

Relating the automation of
functions in multi-agent control
systems to a system engineering
representation1
M. D. HARRISON, P. D. JOHNSON AND P.C. WRIGHT

Department of Computer Science, University of York,
Heslington, York, YO10 5DD. UK.

Abstract

Engineers of safety critical systems are beginning to recognise that human
issues are critical to their safe automation, and that appropriate techniques
for taking account of the people in the system should be integrated into the
design process. This chapter gives a brief introduction to a two-step
decision procedure that can be used to help decide how to automate an
interactive system. The procedure is intended for use early in the
development of systems in larger scale collaborative settings with the aim of
improving their safety and performance. Two issues are particularly
important. The first concerns the appropriate choice of automation so that
the tasks designed for the different roles satisfy criteria that have
significance from a cognitive perspective. The second is to understand the
mapping from concepts of function allocation to notations that are
meaningful and usable by system engineers. The method has received
preliminary evaluation in aviation and naval contexts.

Introduction

As the automation of complex processes becomes more achievable the
need for system engineering procedures that help decide how to automate
becomes more important to the safety and flexibility of automation use.
Work systems are often complex interactive systems involving many people
and many technology components. The work that is involved must be

1 In press, Handbook of Cognitive Task Design ed. E. Hollnagel.

implemented in a way that is most compatible with roles that are designed
for the people involved. The implementation must satisfy general criteria
such as minimising workload, maximising awareness of what is going on
and reducing the number of errors. The basic problem therefore is to
reduce the cognitive demands of the tasks being performed by the people
involved in the system while maintaining fully their ability to function
within their given roles. This chapter is concerned with these procedures,
collected together in a process known as function allocation. It is also
concerned with how these procedures can be integrated effectively with
methods and representations that are used by system engineers. While many
function allocation methods have been designed to be used by human
factors experts, relatively little attention has been paid to the linkage of
these methods to system engineering.

Allocation of function has evolved since the early 1950s. Methods that
have been developed are problematic for a number of reasons.

• Context: They fail to take proper account of the context in which the

functions are to be automated. Functions are often considered in
isolation using general capability lists describing what people are better
at and machines are better at (Fitts, 1951). If context is to be considered
it is presumed to be done implicitly by the appliers of the method. The
cognitive task is therefore considered in isolation from the environment
in which it is to be performed.

• Comprehension: They fail to be comprehensible and applicable by
engineers. They depend on a firm understanding of human factors. For
example the KOMPASS method (Grote et al., 2000) describes criteria
for complementary system analysis and design: process transparency,
dynamic coupling, decision authority and flexibility. These criteria are
difficult to interpret. Methods do not use design representations that are
familiar to system engineers. Allocation decisions are usually binary and,
as a result, functions are identified as to be automated or not. This
means that they must be described at a low level of granularity.

• Collaboration: They fail to recognise that the system is more than a single
human and a single device. They do not take into account the broader
collaborative system, the roles defined therein or the design of cognitive
tasks that bridge across roles. They offer no guidance about how
dynamic allocation of function should be implemented. This problem
becomes more relevant as the possibility of automating a system
dynamically, when necessary or appropriate, becomes more realistic.

Recent methods of function allocation have been developed to overcome
some of these problems. In particular, one developed at the Institute of
Work Psychology, University of Sheffield (Older et al., 1997) aims to
overcome context problems while taking account of collaborative aspects of
the organisation. Another method developed at the Department of
Computer Science, University of York (Dearden et al., 2000) makes the
decision procedures more explicit while also having a strong emphasis on
context. This method also provides a clear representation for
implementations of functions that automate some parts but not all of the
functions (hereafter called partially automated functions).

Another approach which, although relatively weak at supporting the
decision process or representing the context in which the functions are
performed, has a strong representation of the output of the method in
terms of a classification of levels of automation. These methods of
automation classification, particularly (Parasuraman et al., 2000), are useful
for introducing the important automation categories for different phases of
the function. They work well in aiding the production of an output format.
However, they are relatively difficult to convert into implementation for any
given situation.

This chapter proposes a modest extension to the method described in
(Dearden et al., 2000) aimed at addressing some of the concerns about
collaboration and also ties more effectively to a format that can be
understood by system engineers. In this method, roles can be assigned to
parts of a function thereby defining some of the collaborative characteristics
required in performing the function. In order to link with the requirements
of system engineers, the system and modelling language UML (Unified
Modelling Language) is used to represent elements required in the process
of function allocation.

UML is a notation for describing different views of a system using
different kinds of diagrams (Rumbaugh et al. 1999). It presumes an object-
orientated design approach but, within this approach, provides a range of
techniques for modelling important features of the design in a standardised
notation. UML is of considerable interest in industry, particularly to those
companies that are attempting to satisfy external requirements for human
factors integration such as military organisations. The representations of
UML can be used to describe the inputs and outputs to the method. If
function allocation is to be made an explicit step in the system engineering
development process then it must offer solutions to problems faced by
engineers in the design of highly automated control systems. In practice
function allocation is not often performed as an explicit step because results
are perceived to be imprecise and benefit is unclear. Engineers recognise

that human operators are a source of error and attempt to solve this
problem by minimising their role. The assumption is that doing this will
have the effect of reducing these risks. Inevitably, situations arise that the
automation cannot handle. In these circumstances the operators are
expected to step in and resolve the situation. Because operators have been
“out of the loop” their ability is impaired. The view of allocation of
function is to keep operators in the loop in relation to their roles and to
view automation as assisting them – it is therefore a problem of cognitive
task design. The cognitive task design goal is to take advantage of the benefits
offered by automation, but to do so in a way that does not impede the
operators’ abilities to perform their roles. The achievement of this goal is
difficult because it requires the combination of two disciplines, system
engineering and human factors engineering, neither of which alone can
provide the solution.

The chapter describes the proposed method in two passes. The first
pass (next two sections) describes the essentials of the method while the
second pass describes how the method provides support for the system
engineering process. The next section gives a brief description of the
method and describes in more detail what is required as input and what is
produced as a result. This is followed by a more detailed description of the
method, in particular the decision steps that are taken. The link between the
allocation of function method and UML is then considered. The final
section contains a brief description of possible further extensions to the
method. It is possible to get an appreciation of how the method works
without getting into the detail of UML. The process is fully described
without reading the UML sections.

