
Model Checking Interactor Speci�cations

Jos�e C. Campos1;2;� and Michael D. Harrison1
1Human-Computer Interaction Group, The University of York, UK
2Departamento de Inform�atica, Universidade do Minho, Portugal

Abstract. Recent accounts of accidents have drawn attention to problems that

arise in safety critical systems through \automation surprises". A particular class

of such surprises, interface mode changes, have signi�cant impact on the safety

of a dynamic interactive system and may take place implicitly as a result of other

system action. Formal speci�cations of interactive systems provide an opportunity to

analyse problems that arise in such systems. In this paper we consider the role that

an interactor based speci�cation has as a partial model of an interactive system,

so that mode consequences can be checked early in the design process. We show

how interactor speci�cations can be translated into the SMV model checker input

language, and how we can use such speci�cations in conjunction with the model

checker to analyse potential for mode confusion in a realistic case. Our �nal aim is

to develop a general purpose methodology for the automated analysis of interactive

systems, and, in this context, we show how the veri�cation process can be useful in

raising questions that have to be addressed in a broader context of analysis.

Keywords: software veri�cation, interactive systems, automation surprise, interface

mode confusion, model checking, interactor based speci�cations

1. Introduction

This paper is primarily about using automated reasoning techniques

(more speci�cally model checking) during interactive systems design.

Model checking is a veri�cation technique which is being used with

success in hardware and protocol veri�cation. We believe it can also

play an important role in the development of safety critical interactive

systems, where the consequence of failure can become unacceptable.

More speci�cally, this paper responds to two issues. The �rst is that

recent accounts of accidents, incidents and simulations (Palmer, 1995)

have drawn attention to problems that arise in safety critical systems

through \automation surprises". An automation surprise happens when

the system behaves di�erently from the expectations of the user. A par-

ticular class of such surprises, interface mode changes, have signi�cant

impact on the safety of a dynamic interactive system and may take

place implicitly as a result of other system action. The second is that

the formal speci�cation of an interactive system o�ers an opportunity

� Jos�e C. Campos was supported by Funda�c~ao para a Ciência e a Tecnologia

(FCT, Portugal) under grant PRAXIS XXI/BD/9562/96.

c 2000 Kluwer Academic Publishers. Printed in the Netherlands.

mcp.tex; 11/07/2000; 11:22; p.1

2 Campos & Harrison

to analyse the consequences of such a design and thereby reduce the

risk of this type of interface problem.

We note recent relevant analyses (Leveson and Palmer, 1997; Rush-

by, 1999) of mode complexity in aviation based systems. These analyses

have been conducted retrospectively using experience based on ight

simulations. Scenarios have provided the foundation for the analysis.

In this paper we consider the role that an interactor based speci�cation

(Faconti and Patern�o, 1990; Duke and Harrison, 1993) has as a partial

model of an interactive system so that mode consequences might be

checked early in the design process. An Interactor is an object (con-

sisting of state and operations) with the additional property that state

that is perceivable to the user, and actions that are accessible to the

user, are identi�ed explicitly. The main advantage of the interactor

concept is that it allows for the speci�cation of both system state and

behaviour, and user interface presentation and behaviour, in the same

framework. This notion will be developed further in Section 2.2.

What makes interactive systems interesting (and hard) from the

point of view of veri�cation, is the multiplicity of areas and concerns

that come into play during the design of such systems. To the tradi-

tional concerns of software engineering, interactive systems design adds

a requirement to accommodate a consideration of the context in which

the system is used. This means that aspects of psychology, sociology,

and ergonomics, may all have a bearing on design, and may need to be

taken into account during veri�cation.

General concepts of usability derived from psychological or sociolog-

ical understandings are diÆcult if not impossible to express in a form

that can be used as part of a veri�cation process. Even more concrete

concepts such as task | a unit of human activity, carried out to achieve

a speci�c goal (Newman and Lamming, 1995) | and user interface

mode | which de�nes how the system responds to input, and how the

state is represented in the output | involve a broad range of concerns,

from hardware restrictions to more subjective human factors issues. In

(Campos and Harrison, 1998) we argue that to address these questions

e�ectively a tighter integration between design and veri�cation is re-

quired, and that this integration can be achieved by developing, and

verifying, a range of partial models of the system under development,

each model focusing on a speci�c set of features of the system.

Palmer (1995) reports on problems found during a set of simulations

of realistic ight missions. One of these was related to the task of

climbing and maintaining altitude in response to Air TraÆc Control

instructions. A change in the ying mode, performed by the autopilot

without intervention of the pilot, caused pilot action to cancel the

\capture" on the desired altitude inadvertently. This situation has im-

mcp.tex; 11/07/2000; 11:22; p.2

Model Checking Interactor Speci�cations 3

plications for the safety of the aircraft as it can result in an \altitude

bust" and consequent air traÆc problems of loss of separation with

other aircraft. We will show how checking speci�cations using a model

incorporating the interface between the pilot and the automation, may

detect problems such as these in early stages of design. We note that the

analysis is not primarily concerned with the behaviour of the system by

itself, but with the interaction between the system and its users. This

means that input from human-factors specialists can be incorporated

in the veri�cation process, further stressing that the analysis does not

concern simply how the behaves, rather how system and user behave

together.

Two basic types of automated veri�cation techniques can be identi-

�ed: model checking and theorem proving. Each technique has its own

strong points. Model checking is usually best at verifying properties

related to the temporal behaviour of the system, while theorem provers

are best at verifying properties related to the system's state. As the

title of this paper indicates, we will be using the former. This is not to

say that we propose model checking as the technique of choice for the

analysis of interactive systems. Our view is that both techniques can be

useful. The choice of which to use will depend on the particular aspect

of the system being analysed. In (Doherty et al., 2000) we show how

theorem proving can be useful to reason about the relation between the

system state and the proposed user interface. In (Campos and Harrison,

1999) we show how both veri�cation techniques can be integrated in to

a coherent veri�cation process.

In Section 2 we discuss the role that veri�cation should play during

design, and introduce the interactor language used in the following sec-

tions. In section 3 we describe a tool that enables us to check interactors

in SMV. In Section 4 we use the interactor language to build a model

of the Mode Control Panel (MCP) of the aircraft. The MCP is one

element of the interface between the pilot and the aircraft autopilot.

