of profile as a means of 
supporting a particular development process directly. Profiles therefore 
involve a method and a collection of defined elements (described by 
stereotypes) in order to support a particular development process. Two 
standard profiles are relevant to the process that surrounds allocation of 
function, the profile for software development and the profile for business 
modelling. These profiles contain some of the elements that are required to 
support the method envisaged here but other components that have been 
described in the chapter are not included. More detail on the UML 
extension mechanisms is contained in the ‘UML Toolkit’ (Eriksson & 
Penker, 1997) or ‘OMG Unified Modeling Language Specification’ available 
at the OMG web site (OMG, 1999). 
 

Stereotypes FA model element Meta-
element Profile for 

Software 
Develpmnt

Profile for 
Business 
Modelling 

Customised 
UML profile 
for Function 
Allocation 

Function  Op   Function 
Role  C   Role 

Compo
nent 

P Subsystem   

Human C  Worker  

System 
element 
class 

Device C   Device 
Compo
nent 

O Subsystem   

Human O  Worker  

System 
element 

Device O   Device 
 

Table 11: Mapping Function Allocation to UML 
(Op=operation, C=class, P=package, O=object) 

 
The first distinction required in describing architectures is between system 
element classes and system element instantiations. A class, “naval rating” for 
example, will have as instantiation a particular naval rating. System element 
classes required by the allocation of function method must distinguish 
between human and device as well as describe groupings of such elements, 
teams for example. A team may consist of human and device components. 
In addition neither of the profiles that are presumed in this method include 



  

  

stereotypes associated with function or role. For this reason stereotypes 
<<Function>> and <<Role>> are included. 

Therefore, in addition to the stereotypes required by the software 
development and business modelling profiles, further stereotypes are 
included as part of the allocation of function profile to support the 
allocation of function method. These stereotypes are: <<Subsystem>>, 
<<Worker>>, <<Device>>. It is assumed therefore that system engineers 
are already fluent with UML software development and business process 
profiles and therefore little additional overhead is involved in using these 
additional tags. Table 11 describes the new customised profile for function 
allocation along with the stereotypes used from business modelling and 
software development. Note that underlining the stereotype implies 
instantiating the class. 

Hence the function allocation method uses two existing stereotypes 
concerned with software development and business modelling and adds to 
them the extra stereotypes defined. The aim is that the process subsumed 
within the UML software development and business modelling profiles will 
form the basis of the function allocation approach described in earlier 
sections of this chapter. 

 

Figure 2: Role participation diagram 
 
 

The final representations for use by system engineers indicate (1) how roles 
participate in scenarios, and the nature of the participation (Figure 2), (2) 
which functions relate to which roles (Table 11) and (3) how the roles are 
implemented in terms of system elements (Figure 3). The role participation 

<<Role>>
Fixing

(from Roles)

<<Role>>
Navigator
(from Roles)

<<Role>>
Navigation Officer

(from Roles)

<<Role>>
Plotting

(from Roles)

<<realization>>
Navigate into harbour

<<participant>>

<<participant>> <<participant>>

<<participant>>



  

  

diagram shows which roles participate in the scenario. In the example, 
Figure 2, the ‘Navigate into harbour’ use-case is associated with four roles 
(each tagged by a <<Role>> class) involved in the sequence that describes 
the achievement of the main success scenario. The fact that the description 
of the relation with the scenario is <<participant>> indicates that this same 
diagram may be used to indicate other relationships between roles and 
scenarios. Other types of stakeholder, outside the scope of the function 
allocation method, may be described in these diagrams.  

Table 11 shows the relation between functions and roles. It summarises 
the mapping between functions and role without specifying the functions. If 
further details are required this may be obtained using the activity diagram 
given in Figure 1. In Table 11, the plotting <<Role>> has two operations 
representing the functions ‘Plot fix’ and ‘Determine time to next fix’.  The 
function ‘Give all possible support to the officer of the deck’ is shared 
between two roles, namely the Navigation Officer and the Navigator. 
  

 
<<Role>> 
Navigator 

F7:  Give all possible support to the officer on the deck. 

<<Role>> 
Plotting 

F3: Plot fix 
F4: Determine time to next fix. 

<<Role>> 
Navigation 
Officer 

F6: Manage and co-ordinate navigation. 
F7: Give all possible support to the officer of the deck. 

<<Role>> 
Fixing 

F2: Determine current fix 

Table 11: Allocation of function - UML format 
 
Finally roles and system elements are connected using stereotypes. Figure 3 
gives an example of roles being allocated to system elements. The Navigator 
officer system element can play two roles: navigation officer role and 
navigator role.  

Extensions and conclusions 

This allocation of function method has been designed to be sufficiently 
procedural to be usable in practice in a straightforward way. The process 
can be easily documented and therefore made traceable. The method has 
been confined therefore to two decision steps that may be applied by a team 
involving system engineers and human factors specialists. It is reasonable to 



  

  

expect that the process could be performed by system engineers if they 
subcontract the process of assessing the criteria related questions in the 
decision step to human factors experts. The UML representations have 
been introduced to provide formulations of inputs and outputs that are 
directly usable by system engineers and have indicated proposed extensions 
to standard UML profiles.  
 
 

Figure 3: Allocation of roles to system elements - UML format 
 
The method has been used in a realistic case study within QinetiQ (formerly 
the UK Defence Evaluation Research Agency - DERA) based on a ship-
based fire emergency system. Information about whether the proposed 
function allocations influenced the design of the system are not available.  

The application of the method was reviewed by practitioners (system 
engineers, human factors experts and domain experts) in the context of a 
two day workshop at QinetiQ. During the workshop, results from the case 
study were presented and participants were invited to consider a specific 
scenario, to apply the decision procedures and produce the appropriate 
representations. The participants were divided into teams involving one 
naval officer, system engineers and human factors experts. Useful 
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information about the method came out of the review. It was felt that the 
IDA-S template was too complicated. The purpose behind its design was 
that it provided a representation that would help engineers produce 
solutions based on proposals made by human factors experts. It was aimed 
at helping human factors experts to consider key aspects of the automation 
of the interface as it relates to user tasks. The problem with it was 
associated with seeing how all the elements specified in the IDA-S template 
related to a particular function. As a result of this feedback, alternatives to 
IDA-S are being considered. In particular we are concerned with attributes 
of a solution that are simpler to understand by all participants in the 
allocation of function process. The second problem concerned the initial 
proposal for mapping roles to system architectures. It was felt that the 
connection between roles and system elements was too complicated and as 
a result the method presented in this chapter is a simplification. This 
continues to be an issue that is under exploration.  

A further area where the method is perhaps too simplistic and untried 
is that of adaptive automation. A simplifying presumption is that 
automation adapts by function substitution and that in all cases the result is 
the same. In practice both assumptions may be false. As noted by 
(Sperandio 1978), in discussions of air traffic control, different strategies are 
adopted depending on the number of aircraft in the air space. Sequences of 
functions making up procedures rather than individual functions are 
substituted. It may also be appropriate that dynamic mechanisms should be 
prepared to shed certain less critical functions in the face of hard deadlines. 
Both these issues are discussed in more detail in (Hildebrandt & Harrison 
2001). 
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