The ingredients of the method

Introduction

The problem is to take a set of functions, describing the work that the
system is to do in the contexts in which the work is to be carried out, and to
decide how to automate them. The procedure for automating functions
involves two decision steps. Firstly, functions are matched to defined roles
that capture high-level functions of the agents. In practice, it is often
difficult to be clear about these roles at the outset. Initial definitions will be
refined iteratively therefore through successive applications of the method.
The aim is to decide how closely these functions fit the roles in a set of
given scenarios. Functions that are entirely subsumed within a role are

proposed to be “totally manual within the role” – to automate would in
effect remove part of the agent’s role. Functions that can be separated
entirely from any of the roles and for which it is possible to automate are
designated as “to be automated”. In practice few functions fit either of
these categories. The functions that are left are therefore considered in
more detail to decide what aspects of them should be automated. By this
means automation can be designed in order to support specified roles most
effectively. The effect therefore is to design cognitive tasks for the different
roles specified and to render them in a form that can be employed by a
system engineer.

In the following sub-sections we describe function, role and scenario in
more detail. Other inputs to the method, for example: description of the
technology baseline, mandatory constraints and evaluation criteria are also
required as inputs. We leave a discussion of some of these issues until the
section in which we consider UML aspects in more detail and others we
ignore in order to maintain a clear description of the method. Function,
role and scenario are the minimum needed to get a reasonable
understanding of the method. The output of the method is a set of
functions that can either be described as manual or totally automated and a
set of partially automated functions. The format for partially automated
functions is indicative of how they should be implemented.

Role

The aim is to consider the match between function and role as well as
whether functions contain aspects that are most appropriate for humans or
for machines. The machine or technology part of the system will be
described generically as a device in what follows. In practice the design of
roles, whether human or device, takes account of human considerations
such as capability and training as well as the overall balance of the work
design. Often, whether or not a function should be automated and how
much it should be automated, depends on the context in which the function
is performed. It makes more sense to be specific about how compatible the
tasks are with the various roles specified for the various personnel in the
particular contexts than to ask the question: “would it be sensible for a
human to do this?” in isolation.

In practice role is difficult to define. It is an activity that can be
performed either by a human or a device. Normally it is not necessary to
produce a statement for a device’s role but there are circumstances where
doing so is helpful in providing scope for the definition of a technology
component. For example the envelope protection provided in a fly-by-wire
aircraft (in other words the boundaries beyond which pilot manoeuvres are

judged to jeopardise the safety of the aircraft) could be clarified through an
explicit role statement. Doing so would help to ensure that functions are
not allocated in a way that prevents the device from being able to keep the
plane within the safety envelope.

An example of a role statement for the captain of a civil transport
aircraft might be:

The captain is the final authority for the operation of the airplane. The captain must
prioritise tasks according to the following hierarchy: safety, passenger comfort and flight
efficiency.

In the context of a single seat military aircraft an example role

statement for the pilot might be:

The pilot is the final authority for the use of offensive weapons and for evasive
manoeuvres. The pilot is responsible for mission planning, tactical and strategic decision
making and co-ordination with other aircraft. The pilot is responsible for the management
of systems to maximise the probability of successful mission completion.

These roles may be taken as a starting position subject to refinement as

the allocation process unfolds. Ambiguities may be removed, assumptions
may be seen as inappropriate, incoherence between roles may be resolved,
role definitions changed to establish function integrity and vice versa.

Functions

A function or unit of work (an activity that the system - people and devices
- is required to be capable of performing in order to achieve some result in
the domain) might include “finding the current position of the vehicle”,
“withdrawing cash” or “detecting a fire”. Although in practice, identifying
and determining a function is a matter of expert judgement, some
characteristics are important to prevent premature commitment to a means
of automation. A function does not contain any indication of who or what
performs it (Cook & Corbridge, 1997). For example, “key in way point” is
not a function because it implies that the operator enters the way point
manually, whereas “set way point” does not. Functions are related to, and
can be derived from, the functional requirements used in system
engineering. The assumption made in this process of function allocation is
that, unlike typical practice, indications about who or what should perform
the function are removed at the requirements stage.

Functions can be defined at a variety of levels of granularity and can be
arranged hierarchically. In the same way as task analysis, a top down

hierarchical approach can be a useful aid to function elicitation and is also
helpful in deciding what level of granularity of function can be used most
effectively in the decision process. Descending the hierarchy reveals both a
decrease in the complexity of the function and in the size of the sub-system
required to perform it. At the top of the hierarchy, functions may be
performed by a team or department, while at the bottom by a single
operator with the aid of automation.

Scenarios

Function allocation methods such as the “Men are better at, Machines are
better at” approach presume that the suitability of a function for
automation is based on an individual function. They use capability lists
usually based on the so-called Fitts’ List described in Table 1 (Fitts, 1951).
Using this approach, functions are matched against the lists and, on the
basis of the match, a decision is made whether to automate the function or
not.

Men are better at… Machines are better at …
Detecting small amounts of visual,
auditory or chemical energy

Responding quickly to control
signals

Perceiving patterns of light or
sound

Applying great force smoothly and
precisely

Improving and using flexible
procedures

Storing information briefly, erasing
it completely

Storing information for long
periods of time and recalling
appropriate parts

Reasoning deductively

Reasoning inductively Doing many complex operations
at once

Exercising judgement

Table 1: Fitts’ List

As has been noted already, these capability lists ignore the complex
interactions and dependencies between activities of work. To overcome this
the method described here considers groups of functions structured in the
context of a scenario. This allows the designer to appreciate the interactions
between the functions and therefore to understand more effectively those
contextual factors that might influence the design of the cognitive tasks
entailed by function allocation decisions. Scenarios focus upon situations

relevant to the decision criteria that are used to decide what level of
automation is appropriate Examples of such criteria include workload and
situation awareness. Scenarios aim to represent the functions under
consideration in a range of contexts. For example, in the field of civil
aviation where workload has been identified as a decision criterion, take-off
and landing may be chosen as important as a basis for scenarios (among
others such as emergency conditions) because these periods are recognised
as producing high workload.

The method only considers those functions used within the current
scenario and therefore the analyst must ensure that every function occurs in
one scenario and ideally several. It is important to ensure that a variety of
scenarios are used covering the range of activities that the functions will
engage in. In order to achieve this, scenarios should be selected that cover
all the normal operating conditions of the system. There is a wide range of
sources for possible candidate scenarios, for example:

• The experience of practitioners in previous systems
• Incident and accident reports for previous systems
• Scenarios developed during the business modelling stage of the system

life cycle
• Use cases and scenarios in the previous systems development

documentation or training manuals.