This model is derived from the description of the case study in (Palmer,

1995). In building it we will see how we can use abstraction to keep

the model simple, yet meaningful, even in the presence of continuous

and non-continuous subsystems that have to be modeled together. In

Section 5 we show how to go about model checking the resulting spec-

i�cation. In Section 6 we compare our work with other approaches to

the veri�cation of software requirements in general, and of interactive

systems in particular. Finally in Section 7 we analyse the results of the

case study, and draw some conclusions.

mcp.tex; 11/07/2000; 11:22; p.3

4 Campos & Harrison

2. Interactors and Partial Models

In this section we discuss the role of veri�cation in interactive systems

development, and how interactors can be used in the veri�cation pro-

cess. We also introduce the speci�c avor of interactor and veri�cation

technique that we shall be using.

2.1. The Role of Verification in Interactive Systems

Design

Work on formal veri�cation of interactive systems tends to fall into one

of two categories:

� analysis of known problems of existing systems: mainly trying to

explain why the problems arise;

� analysis of properties of speci�cations: mainly trying to establish

if a given system speci�cation exhibits some desired properties.

In the �rst case, hindsight is often used to drive the development of

a model that will be analysed in order to elicit the particular problem

under analysis. While this type of analysis can be useful in explaining

what went wrong, it works a posteriori so it cannot predict design

problems, only explain them. More than explaining problems, we would

like to be able to predict them in order to adjust the design accordingly.

In the second case, the aim is that errors be detected and prevented

before the system is actually used in practice. At this level, approaches

tend to be based around the development of a speci�cation of the en-

tire system, which can then be analysed (cf. Patern�o, 1995, Heitmeyer

et al., 1998), or even on the reverse engineering of the actual system

implementation (cf. Bumbulis et al., 1996). See (Campos and Harrison,

1997) for a review of current approaches to the automated veri�cation

of interactive systems. In general, this holistic style of approach means

that design decisions may have to be remade with costly consequences if

a problem is found. Additionally, for systems as complex as interactive

systems are, it becomes diÆcult, if not impossible, to analyse spec-

i�cations which represent whole systems (cf. Campos and Harrison,

1998).

At this stage, it should be mentioned that the aim of formal ver-

i�cation is not proving a system correct. Correctness assumes some

absolute measure of quality against which the speci�cation can be

veri�ed. Trying to de�ne it, we are faced with the problem of its own

correctness. Hence, as Henzinger (1996) states:

mcp.tex; 11/07/2000; 11:22; p.4

Model Checking Interactor Speci�cations 5

The only sensible goal of formal methods is to detect the presence

of errors and to do so early in the design process. Indeed, \falsi�-

cation" would be a more appropriate name for the endeavor called

\veri�cation."

In (Campos and Harrison, 1998) we argue that in order to explore

the full potential of formal veri�cation, we must move the veri�cation

step into the development process. Instead of being used as a sanity

check on the end result of design, veri�cation should be used as a guide

in the process of design decision making (cf. the \verify-while-develop"

paradigm, de Roever, 1998). This can be achieved by using veri�cation

techniques on partial models that highlight the speci�c concerns of

di�erent development stages (cf. Fields et al., 1997). Once a speci�c

artifact of the system is identi�ed which needs to be analysed, a model

can be built that highlights the aspects of the artifact which are of

interest. The results of the analysis of such a model can them be fed-

back to the design process (see Figure 1). This process can be applied

repeatedly.

Design

Identify

Artifact

System

Model

Analyse

Results

Verify

Properties

Build

Figure 1. Veri�cation process

Besides allowing for a more informed process of design decision

making, the move towards a tighter integration between veri�cation

and design has a number of additional advantages:

� complexity control: interactive systems tend to be complex systems

where a number of di�erent areas come in to play; by building

partial models focused on the speci�c aspects we want to analyse,

we can better control the complexity of the models.

� reuse: we can think of reusing the veri�cation process when similar

aspects of two di�erent systems are being analysed.

mcp.tex; 11/07/2000; 11:22; p.5

6 Campos & Harrison

� technique �t: di�erent styles of properties require di�erent styles

of veri�cation; by using a number of models instead of a single one,

we avoid being tied down to a particular veri�cation technique.

� property relevance: when verifying a complex speci�cation, we run

the risk of some properties being more relevant to the speci�cation

itself than of the system being speci�ed; by focusing our models

on the speci�c aspects we want to analyse we are able to better

ensure that the properties we formulate are relevant of the system

and not only of how the system is speci�ed.

2.2. The Interactor Language

Traditional speci�cation languages do not usually cater for the speci-

�cities of interactive systems. Interactors (Faconti and Patern�o, 1990;

Duke and Harrison, 1993) have been proposed as a structuring concept

for such a task.

The interactor model, as developed by the York group (Duke and

Harrison, 1993) (see Figure 2), is that of an object which, besides

interacting with the environment through events, is capable of ren-

dering (part of) its state into some presentation medium (cf. rho in

Figure 2). The model does not prescribe a speci�cation notation for

the description of interactor state and behaviour. Instead, it acts as a

mechanism for structuring the use of standard speci�cation techniques

in the context of interactive systems speci�cation.

rho

Presentation

Events State

Figure 2. York Interactor

Several di�erent formalisms have been used to specify interactors.

These include Z (Duke and Harrison, 1993), modal action logic (MAL)

(Duke et al., 1995), and VDM (Harrison et al., 1996). We will be

using a (deontic) modal logic based on work done at Imperial College,

London (Ryan et al., 1991; Fiadeiro and Maibaum, 1991), following its

adaptation to interactor speci�cation by Duke (see, for instance, Duke

et al., 1995).

The de�nition of an interactor has three main components:

mcp.tex; 11/07/2000; 11:22; p.6

Model Checking Interactor Speci�cations 7

� state;

� behaviour;

� rendering.

The state of an interactor is modeled by a collection of typed at-

tributes. Consider for example a dial which indicates a value, we would

write:

interactor dial(T)

attributes

needle: T

This declaration introduces an interactor named dial. This interactor

has only one attribute (needle), and the type of the attribute is T (the

range of values in the dial). Note that here the type is a parameter of

the interactor. This means that it will be possible to have dials with

di�erent ranges.

In order to manipulate the state, actions have to be introduced. In

this case we will only have an action to set the value in the dial:

action

set(T)

The type, between parentheses after the action name, indicates that

the action will have a parameter of that type (so set represents, in fact,

a family of actions).

Until now nothing has been said about how the interactor behaves.

In order to describe interactor behaviour we will use a logic based

on Structured MAL (Ryan et al., 1991). Here propositional logic is

augmented with the notion of action and:

� the deontic operator obl: if obl(ac) then action ac is obliged to

happen some time in the future;

� the deontic operator per: if per(ac) then action ac is permitted to

happen next;

� the modal operator [] : [ac]expr is the value of expr in the state

resulting from the occurrence of action ac;

� the special reference event []: if []expr then expr is true in the initial

state.

A major di�erence between our logic and Structured MAL is the

treatment of the modal operator. There the modal operator is applied

to whole propositions. This means that there is no way to relate old

and new values of attributes directly. In Structured MAL this is usually

mcp.tex; 11/07/2000; 11:22; p.7

8 Campos & Harrison

done by the introduction of auxiliary variables. Suppose for example

that we want to de�ne an action (incr) which increments the value of

attribute needle above. In Structured MAL we would write:

(needle = aux)! [incr](needle = aux+ 1)

where aux is an auxiliary variable introduced to carry the value of

needle into the next state (after incr).

To avoid these auxiliary variables we follow the de�nition of modal

operator from (Fiadeiro and Maibaum, 1991), and we apply the oper-

ator to attributes only. This allows us to write:

([incr]needle) = needle+ 1

Which reads: the value of needle after incr equals the current value of

needle plus one.

To further simplify more complex axioms where the modal operator

is applied to more than one attribute, we can factor out the operator

and use priming to indicate which attributes are a�ected by it. Hence,

we write the axiom above as:

[incr](needle0 = needle+ 1)

We will omit the parentheses whenever the scope of the modal operator

can be inferred.

The behaviour of set can be de�ned by the following axiom:

[set(v)] needle'=v

The axiom reads: the value of needle after action set(v) is v.

Finally we have to de�ne the rendering relation for the interactor

presentation. This is done by annotating actions and attributes to show

that they are perceivable. In addition, the annotation also indicates the

modality of the perceivable attribute/action. These annotations can be

seen as de�ning additional operators. In this case operator vis asserts

the fact that the parameter/action is visible. Taking all these together

we get the dial in Figure 3.

The composition of interactors is done via inclusion as in (Ryan

et al., 1991). To use a dial in some other interactor we would write:

interactor Panel

includes

dial(Range) via speedDial

...

where speedDial becomes the name of a particular instance of dial in

the context of interactor Panel. We shall assume that all actions and

attributes of an interactor are always accessible to other interactors

mcp.tex; 11/07/2000; 11:22; p.8

Model Checking Interactor Speci�cations 9

interactor dial(T)

attributes

vis needle: T

action

vis set(T)

axioms

(1) [set(v)] needle'=v

Figure 3. Simple dial interactor

that include it. Hence, to initialise the needle of speedDial to zero, we

could place the following axiom in interactor Panel:

[] speedDial.needle=0

In this case we are assuming the existence of type Range. Types can

be de�ned by enumeration or as subranges of integer:

types

T1 = fa, b, cg

T2 = 0..10

In order to make the checking of speci�cations possible, we will repre-

sent types as enumerations of the \key values" of each type.

The modal operator allows us to talk about the e�ect of actions in

the state. It says nothing, however, about when actions are permitted or

required to happen. For this we must use the permission and obligation

operators. As in (Ryan et al., 1991), we only consider the assertion of

permissions and the denial of obligations, that is, axioms of the form:

� per(ac)! guard | action ac is permitted only if guard is true;

� cond ! obl(ac) | if cond is true then action ac becomes obliga-

tory.

This amounts to saying that permissions are asserted by default, and

that obligations are o� by default.

The rationale behind this decision is that it makes it easier to add

permissions and obligations incrementally when writing speci�cations.

For instance, permission axioms per(ac) ! guard1 and per(ac) !

guard2 add up to yield per(ac) ! (guard1 ^ guard2). This logic is

particularly appropriate to describing a system in which components

can be reused.

The next section gives introductions to SMV and CTL as well as a

detailed description of how MAL descriptions can be translated into

SMV. The translation is summarised in Table I. A reader familiar

with SMV and CTL, prepared to believe that the translation works,

mcp.tex; 11/07/2000; 11:22; p.9

10 Campos & Harrison

and more interested in strategies for proving properties of interactive

behaviour may skip to Section 4, pausing briey at Table I.

3. Model Checking Interactors

3.1. SMV

Model checking was originally proposed as an alternative to the use

of theorem provers in concurrent program veri�cation (Clarke et al.,

1986). The basic premise was that a �nite state machine speci�cation of

a system can be subject to exhaustive analysis of its entire state space to

determine what properties hold of the system's behaviour. Typically the

properties are expressed in some temporal logic that allows reasoning

over the possible execution paths of the system (see Figure 41). In

this context, the possible execution paths are interpreted as alternative

futures.

S1

S0

S2

S2

S1

S0

S2

S1

S0

S0

S1
....

...
.

.

Figure 4. Execution paths of a �nite states machine

By using an algorithm to perform the state space analysis, the two

main drawbacks of theorem provers were avoided:

� the analysis is fully automated (as opposed to theorem provers'

high reliance on the skills of its users);

� the validity of a property is always decidable (as opposed to theo-

rem provers' undecidability problems).

A main drawback of Model Checking has to do with the size of the

�nite state machine needed to specify a given system: useful speci�ca-

tions may generate state spaces so large that it becomes impractical

1 Figure adapted from (Abowd et al., 1995).

mcp.tex; 11/07/2000; 11:22; p.10

Model Checking Interactor Speci�cations 11

MODULE blink

VAR

light: boolean;

INIT

light=0

TRANS

next(light) = !light

Figure 5. An example SMV module

to analyse the entire state space. Hence, theoretically decidable sys-

tems may become undecidable in practice. The use of Symbolic Model

Checking somewhat diminishes this problem. Avoiding the explicit rep-

resentation of states, state spaces as big as 1020 states may be analysed

(Burch et al., 1990).