Scenarios often entail a detailed account of what happened in a set of
circumstances. They are therefore concrete in terms of the actions that are
described. If the scenario is describing some current possibility with the
baseline architecture, these events will be expressed in implementation
dependent terms. Once a scenario is elicited therefore, the description must
be re-expressed neutrally in terms of functions (using the initial list of
functions) rather than the baseline actions. The format for representing
scenarios is based on a modified version of the scenario template for
THEA (Pocock et al., 2001), and employs the UML format for scenarios
described in (Cockburn, 2001), see Table 2.

This scenario description is then transformed. The events and event
extensions headings are changed to functions and function extensions. The
account of what happens in the scenario is re-expressed using the set of
functions rather than the event descriptions. This process can be a useful
check that the functions are expressed at an appropriate level and whether
they incorporate too much implementation bias. The functional scenarios
are then used as the basis for the two decision procedures.

The nature of the output

Function allocation methods typically consider functions at a very low level
and provide two allocation options H (human) or M (machine). In many
cases the designer’s interest lies with those higher-level functions that
require some form of collaboration between operators and the devices in
the system. The process is therefore concerned with how to implement
these higher level functions in terms of how the collaboration or
automation boundaries work. By this means, the cognitive tasks that are
relevant to the potentially various human roles may be understood. Rather
than working with numerous low-level functions to determine this
boundary it is easier to work with the parent functions and to declare them
as partially automated. Of course there are many ways in which the
operators and devices can interact to execute a function and there is a need
for the designer to specify how the collaboration will be achieved.

UC# The name of the use-case
Scenario 1 - Each use-case can have a number of scenarios
Environment A description of the environment within which the

system is operating when the scenario occurs.
Situation A description of the state of the system at the start of

the scenario. Are all the operators on duty, are there any
known or unknown faults in the system etc.?
Step Event
1 The main sequence of events that take place

during the scenario. This includes events that
happen in the environment, events that cause
changes to the system and the actions that the
system must perform.

Sequence of
events

…
Step Event
1 Variations upon the main sequence of events are

recorded as event extensions.

Event
extensions

…
Scenario 2

Table 2: Scenario input template

One possible approach is to use a classification that defines levels of
automation with the aim that engineers recognise how to implement the

particular level. The allocation of function method then provides advice
about appropriate automation in terms of level. A number of such
classification schemes have been suggested. For example, (Sheridan &
Verplanck, 1978) suggest a classification of levels in which decisions and
control pass progressively from the human to the device. Later authors have
produced alternatives. Kaber and Endsley provide ten levels of automation
(Kaber & Endsley, 1997). Billings suggests seven levels of management
automation (Billings, 1991). For each function that the designer defines as
being partially automated there would be an indication of what the level of
automation would be. (Parasuraman et al, 2000) goes further and suggests
guiding the decomposition of functions into four broad classes: information
acquisition, information analysis, decision and action selection, and action
implementation. These functions are then automated according to Sheridan
and Verplanck’s scale. In summary, all these approaches have in common
the difficulties that:

1. They assume a spectrum of levels of automation between human and

device. In practice a number of different roles may carry out different
functions.

2. They provide solutions that are not sufficiently clear to form a basis for
engineering implementation of the functions.

 Information Decision Action

Collect Propose
Integrate Evaluate
Configure Modify

Planning the
response

Initiate
response

 Select

Approve

Supervise
ongoing
execution

Monitor
progress

 Identify
exceptions

 Revoke
authority

Supervise
termination

Determine
output
content

 Identify
completion

 Stop process

Action Execute
actions

Table 3: The IDA-S template

The approach used here, called IDA-S, (Dearden, 2001), provides more
hooks for thinking about partial automation. It is based on Malinkowski et
al.’s (1992) framework for adaptive systems and is capable of expressing all
types of automation provided by the various classifications, splitting into
four components that have common features with (Parasuraman et al.
2000). The top level components are Information, Decision, Action and
Supervision (hence IDA-S). Each component is further split into a number
of elements, each describing a particular aspect of the function. The
designer specifies which role is responsible for performing that aspect of
the function. If the element is not applicable within the context of the
function then it is marked not applicable (n/a).

Function F1 Plan route
Solution Sol6 Plot way-points

Design
solution

The navigator plots a number of way-points describing the
destination and the route required.
The electronic chart evaluates the proposed route based upon
its knowledge of navigation and sailing, proposing any changes
or conflicts it identifies.
The navigator can modify the route as required and approve
the route.
The electronic chart then calculates the distances and bearing
between the points.
The navigation officer supervises the entire process.

 Information Decision Action
Collect N Propose N
Integrate N Evaluate E
Configure N Modify N

Planning the
response

Initiate
response

N Select N

Approve

Supervise
ongoing
execution

Monitor
progress

C Identify
exceptions

C Revoke
authority

C

Supervise
termination

Determine
output
content

E Identify
completion

N Stop process C

Action Execute
actions

N

Table 4: Solution to plan route

The elements in the Information component cover issues such as which
role integrates the information required to carry out the function, and which
role is responsible for initiating a response. The Decision component covers
such issues as which role proposes what plan/action to take, evaluates it,
modifies it and selects one if there is more than one possibility. The Action
component covers which role carries out the action. The Supervision
component covers such issues as which role monitors the performance of
the action, identifies exceptions and revokes the action if necessary. It
allows the designer to express precisely how the function is implemented in
terms of the various roles that are responsible for these aspects of the
function. The given solution is indicated by placing the role identifiers in
appropriate cells of the template.

Consider, for example, the automation of a function used in scenarios
related to ship navigation, for example “plan route”. One solution is
described in Table 4 in the format required by the method. This function
allocation assumes the roles: Navigator (N), Electronic Chart (E) and the
Navigation Officer or Command and Control (C).

The IDA-S definition clarifies how to develop an implementation that
satisfies the requirements. The informal description, under the heading
“Design solution” in Table 4, states in English which roles are responsible
for what aspects of the function. The IDA-S representation invites the
analyst to consider how to decompose the function and to consider which
role should be responsible for what aspect of the function.

The method: two decision steps and consolidation

The approach contains two decisions. The first decision provides a first cut
at how much automation to provide and hence prevents the system from
being under- or over-automated. The second decision refines the situations
where some level of automation is appropriate for a function. This step
makes it easier for the analyst to work towards tasks that optimise
performance, workload or situation awareness for example in the context of
the different scenarios. The procedures aid the process of deciding what
tasks are to be designed for what roles.

Can it be matched entirely to role?

Once roles, functions and scenarios have been defined the first decision
step concerns which functions can be totally allocated to one of the roles
(these roles may be device or human). Each scenario is considered in turn.