In this paper, the symbolic model checker SMV (McMillan, 1993)

will be used.

3.1.1. The SMV input language

An SMV speci�cation is a collection of modules. Each module de�ning

a �nite state machine. In its simplest form, a module consists of a

number of state variables (cf. interactor attributes), and a set of rules

specifying how the module can progress from one state to the next

(cf. interactor axioms). In order to express MAL axioms in SMV, it is

only necessary to consider a subset of the SMV input language. The

ASSIGN declaration and case expressions, in particular, will not be

used.

Figure 5 shows an example SMV module. Attributes are declared

in clause VAR. In this case, there is only one attribute (light) and its

type is boolean. Clause INIT de�nes the initial state of the module.

This is done with an axiom on the values of the attributes. In this case

the axiom states that in the initial state attribute light is false (zero

representing false). Clause TRANS de�nes how the state evolves. In this

case the attribute will repeatedly toggle between true and false, every

time a state change happens. Note the use of next to reference the next

state. Axioms in TRANS clauses are written using a temporal logic where

next is the only temporal operator. The usual propositional operators

are also present: ! stands for logical not, &/| stand for logical and/or

respectively, -> and <-> stand for implication and equivalence. In this

case the axiom reads: the value of attribute light in the next state will

be the negation of the value of attribute light in the current state.

The complete list of declarations used is now presented:

mcp.tex; 11/07/2000; 11:22; p.11

12 Campos & Harrison

� VAR | allows the declaration of the variables that de�ne the mod-

ule's state. The types associated with the attributes can be either

boolean, an enumeration, an array, or another module. The use of

arrays will not be addressed in this paper (see Campos, 1999).

� INIT| allows the de�nition of the initial state of the module. This

is done using propositional formulae on the module's attributes

(the use of next is not allowed).

� TRANS | allows the de�nition of the behaviour of the module.

This is done using temporal formulae. The operator next is used

to refer to the next state.

� INVAR| allows the speci�cation of invariants over the state. These

invariants must be evaluated inside the state so, as for INIT, they

are written using propositional formulae.

� FAIRNESS | allows the speci�cation of fairness constraints. The

behaviour of the module will have to obey the fairness constraints

in�nitely often. Fairness constraints can be temporal formulae over

paths (CTL formulae), or simply propositional (inside the state)

formulae. In practice, only propositional formulae tend to be use-

ful/meaningful. Hence, only those will be considered.

� SPEC | allows the de�nition of a CTL formula to be checked.

3.1.2. CTL

As just said, in the case of SMV, CTL (Computational Tree Logic |

Clarke et al., 1999) is used to express properties about the behaviour of

the system. For a complete description of the CTL syntax see (Clarke

et al., 1999). Besides the usual propositional logic connectives, CTL

allows for operators over paths:

� A { for all paths (universal quanti�er over paths);

� E { for some path (existential quanti�er over paths);

and over states in a path:

� G { for all states in the path (universal quanti�er over states in a

path);

� F { for some state in the path (existential quanti�er over states in

a path);

� X { for the next state in the path;

mcp.tex; 11/07/2000; 11:22; p.12

Model Checking Interactor Speci�cations 13

� U { some property will hold in the path until some other property

holds.

These operators allow us to express concepts such us:

� universally: AG(p) { p is universal (for all paths, in all states, p

holds);

� inevitability: AF (p) { p is inevitable (for all paths, for some state

along the path, p holds);

� possibility: EF (p) { p is possible (for some path, for some state

along that path, p holds).

3.2. From Interactors to SMV

For model checking of interactor models in SMV to be possible, �rst

the models must be expressed in the SMV speci�cation language. Un-

like Abowd et al.'s approach, where only a single PPS is used, this

implies representing models composed of multiple interactors. For each

interactor, its state and behaviour must be expressed in SMV.

In this section an algorithm is developed to carry out this transla-

tion. The section ends with a brief description of a tool that implements

the translation.

3.2.1. Expressing interactor state in SMV

SMV has been previously used in the veri�cation of interactive system

speci�cations by Abowd et al. (1995). Their approach, however, relies

on a simple propositional production system written in Action Simula-

tor (Monk and Curry, 1994). With interactors we build speci�cations

compositionally. An SMV module is similar to an interactor in that is

also has a state (a collection of attributes), and axioms describing how

the state evolves. These similarities raise the possibility of representing

interactors as SMV modules.

State attributes in SMV can be declared as booleans or as having an

enumerated type. This means that restrictions will have to be enforced

in the types used in interactors. If, for example, a variable is de�ned as

having type nat, its type will have to be restricted to an appropriate

subrange of nat before translation to SMV is carried out. Hence, it is

possible to de�ne a translation rule:

Translation Rule 1. (Attributes)

attributes a1: T translates to: VAR a1: T;

mcp.tex; 11/07/2000; 11:22; p.13

14 Campos & Harrison

whenever T is a valid SMV type.

The includes clause is used to allow interactors to have other inter-

actors as part of their state. This notion has a direct counterpart in S-

MV: modules can have instances of other modules as part of their state.

Hence, representing interactor inclusion is straightforward. Instances of

included interactors become variables whose types are the appropriate

SMV modules resulting from the translation of the interactors. The

translation rule for interactor inclusion is:

Translation Rule 2. (Interactor inclusion)

includes iname via i1 translates to: VAR i1: iname;

where iname is the SMV module resulting from the translation of

interactor iname.

The concept of importing does not exist in SMV. However, im-

porting clauses can be eliminated from an interactor based model by

substituting them by the de�nition of the imported interactors. Ad-

ditionally, SMV modules cannot be parameterised by types (they can

have attributes as parameters, although this feature will not be used

since it is not present in the interactor language). Again, it is possible

to eliminate type parameters from interactor based models. This is

done by instantiating each parameterised interactor with the types

actually used as parameters. This means that a parameterised inter-

actor will generate many SMV modules (as many as the number of

times it is instantiated with di�erent parameters). Note that both these

transformations can easily be done automatically.

So, with appropriate restrictions it is possible to represent the state

of an interactor in the state of an SMV module. The major problem

remains of expressing the behaviour of the interactors in SMV. The

remainder of this section deals mainly with showing how a translation

from MAL to SMV axioms can be deduced. This ful�ls two objectives:

it provides the translation algorithm needed for each type of axiom, and

it guarantees the correctness of the translation process. The approach

taken follows from (Fiadeiro and Maibaum, 1991).

3.2.2. Expressing interactor behaviour in SMV

This section discusses how interactor axioms can be expressed using the

SMV input language. Five types of interactor axioms can be identi�ed:

� invariants | these are formulae that do not involve any kind of

event (i.e., simple propositional formulae). They must hold for all

states of the interactor.

� initialisation axioms | these are formulae that involve the refer-

ence event ([]). They de�ne the initial state of the interactor.

mcp.tex; 11/07/2000; 11:22; p.14

Model Checking Interactor Speci�cations 15

� modal axioms | these are formulae involving the modal operator.

They de�ne the e�ect of actions in the state of the interactor.

� permission axioms | these are deontic formulae involving the use

of per. They take the shape per(ac)! cond: action ac is permitted

only when the propositional formula cond holds.

� obligation axioms | these are deontic formulae involving the use

of obl. They take the shape cond ! obl(ac): action ac becomes

obligatory when the propositional formula cond holds.

In the discussion that follows each of these types of axioms will be

addressed. To help in the presentation, the notation p(expr1; ::; exprn)

will be used to denote a formula on expressions expr1 to expr
n
using

propositional operators only. Note, however, that expressions expr1 to

expr
n
need not necessarily be propositional.

3.2.2.1. Invariants These are axioms p(a1; ::; an) such that a1 to a
n

are interactor attributes. Invariants must hold in all states of the model.

This has a direct counterpart in SMV: the INVAR clause. The translation

rule for invariants is then:

Translation Rule 3. (Invariants)

prop(a1; ::; an) translates to: INVAR prop(a1,..,an)

3.2.2.2. Initialisation axioms These are axioms that take the shape

[]p(a1; ::; an). They are used to de�ne the initial state. Again this has

a direct counterpart in SMV: the INIT clause. Hence, initialisation

axioms are translated by removing the reference events and placing

the resulting axioms in INIT clauses:

Translation Rule 4. (Initialisation axioms)

[]prop(a1; ::; an) translates to: INIT prop(a1,..,an)

3.2.2.3. Modal axioms These axioms are used to specify the e�ect of

actions in the state. They take the shape p([e]a1; ::; [e]ag ; ah; ::; an).

As stated above, there is no direct counterpart for this in SMV.

However, Fiadeiro and Maibaum (1991) have shown how it is possible

to reason about the temporal properties of the normative behaviours

of deontic speci�cations. Since it is the normative behaviours of the

interactor models that are of interest in what follows, we can assume

that all permissions will be respected, and all obligations will be ful-

�lled. Therefore it is possible to make use of results from (Fiadeiro and

Maibaum, 1991).

mcp.tex; 11/07/2000; 11:22; p.15

16 Campos & Harrison

First the occurrence operator>
action

must be introduced. This corre-

sponds to the >T operator in (Fiadeiro and Maibaum, 1991). In a given

state, this operator is used to signal that the state has been reached

by the occurrence of some speci�c action. Hence, >
action

e holds in a

state when e is the action that causes the transition to that state.

Note that, instead of taking Abowd et al.'s approach of encoding

information about the next action, information relating to the previous

action is encoded (the action corresponding to the last transition that

occurred). This avoids the problem of duplicated initial states described

in (Campos, 1999). In this case states are duplicated when they can be

reached using di�erent actions (see Figure 6).

ac2

b)a)

S

action=ac2
S

S
action=ac1ac1

Figure 6. State duplication

Using the occurrence operator it becomes possible to reason about

actions in SMV. From (Fiadeiro and Maibaum, 1991) it is known that2:

(! [e]p)) ((>
action

e)! p) (1)

The equation reads: if p holds after e, then p must hold in all states

where >
action

e holds (all states that can be reached by performing e).

In Equation 1, the modal operator is being applied to whole propo-

sitions. However, in this paper the modal operator works at the level

of the attributes. Hence, the following equation will be used instead:

(([e]a1) = a2)) ((>
action

e)! (a1 = Y (a2))) (2)

That is, if the value of a1 after e equals the current value of a2 (the

value before e), then in every state reached by performing e, the value

of a1 will equal the value of a2 before e had happened (the previous

value of a2 | hence the use of Y , the previous operator).

Since in SMV the Y operator does not exist, we rewrite the equation

using the next operator:

(([e]a1) = a2)) (next(>
action

e)! (next(a1) = a2)) (3)

2 In this context a) b means that a! b for all states in the model.

mcp.tex; 11/07/2000; 11:22; p.16

Model Checking Interactor Speci�cations 17

To write this equation in SMV it is �rst necessary to model the oc-

currence operator. The operator will be modeled by a state attribute

(>action) indicating the event for which the operator holds true. Hence,

>
action

e becomes >action= e. The type of this attribute will be an

enumeration of all the possible events.

It is now possible to write the translation rule for modal axioms:

Translation Rule 5. (Modal axioms)

prop([e]a1; ::; [e]ag; ah; ::; an)

translates to:

TRANS

next(>action)=e -> prop(next(a1),..,next(ag),ah,..,an)

i.e., modal axioms are translated into axioms that test whether the

next action is the appropriate one, and assert the condition using next

to reference the next state.

This translation rule guarantees that all behaviour speci�ed by mo-

dal axioms will be present in the SMV model. The opposite is not

true (note that Equation 3 is an implication, not an equivalence). SMV

generates all state transitions that do not infringe the given axioms.

Hence, it is possible to have some behaviours that are present, not

because they were explicitly speci�ed, but because no axioms were given

which state how the system behaves in some particular circumstances.

This is actually a useful feature, since it allows for nondeterminism and

underspeci�ed models.

3.2.2.4. Permission axioms These axioms are used to restrict action

permission to some speci�c conditions. They take the shape per(e) !

p(a1; ::; an).

As for modal operators, in SMV there is no notion of permission.