The functions that are employed within the scenario are identified. The
designer bases decisions about automation of these functions on their use in
the context of the scenario under consideration. Suitability for total
automation is not based solely upon the technical feasibility of a solution. It
is also based upon the function’s relation to the roles. If a function is not
seen to be separable from an operator’s role then it cannot be totally
automated, as doing so would interfere with the operator’s ability to do the
job effectively. There are two dimensions to the trade-off.

State of
automation
research vs.
relation to
role

Role Existing
with
immediate
access

Existing in
competitor
systems

Low
risk /
low
cost
R&D

High
risk
or
high
cost
R&D

Infeas-
ible

Separable ALL Sol1
R1 Role related

information
or control

R3

R1 Role critical
information
or control

R3

R1 Central to
role R3

Table 5: The first trade-off

Firstly, each function is considered in relation to the feasibility of
automating it. The concern here is with the cost and technical possibility (1st
row Table 5). The system engineer must consider how feasible it would be
to automate the function in terms of a spectrum of already possible to
infeasible. The engineer therefore uses expert judgement to decide where
best it fits. Secondly, the function is matched against the set of roles. The
roles are likely to continue to be refined as the design evolves (1st column in
Table 5). In the example, two roles R1 and R3 are relevant to the scenario.
The functions are entered into the cells of the matrix as possible solutions
or implementations of the function. Hence Sol1 is a possible
implementation of a function that is separable from all the roles that have
been defined, and can be automated using technology that exists in existing
competitor systems.

Two classes of functions can be distinguished using this trade-off. If a
function can be separated from all the defined roles and is feasible (for
example cost effective) to automate then it makes sense to totally automate
it. On the other hand if the function is totally subsumed within one of the
human roles, whether or not it can be automated feasibly, it makes sense to
consider it as totally manual within the role. These functions can be
identified by finding the functions that are “central to role” (rows 3 & 4 in
Table 5) and appear in one of the high risk or infeasible columns (columns
6 & 7 in Table 5). However it is also likely that other functions that are
central to one role may also be considered to be “manual” because it is
important to that role’s activity that they perform the function manually
however easy it is to automate. The class of functions that contains both the
“wholly separable” and “entirely within role” types is not considered further
in the method. If the function is to be automated then the means of
automation is dealt with in some other component of the general
development process. The interface to this functionality is of no concern
here. Notice that a function may appear in more than one row because it
relates to several roles but may only appear in one column because
feasibility to automate is invariant. This leaves functions that are to be
“partially automated”. There are usually a number of ways in which partial
automation may be achieved. Choosing the most appropriate is the subject
of the second trade-off that will be considered next.

The function “plan route” discussed earlier is critical to the role
“navigator” (N) and related to the role “navigation officer” (C). In addition
it might be reasonable to assume, depending on system engineering
judgement, that the automation can be achieved through low risk / low cost
research and development. Hence a potential solution to this function fits
into the “partially automated” category and must be considered further. On
the other hand, in the context of the definition of the “pilot” role defined
earlier for a military aircraft, a function such as “fire missile” is central to
role and, although it is technically feasible to automate, would be defined as
manual even if there were no mandatory requirement to ensure that this
should happen.

Candidates for the second step

The second decision procedure is concerned with comparing alternative
IDA-S solutions defining partial automation possibilities with a “baseline”
solution. The aim is to obtain, in the first instance, a set of most favoured
IDA-S representations for each scenario in the sense that these function
implementations have the most beneficial effect under criteria such as
workload or situation awareness in the context of the scenarios. When this

has been done for each scenario, the choices are consolidated into a set of
choices for the system as a whole. The result of this analysis will be to
produce an implementation reflecting the function allocation decisions.
Hence implementations will be produced that support most effectively the
roles that are engaged in the scenario. Tasks will, in effect, be designed so
that function implementations gather information, support decisions and
support the most appropriate mechanisms for action and supervision
optimally in the context of a set of criteria. In each scenario, comparison is
made with the baseline design. Often the baseline is the existing design that
is currently the subject of modification but there are circumstances where a
new concept is being designed, where the most conservative of the design
alternatives may be considered.

The rating process

Having constructed a number of alternative possibilities for each function
listed from the scenario, these candidates are rated using a second matrix.
An example of possible alternatives in the case of “calculate point to point
information” would be for example: the navigation system might propose
alternative routes from which the navigator selects the most appropriate; or
no such choice being provided. The reason for choosing particular
representations may be random or based on some assumptions about the
abilities of the off-the-shelf technologies available to the project. The
options for all these functions are then rated in relation to a criterion such
as workload or performance in comparison with the “baseline” design.

In practice a collection of criteria will most likely be relevant to the
current scenario, for example it may be appropriate to consider workload
but not to the detriment of situation awareness. It is possible that the
relation between the criteria will be uncertain, so for example improving
workload may have a negative effect on situation awareness. The second
decision is therefore made in relation to a “primary concern” (the most
important criterion) in the context of the potential parallel effect on the
other relevant criteria.

This decision step, therefore, takes all the options that have been
produced for all the functions relevant to the scenario, and the primary
concern identified, and enters them into a second matrix (see Table 6). The
design options used in the baseline should also be included in the cell that is
labelled “no significant improvement in primary concern”. The alternative
solutions are then placed in the table. Two criteria decide where the solution
should fit. The first depends again on the feasibility of the particular
solution, how easy will it be to implement with achievable technology. The
second requires a judgement about the effect of the solution in terms of the

criteria (workload, performance, situation awareness etc.). The judgement
here is whether the solution causes an improvement or deterioration to the
primary criterion and what the consequent effect will be on the other
criteria. This process is therefore significant in understanding cognitive load.

Primary concern: Performance
State of automation
vs. level of
improvement

Suggestion
is
immediately
available

Available
on
competit
or
systems

Low
risk,
low
cost
R&D

High risk or
high cost
R&D

Large improvement
in primary concern,
no deterioration in
secondary concerns

Improvement in
primary concern, no
deterioration in
secondary concerns

F1.2.4
Sol 2

Improvement in
primary concern
minor deterioration
in secondary
concerns

F1.2.4
Sol 1

Improvement in
primary concern,
large deterioration in
secondary concerns

No significant
improvement in
primary concern

Large deterioration in
primary concern

Table 6: Identify partially automated functions

All these judgements are carried out in comparison to the baseline design. It
would be expected that some solutions do better while others do worse. It
may be that the analyst uses expert judgement, but it could be that the
situation requires a more careful human factors analysis of these decisions.

In this case it may make sense for a team to be involved and for the
workload analyses or situation awareness calculations to be performed by
appropriate experts.