However, from (Fiadeiro and Maibaum, 1991), it can be deduced that

formulae of the form

per(e)! cond

lead to

next(>
action

e)! cond:

This can be used to de�ne the translation rule for permission axioms:

Translation Rule 6. (Permission axioms)

per(e)! prop(a1; ::; an)

translates to:

TRANS next(>action)=e -> prop(a1,..,an)

The behaviour of the SMV model is guaranteed not to infringe the

SMV axioms. Hence, this translation rule guarantees that all (MAL

mcp.tex; 11/07/2000; 11:22; p.17

18 Campos & Harrison

level) permission conditions, set for some action, will have to be met

(in the corresponding SMV model) in order for the state transition

associated with that action to take place.

3.2.2.5. Obligation axioms These axioms are used to assert the obli-

gation of performing some action. They take the shape p(a1; ::; an) !

obl(e).

Once more there is no direct way to express this in SMV, but from

(Fiadeiro and Maibaum, 1991) it can be deduced that formulae of the

form

cond! obl(e)

lead to

cond! F (next(>
action

e))

with F the sometime in the future operator.

It is not possible to express this last equation directly as an SMV

axiom. The SMV input language allows reference to the current and

next state only, and the equation above makes reference to some arbi-

trary state in the future. The only way to inuence future states of the

system is by fairness conditions. Since a fairness condition needs to hold

in�nitely often, if the formula next(>action) = e is placed as a fairness

condition, then eventually the action will happen. This strategy would

require formulae to be added to, and removed from, the set of fairness

conditions as obligations are successively raised and ful�lled during the

execution of the state machine. Unfortunately, fairness is de�ned by a

static set of formulae in the SMV text. One way to get around this is to

use a boolean ag signaling when a speci�c obligation is raised. Hence,

instead of adding the formula to the set of fairness conditions, the ag

is set to true. By only unsetting the ag when the action happens, and

asserting, as a fairness condition, that the ag must in�nitely often be

false, it is guaranteed that the action will eventually happen once an

obligation for it is raised.

It is now possible to enumerate the rules for the translation of an

interactor into an SMV module. This is done in Table I. On the left

hand side of the table, the various interactor expressions are listed. The

right hand side gives the corresponding SMV expressions The last rule

gives the translation for obligation axioms, following the reasoning just

described.

3.2.3. Some �nal comments regarding the translation

As stated initially, the discussion above has only considered actions

with no parameters. As with parameterised interactors, it is possible

to eliminate a parameterised action automatically by substituting it by

mcp.tex; 11/07/2000; 11:22; p.18

Model Checking Interactor Speci�cations 19

Table I. Translation from interactors to SMV

Interactor SMV Module

interactor name MODULE name

attributes

a : fv1; ::; vng VAR a : fv1; ::; vng
VAR <action : fac1; ::; acng;

interactor inclusion:

includes iname via i1 VAR i1: iname;

invariants:

prop(a1; ::; an) INVAR prop(a1; ::; an)

initialisation axioms:

prop([]a1; ::; []an) INIT prop(a1; ::; an)

modal axioms:

prop([e]a1; ::; [e]ag; ah; ::; an) TRANS next(<action) = e �>
prop(next(a1); ::; next(ag); ah; ::; an)

permission axioms:

per(e)! prop(a1; ::; an) TRANS next(<action) = e �>
prop(a1; ::; an)

obligation axioms:

prop(a1; ::; an)! obl(e) VAR oble : boolean;

INIT !oble

FAIRNESS !oble

TRANS next(<action)!= e �>
next(oble) = (prop(a1; ::; an) j oble)

TRANS next(<action) = e�>!next(oble)

a set of actions, one for each possible combination of the parameters'

values. Parameterised actions can appear in three types of axioms (note

that only universally quanti�ed variables are accepted as parameters):

� modal axioms | Axioms are repeated as many times as needed,

replacing the parameterised actions by the appropriate values.

� permission axioms | As for modal axioms, permission axioms are

repeated as many times as needed.

� obligation axioms | Any of the actions generated according to

the reasoning above will discharge the obligation.

Another feature of the interactor language that has not been men-

tioned is type de�nition: the possibility of giving names to enumerated

types. This is not possible in SMV but, once again, type names can

be eliminated by substituting all the occurrences of a type name by its

de�nition.

Two additional clauses were added to the language. Clause fairness

allows the de�nition of fairness constraints, clause test allows the de�-

nition of CTL formulae to be checked. Clause test should only be used

mcp.tex; 11/07/2000; 11:22; p.19

20 Campos & Harrison

in the master interactor of a model. Additionally, this interactor should

be called main.
All of the above focus on translating each interactor into an SMV

module. It is assumed that the semantics of combining interactors and

of combining SMV modules are the same. This is true except for one

problem. SMVmodules work in lock-step. Whenever a module performs

a transition all modules must perform a transition. Theoretically it is

possible to overcome this using processes. However, when attributes of

two processes are related, the progress of each of the processes becomes

locked to one another. Since the desired semantics for interactors is that

they can evolve independently, subject to explicit synchronisations, a

way was needed to model this in SMV. This was done by allowing

stuttering in the SMV modules. That is, modules can perform state

transitions in which no actions actually happen. To this end, a special

action nil is introduced along with axioms stating that this action does

not change the state of the module. This allows a module to engage

in an event, while another module does nothing (or, more precisely, it

performs a stuttering step).

3.3. The tool

A tool to implement the translation just described has been imple-

mented in Perl (see Wall et al., 1996). The Perl script (i2smv) works by

reading a interactor model, and building an intermediate representation

of that model. The intermediate representation is then manipulated by

performing the following steps:

1. eliminate interactor importing;

2. eliminate type parameters from interactors;

3. eliminate parameters from actions;

4. eliminate type names;

5. create the stuttering action;

6. generate SMV code according to the translation in Table I.

The tool acts as a �lter, receiving interactor code at the input and

generating SMV code at the output. A �le can also be provided for the

input. Supposing an interactor model was written into �le model.i,

the command:

indy033:~> i2smv model.i | smv

mcp.tex; 11/07/2000; 11:22; p.20

Model Checking Interactor Speci�cations 21

Figure 7. The Interactors to SMV compiler

will automatically generate and model check the SMV equivalent of the

interactor model.