In the case of the function “calculate point to point information”, if
workload were the primary criterion and situation awareness the secondary
criterion, the process might be as follows. If the baseline assumption was
to be that the function was performed entirely manually, then solution 1 in
which optional routes are presented to the navigator, would improve
workload with no deterioration to situation awareness (because alternative
route information is judged to be key to situation awareness by human
factors experts). Solution 2, in which no options are presented, would also
improve workload but would in the judgement of human factors experts
cause minor deterioration to situation awareness.

Choosing the best candidates

Each potential solution is placed in the matrix. At the end of the process it
will be possible to derive a set of best candidates, solutions that are most
favourable in relation to the criteria and are technically feasible. By this
means tasks will be designed in the scenario contexts. This process is
achieved by searching from the top left of the matrix, selecting new design
options. If a design option for a function is selected, then all other options
for that function are deleted from the table. If a design option is selected
from the ‘high risk research and development’ column, then an alternative,
low risk solution should also be considered as a ‘fall-back’ position. In
Table 6 two options are provided for a function F.1.2.4. Both are
implementable because they are available on competitor systems. However
the second solution is preferable because, while it results in an improvement
in performance compared with the baseline solution, it has no negative
effect on any of the secondary concerns such as workload.

After a number of options for functions have been selected, the
designers should re-evaluate the scenario and consider whether or not the
primary concern should be changed as a result of the decisions made so far.
For instance, consider a scenario in which high workload is the primary
concern. If new partially automated solutions are selected that significantly
reduce the expected workload, then a different concern such as
performance or situation awareness may now be more significant. If the
primary concern is changed, then options for the remaining functions are
re-arranged in a new matrix reflecting the changed priorities. Option
selection then proceeds as before, starting with the options that provide the

greatest improvement for the new primary concern. This procedure iterates
until one design option has been selected for every function.

One possible outcome of the procedure is that some functions cannot
be successfully allocated without making use of options from the ‘high risk
research and development’ column, or from a row involving a ‘large
deterioration’ with respect to a secondary concern within the scenario. If
this occurs frequently, and cannot be solved by generating alternative design
options, this may indicate a need to review the system requirements, or to
review assumptions about the number and role of human operators in the
system.

Emerging functions

When a design option for each function has been selected, the scenario is
re-analysed using the proposed allocations as the set of baseline designs.
The purpose of this re-analysis is to identify any new functions that may be
an emergent consequence of the new design. Such functions could include
for example a requirement to co-ordinate two separate functions that
control the same system resources (for example, in one domain we
considered, we recognised that both ‘terrain following’ and ‘missile evasion’
had similar IDA-S characterisations and could be combined as variants of
the same function). Design proposals for the partial automation of these
functions are made. Hence the task is redesigned in the light of the analysis.

If new functions are identified, then designers must consider whether
their impact upon criteria such as performance, workload or situation
awareness is acceptable. If the emergent functions do create an
unacceptable situation, then the selection matrix is revisited to consider any
options that might improve outcomes for the emergent functions. This may
result in changing the level of automation, or may result in changed
selections for the original functions. Hence, if emergent functions are
identified then steps of the process dealing with these are repeated, that is
feasible design options are suggested for partially automating the emergent
functions and the optimum choice is selected. These new functions may
have unexpected effects on the work and therefore the whole process of
function allocation must be considered again using these new functions. In
situations where these functions might be particularly critical it may be
necessary to find new scenarios in which combinations of features may be
considered.

Consolidation

Once functions within each scenario have been allocated, any contradictions
of allocation across scenarios are resolved. This is done either by changing
one of the allocation decisions so as to resolve the conflict or by allowing
automation levels to change across scenarios. Components of IDA-S
allocations can be transferred from one role to another during the activity
supported by the system. This redistribution typically occurs in response to
a change in the environment or a change in the state of one of the agents.
The designer must decide how the allocation of function changes and the
extent to which the operator is involved in this process. In practice the
change-over can be seen as another function that can be refined in the same
way as any other function that emerges during the process.

The following section describes in more detail how the method is
integrated with UML. A reader only interested in the method may skip to
the final section (Extension and Conclusions).

Integration with UML

Two further developments of the method make it more accessible to system
engineers. The first reformulates the representations that are input and
output for the method into UML (Rumbaugh et al., 1999). The second
produces a representation of the mapping between the roles and system
components. The aim of the first step is that the method can be more easily
assimilated into existing system engineering practice and of the second that
the implementation of roles may be more easily visualised. In other words
an additional dimension is introduced, that of recognising how a role is
implemented either as a human or a device within the system. In earlier
sections issues of feasibility of automation were discussed without
considering the architecture of the system.

Integration of input

The previous discussion of scenarios and functions has already indicated
that they can be represented using UML’s use-case model. The advantage of
this approach is that system engineers may use a UML supported design
process (or profile) to develop the system’s design model based upon the
use-case model. Function allocation can therefore be inserted into the
development process at the point during which the use-case model (a
representation of requirements) is transformed into the design model.

A UML use-case describes a collection of scenarios related to an actor’s
goal (Jacobson, 1995). The use-case is the general goal and scenarios are a
sample set of means by which the goal can be achieved. This has a strong
similarity with the goals, sub-goals, actions and plans of Hierarchical Task
Analysis (Kirwan & Ainsworth, 1992). Each scenario contains a different
description of who does what in order to fulfil the goal. At least one
scenario must describe the normal set of steps taken to fulfil the goal
successfully. The other scenarios can describe alternative ways of fulfilling
the goal or ways in which the goal may fail to be fulfilled. Failure may occur
because of operator error or mechanically induced faults or unexpected
events in the environment. It must be made clear that any erroneous steps
are not the required functionality of the system. Use-cases also describe
what guarantees the system provides for the other stakeholders. Together
the use-cases form a model of the system’s behaviour known as the use-case
model.

Use-case template

Cockburn suggests a more detailed description of use-cases than proposed
in the standard (Rumbaugh et al, 1999). He proposes that the sequential
description of a use-case should consist of a sequence of steps each taking
the form ‘Subject…verb…direct object… prepositional phrase’ (Cockburn,
2001). The description can also include statements that control the flow, for
example REPEAT <x1 - xx> UNTIL <condition> or STEPS <x1 - xx>
ANY ORDER. Since a specific instance of behaviour in scenarios is being
described, conditional branches such as the IF statement can be avoided.

The scenario should describe the functions to be allocated but should
not pre-empt allocation, therefore the system element (to be discussed in
more detail below) responsible for performing the function should be
unspecified unless it has already been formally decided. The scenarios
associated with allocation of function are therefore grouped according to
goal as defined by the use-case. The set of scenarios covering all the use-
cases should cover all the functions that are candidates for function
allocation.

An example of a use-case scenario is shown below. The example is
based upon a ship navigating from open sea along a familiar channel into
harbour. Only the main success scenario is shown. The description has
three columns: step number; the role or roles that carry out the functions;
the functions themselves in the order that they are to be performed. As the
allocation of function is completed then the roles responsible for providing

each function, extracted from IDA-S descriptions, can be inserted into the
middle column, see Table 7.

Step Role(s) Function Description
1 Captain orders the ship into harbour
2 Navigator/ Electronic chart plans the route into harbour
3 GPS subsystem obtains the ship’s current fix
4 Electronic chart plots the ship’s current fix
5 Navigator/ Electronic chart calculates direction, time and

appropriate speed to next
checkpoint

6 Navigator sends calculated information to
helmsman as required

7 Repeat steps 3 to 6 until ship
is docked

Table 7: A use case with roles

In one of the preferred UML design processes, the so called Rational
Unified Process (Rumbaugh et al., 1999a), the use-case model is created
during the ‘Requirements’ workflow and is realised as an analysis model
during the ‘Analysis and design’ workflow. The analysis model is a design
model that ignores any specific implementation issues and may be used to
implement an object oriented software analysis design using any object
oriented language. The diagrammatic notations available to the analysis and
design models can be used to produce views of the allocation of function.

These tables provide the developer with a fuller description of the
distribution of functionality than is possible using the use-cases. Table 8, 9
and 10 give a full representation of the scenario in this format. Table 8
provides the “characteristic information”, that is information about the
general circumstances in which the scenario takes place. Table 9 provides
the main success scenario, similar to that described in Table 7. Table 10
describes related information that is valuable in understanding the
circumstances in which the scenario takes place.

Characteristic Information

The characteristic information (Table 8) includes a description of the overall
goal to which the scenario relates, the pre- and post-conditions that govern
the specific circumstances of the scenario and the actors that are involved.

It also describes what a successful end condition would be as well as
possible failure situations. Some of the information contained here may be
used in formulating the extent to which different criteria are relevant to the
scenario during the process of deciding the effect of alternative IDA-S
solutions in terms of the criteria within the scenario. Human factors experts
may use this part of the scenario to place their assumptions about the
situation.

Goal In Context: The goal is to navigate the ship from the open sea

into and along a channel so that it safely comes
into harbour.

Scope: System
Level: I User goal
Pre-Condition: 1. Ship is in open sea close to harbour (less than 1

hour away)
Rationale for
scenario:

Approaching harbour is recognised as a high
workload period for the navigation system. It is
also a period during which the fixes and projected
fixes must be highly accurate.

Success End
Condition:

1. The ship is stationary
2. It is alongside the correct point on the quay
3. It has not hit anything

Failed End
Condition:

1. The ship hits an object

Minimal guarantees: 1. The ship will not be navigated into an
obstruction

Primary Role: Captain
Stakeholder roles: 1. Crew – safety

2. Helmsman - requires navigation information to
steer the ship.

Trigger Event: The order is given to sail into harbour

Table 8: Characteristic Information

Main Success Scenario

Table 9 describes the main success scenario. This is the central scenario that
will form the basis for function allocation in normal circumstances. There
may be other scenarios that describe extreme or exceptional behaviour that
may also be taken into account, and these may be used to consider

circumstances where dynamic function allocation may be appropriate. Such
decisions will mean that these scenarios will require modification to include
functions that are concerned with the decision about which function to
perform.

In this particular example it is imagined that the function allocation
process is in progress. The first step, that is the decision about whether
functions should be totally manual or totally automated has been completed
and the function in step 1 is entirely manual, performed by the captain role.
The remaining steps involve functions for which appropriate IDA-S
representations must be selected.

Situation and
environment:

This scenario assumes that the ship is arriving at a
familiar harbour for which an up to date chart is
available. The approach takes place during daytime
and in good weather. The ship is not obstructed by
any other vessels and there are no technical or
human failures.

Step Role(s) Function Description
1 Captain orders the ship into harbour
2 <N/A> plans the route into harbour
3 <N/A> obtains the ship’s current fix
4 <N/A> plot the ship’s current fix
5 <N/A> calculates direction, time and

appropriate speed to next
checkpoint

6 <N/A> sends the calculated information
to the helmsman as required

7 Repeat steps 3 to 6
until ship is docked

Table 9: Main Success Scenario

Related Information

Related information that may be used by both system engineers and analysts
in the allocation of function process provide the last element in the scenario
description (Table 10). This information includes version and project
schedule information as well as information about the frequency of the
scenario, the roles that are involved and issues of accountability.

Schedule: <Date/build the use case can be
tested>

Priority: Must
Performance Target: <If applicable, how fast should this

use case proceed>
Frequency: Twice a month
Super Use Case: Navigate
Sub Use Case(s):
Channel To Primary Role: Navigation officer accountable for

navigation
Secondary Role(s): <List the secondary roles, these are

the roles the system kicks to get
something done. Note, the primary
role kicks the system to get
something done>

Channel(s) To Secondary Role(s): <How do we get to the secondary
roles>

Table 10: Related role information

Integration of output

The output from the allocation of function method is not easily translated
into UML. Two types of information have to be expressed. The first is the
representation of the partially automated functions (the IDA-S
representations defined in UML terms). The second issue has not yet been
dealt with in the description of the method. A set of representations is
required that describes how the roles are implemented in terms of the
elements of the system. The IDA-S representations are expressed as UML
activity diagrams. An activity diagram can be divided into a number of
columns (called swim-lanes in UML) each of which is assigned a particular
role. Any activities that lie within a column are the responsibility of that
role. A partially automated function is expressed by creating a column for
each role involved and by representing each element of the IDA-S as an
activity placed in the appropriate columns (see Figure 1). This
representation of partially automated functions requires a little more design
commitment than the IDA-S matrix representation. In particular it requires
the analyst not only to suggest partially automated solutions, in which the
different roles perform different parts of the function, but also to decide the
order in which these function components are performed. In practice, it

appears that in order to understand which role performs what part of the
function some idea of order is required. This extra detail provides important
information that can be used in the assessment of workload or situation
awareness.

Figure 1: Representation of a partial function using an activity diagram.

Hence in Figure 1 it is stated that collection, integration, configuration

and proposing will be done in sequence by the device for the function
set/adjust aimpoint. Evaluation, however, which is done next will be shared
between the human and the device. The pilot will modify the information
and select and authorise in the context of execution.