An Emacs3 mode has been written to provide an integrated envi-

ronment for the development, translation and veri�cation of interactor

speci�cations. Figure 7 shows the tool in use. The top pane holds an

interactor model, the bottom pane shows the result of model checking

the model with SMV. Once a model is written, the menu option i2smv

on the menu bar, provides two alternatives:

� Compile & Verify | This results in what is shown in Figure 7. The

model is compiled and SMV automatically used on the resulting

code. A pane is created to show the result of the veri�cation. This

is the option used during normal operation. It allows i2smv and

smv to be work together in a completely transparent manner: only

the interactor model and the result of the veri�cation need to be

seen.

� Compile | This option will not usually be used during normal

operation of the tool. It is provided to allow access to the generated

SMV code. The model is compiled to SMV code and the generated

3
http://emacs.org (last accessed on the 21st of July, 1999).

mcp.tex; 11/07/2000; 11:22; p.21

22 Campos & Harrison

�le is then opened in Emacs. SMV has its own mode, so Emacs

will change from interactor mode to SMV mode.

4. Modelling the MCP with Interactors

As we have said already, the Palmer (1995) case study deals with a

problem relating to altitude acquisition in a real aircraft (MD-88). This

particular problem was identi�ed during simulation of realistic ight

missions, although Palmer notes that similar problems are frequently

reported to the Aviation Safety Reporting System4.

4.1. Basic principles

When using automated systems, operators build mental models of the

system which lead to expectations about system behaviour. When the

system behaves di�erently from the expectations of the operator we

have what is called an automation surprise (Woods et al., 1994). It is

important to note that this type of problem relates to how the system

and user interact, and not to the behaviour of the system on its own.

In fact, the interesting point about the present example is that the

system behaved as designed (i.e. it did not malfunction) but neverthe-

less an automation surprise happened. This suggests that the system

is misleading operators into forming false beliefs about its behaviour

(i.e. wrong mental models). Because of this need to consider the user,

usability related issues are usually addressed by performing simulations

of real-life interaction situations, using real users.

While the use of simulation allows for the detection of shortcomings

in design, it has some intrinsic problems. In order to perform a simula-

tion an actual system or prototype has to be built, this means that sim-

ulations are costly and can only be done late in the design/development

life cycle, when design decisions have already been committed to, and

change is diÆcult.

The ability to analyse and predict potential problems from the initial

stages of design would reduce the number of problems found later in the

simulation stage. One of the implications of doing this early analysis

is that it has to be done without the bene�t of hindsight (apart from

what has been learnt from previous analysis and systems). We are not

trying to explain why something went wrong, instead we are using the

analysis, during design, to identify potential sources of problems. In this

4
http://olias.arc.nasa.gov/ASRS/ASRS.html (last accessed on the 2nd of

November, 1999).

mcp.tex; 11/07/2000; 11:22; p.22

Model Checking Interactor Speci�cations 23

context, hindsight is not available. So, when developing a methodology

for the integration of veri�cation into design, we must be careful to

avoid relying on it.

In keeping with the above principle, we will not model the system

around the scenario presented by Palmer (1995). Instead we will build

a generic model of the artifact under consideration, and then analyse

those aspects of the behaviour that are highlighted by the case study.

Hence, if we are able to detect the problem we will have shown that it

would be possible to have prevented that same problem from creeping

unnoticed into the design of the aircraft. There are of course problems

with this approach. We have read the Palmer paper and therefore have

been tainted by it. This may inuence the model we develop or the

questions we might ask. We argue that the model and the questions

are not a�ected by the details of the Palmer scenario.

Note that since we are interested in the interaction between the user

and the artifact, our model will focus mainly on what is relevant in

that dialogue. In particular we will not model in great detail the inner

workings of the artifact, only the manifestations that are present at the

interface. This process of abstraction is common in model checking. Of

course a question might be raised as to whether the interface presenta-

tion accurately reects the internal state of the system and whether the

model has been so biased towards the question that other important

characteristics of the system will go undetected. This appears not to

be the case, the model focusses on the key actions and the parameters

that are presented by the interface.

In summary then, what we have done is quite di�erent from building

a model around the Palmer scenario. Here we are using generic use case

type questions as a starting point for the analysis. In the �rst case the

results of the scenario directly inuence the model so that the analysis

is biased by hindsight. In the second case we use the scenario only

to set up a context for veri�cation, the veri�cation process itself is

independent from the results described in the scenario. In fact, in the

case of a system still under development, the scenario might very well

be only an idealised description of how the system should function in

a particular situation.

4.2. Selecting what to analyse

As seen in Figure 1 above, the �rst step is deciding exactly what

features of the systems we wish to analyse. Identifying relevant re-

quirements and properties to ensure correctness can be a nontrivial

task. This is especially true of open systems, such as is the case with

interactive systems, where the correctness of system behaviour can be

mcp.tex; 11/07/2000; 11:22; p.23

24 Campos & Harrison

veri�ed only in the context of assumptions made about the environment

(cf. the assumption-commitment paradigm, de Roever, 1998).

Since these requirements and properties are related to the user,

the process of obtaining them becomes the focus for interdisciplinary

discussion. In practice designers can resort to veri�cation whenever a

decision has to be made, about some particular aspect of the interface

design, which might have a critical impact on the system safety, or

when the consequences of such decision are not fully clear.

In the present case we will be looking at how the automation and

user interact during altitude acquisition. A reasonable expectation for

the pilot to have of the system is that:

Whenever the pilot sets the automation to climb up to a given

altitude, the aircraft will climb until such altitude is acquired and

then maintain it.

We will proceed as if such a request for analysis had been made by the

design team, and follow the process outlined in Figure 1.

The property above relates to the vertical guidance subsystem of

the aircraft mode logic. On the MD-88 the pilot interacts through a

panel called the Mode Control Panel (MCP). The functionality of the

MCP will be described in section 4.4, together with the model that

was built. Information regarding the current ying modes is displayed

on the Flight Mode Annunciator (FMA). We will include the relevant

components of the FMA as attributes (pitchMode and ALT) of the MCP

model (see Figure 10).

4.3. Modelling the context as a finite system

In order to analyse a system we need to place it in its context of

operation. The MCP will not be unsafe in itself, it only makes sense

to talk of shortcomings in its design in relation to the actual system

that the MCP is inuencing. In this case we need to model the aircraft

state in order to relate it to the automation state.