Apart from brief mention of baseline architectures, little has been said
about the system architecture in terms of which the function allocation is
conceived. What aspects of the system will be feasible to automate or not
for example? An important aspect of this description is to find a means of
representing roles in terms of system components. The UML proposal
provides tags or stereotypes for describing the system elements. These are
the basic ingredients that engineers use UML to represent. Because UML is

S t a r t P o in t

M a c h in e - S e t / A d ju s t a im p o in t

C o l le c t
I n f o r m a t io n

P i lo t - S e t / A d ju s t a im p o in t

I n t e g r a t e

C o n f ig u r e

P r o p o s e

E v a lu a t e
E v a lu a te

M o d i f y

S e le c t

A u t h o r is e

A b a n d o n

A b a n d o n

A d ju s t

O k

A d ju s tO k

I n i t ia t e
R e s p o n s eE n d P o in t

K e y

intended to be used generically, it provides a notion of profile as a means of
supporting a particular development process directly. Profiles therefore
involve a method and a collection of defined elements (described by
stereotypes) in order to support a particular development process. Two
standard profiles are relevant to the process that surrounds allocation of
function, the profile for software development and the profile for business
modelling. These profiles contain some of the elements that are required to
support the method envisaged here but other components that have been
described in the chapter are not included. More detail on the UML
extension mechanisms is contained in the ‘UML Toolkit’ (Eriksson &
Penker, 1997) or ‘OMG Unified Modeling Language Specification’ available
at the OMG web site (OMG, 1999).

Stereotypes FA model element Meta-
element Profile for

Software
Develpmnt

Profile for
Business
Modelling

Customised
UML profile
for Function
Allocation

Function Op Function
Role C Role

Compo
nent

P Subsystem

Human C Worker

System
element
class

Device C Device
Compo
nent

O Subsystem

Human O Worker

System
element

Device O Device

Table 11: Mapping Function Allocation to UML
(Op=operation, C=class, P=package, O=object)

The first distinction required in describing architectures is between system
element classes and system element instantiations. A class, “naval rating” for
example, will have as instantiation a particular naval rating. System element
classes required by the allocation of function method must distinguish
between human and device as well as describe groupings of such elements,
teams for example. A team may consist of human and device components.
In addition neither of the profiles that are presumed in this method include

stereotypes associated with function or role. For this reason stereotypes
<<Function>> and <<Role>> are included.

Therefore, in addition to the stereotypes required by the software
development and business modelling profiles, further stereotypes are
included as part of the allocation of function profile to support the
allocation of function method. These stereotypes are: <<Subsystem>>,
<<Worker>>, <<Device>>. It is assumed therefore that system engineers
are already fluent with UML software development and business process
profiles and therefore little additional overhead is involved in using these
additional tags. Table 11 describes the new customised profile for function
allocation along with the stereotypes used from business modelling and
software development. Note that underlining the stereotype implies
instantiating the class.

Hence the function allocation method uses two existing stereotypes
concerned with software development and business modelling and adds to
them the extra stereotypes defined. The aim is that the process subsumed
within the UML software development and business modelling profiles will
form the basis of the function allocation approach described in earlier
sections of this chapter.

Figure 2: Role participation diagram

The final representations for use by system engineers indicate (1) how roles
participate in scenarios, and the nature of the participation (Figure 2), (2)
which functions relate to which roles (Table 11) and (3) how the roles are
implemented in terms of system elements (Figure 3). The role participation

<<Role>>
Fixing

(from Roles)

<<Role>>
Navigator
(from Roles)

<<Role>>
Navigation Officer

(from Roles)

<<Role>>
Plotting

(from Roles)

<<realization>>
Navigate into harbour

<<participant>>

<<participant>> <<participant>>

<<participant>>

diagram shows which roles participate in the scenario. In the example,
Figure 2, the ‘Navigate into harbour’ use-case is associated with four roles
(each tagged by a <<Role>> class) involved in the sequence that describes
the achievement of the main success scenario. The fact that the description
of the relation with the scenario is <<participant>> indicates that this same
diagram may be used to indicate other relationships between roles and
scenarios. Other types of stakeholder, outside the scope of the function
allocation method, may be described in these diagrams.

Table 11 shows the relation between functions and roles. It summarises
the mapping between functions and role without specifying the functions. If
further details are required this may be obtained using the activity diagram
given in Figure 1. In Table 11, the plotting <<Role>> has two operations
representing the functions ‘Plot fix’ and ‘Determine time to next fix’. The
function ‘Give all possible support to the officer of the deck’ is shared
between two roles, namely the Navigation Officer and the Navigator.

<<Role>>
Navigator

F7: Give all possible support to the officer on the deck.

<<Role>>
Plotting

F3: Plot fix
F4: Determine time to next fix.

<<Role>>
Navigation
Officer

F6: Manage and co-ordinate navigation.
F7: Give all possible support to the officer of the deck.

<<Role>>
Fixing

F2: Determine current fix

Table 11: Allocation of function - UML format

Finally roles and system elements are connected using stereotypes. Figure 3
gives an example of roles being allocated to system elements. The Navigator
officer system element can play two roles: navigation officer role and
navigator role.

Extensions and conclusions

This allocation of function method has been designed to be sufficiently
procedural to be usable in practice in a straightforward way. The process
can be easily documented and therefore made traceable. The method has
been confined therefore to two decision steps that may be applied by a team
involving system engineers and human factors specialists. It is reasonable to

expect that the process could be performed by system engineers if they
subcontract the process of assessing the criteria related questions in the
decision step to human factors experts. The UML representations have
been introduced to provide formulations of inputs and outputs that are
directly usable by system engineers and have indicated proposed extensions
to standard UML profiles.

Figure 3: Allocation of roles to system elements - UML format

The method has been used in a realistic case study within QinetiQ (formerly
the UK Defence Evaluation Research Agency - DERA) based on a ship-
based fire emergency system. Information about whether the proposed
function allocations influenced the design of the system are not available.

The application of the method was reviewed by practitioners (system
engineers, human factors experts and domain experts) in the context of a
two day workshop at QinetiQ. During the workshop, results from the case
study were presented and participants were invited to consider a specific
scenario, to apply the decision procedures and produce the appropriate
representations. The participants were divided into teams involving one
naval officer, system engineers and human factors experts. Useful

<<Worker>>
Navigator

(from System elements)

F7: Give all possible support to the
officer of the deck()

<<Role>>
Navigator

<<Worker>>
Navigation officer

(from System elements)

<<Machine>>
GPS

(from GPS)

<<Machine>>
Electronic chart

(from Electronic chart)

F6: Manage and co-ordinate navigation()
F7: Give all possible support to the officer of
the deck()

<<Role>>
Navigation Officer

F2: Determine current fix()

<<Role>>
Fixing

F3: Plot fix()
F4: Determine time to next fix()

<<Role>>
Plotting

<<Plays>>

<<Plays>>

<<Plays>> <<Plays>>

information about the method came out of the review. It was felt that the
IDA-S template was too complicated. The purpose behind its design was
that it provided a representation that would help engineers produce
solutions based on proposals made by human factors experts. It was aimed
at helping human factors experts to consider key aspects of the automation
of the interface as it relates to user tasks. The problem with it was
associated with seeing how all the elements specified in the IDA-S template
related to a particular function. As a result of this feedback, alternatives to
IDA-S are being considered. In particular we are concerned with attributes
of a solution that are simpler to understand by all participants in the
allocation of function process. The second problem concerned the initial
proposal for mapping roles to system architectures. It was felt that the
connection between roles and system elements was too complicated and as
a result the method presented in this chapter is a simplification. This
continues to be an issue that is under exploration.

A further area where the method is perhaps too simplistic and untried
is that of adaptive automation. A simplifying presumption is that
automation adapts by function substitution and that in all cases the result is
the same. In practice both assumptions may be false. As noted by
(Sperandio 1978), in discussions of air traffic control, different strategies are
adopted depending on the number of aircraft in the air space. Sequences of
functions making up procedures rather than individual functions are
substituted. It may also be appropriate that dynamic mechanisms should be
prepared to shed certain less critical functions in the face of hard deadlines.
Both these issues are discussed in more detail in (Hildebrandt & Harrison
2001).

Acknowledgements:

We would like to acknowledge the contributions of Andrew Dearden,
Colin Corbridge and Kate Cook to this work. It has been funded
successively by two companies BAE SYSTEMS and QinetiQ (DERA
CHS).

References

Billings, C.E. (1991). Human-Centered Aircraft Automation. Technical report
number 103885. NASA AMES Research Center. USA.

Cockburn, A. (2001). Writing effective use cases. Addison-Wesley.
Cook, C.A. and Corbridge, C. (1997). Tasks or functions: what are we

allocating? In E. Fallon, L. Bannon & J. McCarthy (Eds.) ALLFN’97
Revisiting the Allocation of Function Issue: New Perspectives, pp. 115-124.
Louisville KY: IEA Press.

Dearden, A., Harrison, M.D. and Wright, P.C. (2000). Allocation of
function: scenarios, context and the economics of effort. International
Journal of Human-Computer Studies, 52, 289-318.

 Dearden, A.M. (2001). IDA-S: a conceptual framework for partial
automation. In A. Blandford, J. Vanderdonckt and P. Gray (Eds.) People
and Computers XV – Interaction without Frontiers. Proceedings of IHM-HCI
2001. Springer. Berlin. pp. 213-228.

Eriksson, H. and Penker, M. (1997). UML Toolkit. John Wiley & Sons.
Fitts, P.M. (1951). Human engineering for an effective air navigation and air

traffic control system. In D. Beevis,, P. Essens, and H. Schuffel (Eds.)
Improving function allocation for integrated systems design. CSERIAC SOAR
96-01. Wright Patterson Air Force Base. OH. USA.

Grote, G., Ryser, C., Wafler, T., Windischer, A. & Weik, S. (2000).
KOMPASS: a method for complementary function allocation in
automated work systems. International Journal of Human Computer-Studies.
52 267-288.

Hildebrandt, M. & Harrison, M.D. (2002). The temporal dimension of
dynamic function allocation. Paper to be presented at Eleventh European
Conference on Cognitive Ergonomics. Catania, Italy, 8-11 September.

Jacobson, I. (1995). Use cases and scenarios. In J.M. Carroll (Ed) Scenario-
based design: envisioning work and technology. John Wiley & Sons.

Johnson, P.D., Harrison, M.D. & Wright, P.C. (2001). An evaluation of two
methods of function allocation. People in Control IEE Press. Conference
Publication No. 481, 178-183.

Kaber, D.B. & Endsley, M.R. (1997). The combined effect of level of
automation and adaptive automation on human performance with
complex, dynamic control systems. In Proceedings of the Human Factors and
Ergonomics Society 41st Annual Meeting. pp 205-209. Santa Monica CA.:
Human Factors and Ergonomics Society.

Kirwan, B. and Ainsworth, L.K. (1992). A guide to task analysis. Taylor and
Francis.

Malinkowski, U., Kuhme, D.H. and Schneider-Hufschmidt, M. (1992). A
taxonomy of adaptive user interfaces. In A. Monk, D. Diaper and M.D.
Harrison (Eds.) People and Computers VII, Proceedings of HCI’92.
Cambridge University Press. pp 391-414.

Older, M.T., Waterson, P.E. & Clegg, C.W. (1997). A critical assessment of
task allocation methods and their applicability. Ergonomics, 40, 151-171.

Object Management Group (1999) ‘OMG Unified Modeling Language
Specification’, ver 1.3, http://www.omg.org

Parasuraman, R. & Mouloua, M. (Eds). (1996). Automation and human
performance: theory and applications. Lawrence Erlbaum Associates.

Parasuraman, R., Sheridan, T.B. and Wickens, C.D. (2000). A model for
types and levels of human interaction with automation. IEEE
Transactions on Systems, man and cybernetics- part A: systems and humans. 30,
286-296.

Pocock, S., Harrison, M.D., Wright, P.C. and Johnson, P.D. (2001). THEA:
a technique for human error assessment early in design. In M. Hirose
(Ed.) IFIP TC 13 International Conference on Human-Computer Interaction.
IOS Press. Ohmsha. pp. 247-254.

Rumbaugh, J., Jacobson, I. and Booch, G. (1999). The unified modelling
language reference manual. Addison Wesley.

Rumbaugh, J., Jacobson, I. and Booch, G. (1999a). The unified software
development process. Addison Wesley.

Sheridan, T.B. and Verplanck (1978). W.L. Human and computer control of
undersea teleoperators. Technical report. Man-machine systems lab, Dept
of Mechanical Engineering, MIT, Cambridge, MA.

Sperandio, J.-C. (1978). The regulation of working methods as a function of
workload among air traffic controllers. Ergonomics. 21,195-202.

Acronyms: UML (Unified Modelling Language), IDA-S (template for
partially automated functions based on Information, Decision,
Supervision and Action).

Keywords: allocation of function, automation, system engineering,
unified modelling language (UML), scenarios, use-cases