The aircraft is a continuous system, but our speci�cations are dis-

crete. This means we will need to substitute state variables that range

over continuous state spaces, by corresponding (abstracted) state vari-

ables that range over discrete domains (cf. Heitmeyer et al., 1998). In

the present context we are specially interested in the altitude. Hence,

state changes will correspond to changes in the altitude by some amount

(say 1 in some unit of measure). In order to model the state transitions

action y is introduced. The model for the aircraft is shown in Figure

8. Besides asserting the change of altitude in each transition, the axiom

for y relates climb rate to the altitude change.

mcp.tex; 11/07/2000; 11:22; p.24

Model Checking Interactor Speci�cations 25

interactor aircraft

attributes

altitude: Altitude

airSpeed: Velocity

climbRate: ClimbRate

actions

y

axioms

(1) [y] (altitude0 >=altitude - 1 ^ altitude0 <=altitude + 1) ^
(altitude0 <altitude ! climbRate0 <0) ^

(altitude0=altitude ! climbRate0=0) ^

(altitude0 >altitude ! climbRate0 >0)

Figure 8. The aircraft

We must be careful that the abstraction process above does not

a�ect the behaviour of the system regarding the properties we will be

checking. In this case we must ensure that the steps in altitude are small

enough, when compared with the remaining behaviour of the system

to provide a realistic basis for analysis in context. This will be further

addressed in Section 5.1, when the domain of the types is discussed.

4.4. Modelling the MCP

When modelling the MCP (see Figure 95), we can take into account

the speci�c analysis we will be wanting to perform in order to build a

simpler model. In this case we want to validate the pilot's assumption

that setting both the altitude and an adequate pitch mode will cause the

aircraft to climb to that altitude. This amounts to verifying the safety

Climb Rate Velocity Altitude Pitch Modes

00

ILS

ALT

 OFF

FD

 SPD MACH

0
HOLD

0
FD

 OFF

SEL
SPD

NAV0 0 0 00 0

MCP

1 2 OFF

AUTO
 AP ON

LIM
EPR

SEL
MACH ALT

 THROT

H

 ALT IAS

 V.NAV

-

 HDG

ARM ROLL PITCH THRUSTFMA

VERT
0 00 0

MACH

-

LAND
AUTO

LOC
VDR

V

IAS

SPD

Figure 9. The MCP

5 Figure adapted from (Honeywell Inc., 1988).

mcp.tex; 11/07/2000; 11:22; p.25

26 Campos & Harrison

of operation of the pitch modes. The components that were deemed

relevant are shown in Figure 9 in a lighter background. The model will

include setting velocity, climb rate, and altitude, and selecting the ap-

propriate pitch mode (see below). We are then making the assumption

that the other components of the MCP (for example, lateral navigation,

and thrust) will not a�ect the safety of operation of the pitch modes.

This assumption could then be discharged by a separate proof process.

In this way, we are able to not only assess speci�c design decisions

regarding particular aspects of the design, but also verify the safety of

the overall design in a compositional manner.

The model was built using interactors. From Figure 9 we see we

must consider three main dials:

� airspeed (velocity);

� vertical speed (climb rate);

� the altitude window (i.e. altitude to which the aircraft should

climb)

While airspeed, and altitude can only be positive values, the vertical

speed can either be positive (going up) or negative (going down). Hence,

we use the parameterised interactor introduced in Section 2.2 (see Fig-

ure 3) to represent the di�erent dials. At this level of abstraction, dials

are represented by an attribute (needle) and an action (set). The action

corresponds to setting a value (Axiom 1). The attribute represents the

value that has been set.

How the MCP inuences the automation will depend on its operat-

ing pitch mode. The pitch mode de�nes how the aircraft behaves during

aircraft ascent/descent. There are four pitch modes:

� VERT SPD (vertical speed pitch mode): instructs the aircraft to

maintain the climb rate indicated in the MCP (the airspeed will

be adjusted automatically);

� IAS (indicated airspeed pitch mode): instructs the aircraft to main-

tain the airspeed indicated in the MCP (the climb rate will be

adjusted automatically);

� ALT HLD (altitude hold pitch mode): instructs the aircraft to main-

tain the current altitude;

� ALT CAP (altitude capture pitch mode): internal mode used by the

aircraft to perform a smooth transition from VERT SPD or IAS to

ALT HLD (see ALT below).

mcp.tex; 11/07/2000; 11:22; p.26

Model Checking Interactor Speci�cations 27

interactor MCP

includes

aircraft via plane

dial(ClimbRate) via crDial

dial(Velocity) via asDial

dial(Altitude) via ALTDial

attributes

vis pitchMode: PitchModes

vis ALT: boolean

actions

vis enterVS, enterIAS, enterAH, toggleALT

enterAC

axioms

Action e�ects

(1) [crDial.set(t)] pitchMode0=VERT SPD ^ ALT0=ALT

(2) [asDial.set(t)] pitchMode0=IAS ^ ALT0=ALT

(3) [ALTDial.set(t)] pitchMode0=pitchMode ^ ALT0

(4) [enterVS] pitchMode0=VERT SPD ^ ALT0=ALT

(5) [enterIAS] pitchMode0=IAS ^ ALT0=ALT

(6) [enterAH] pitchMode0=ALT HLD ^ ALT0=ALT

(7) [toggleALT] pitchMode0=pitchMode ^ ALT0
6=ALT

(8) [enterAC] pitchMode0=ALT CAP ^ :ALT0

Permissions

(9) per(enterAC) ! (ALT ^ jALTDial.needle - plane.altitudej�2)

Obligations

(10) (ALT ^ jALTDial.needle - plane.altitudej�2) ! obl(enterAC)

(11) (pitchMode=ALT CAP ^ plane.altitude=ALTDial.needle) !
obl(enterAH)

Invariants

(12) pitchMode=VERT SPD ! plane.climbRate=crDial.needle

(13) pitchMode=IAS ! plane.airSpeed=asDial.needle

(14) pitchMode=ALT HLD ! plane.climbRate=0

(15) pitchMode=ALT CAP ! plane.climbRate=1

Figure 10. The MCP model

We therefore de�ne the type:

PitchModes = fVERT SPD, IAS, ALT HLD, ALT CAPg

Additionally, there is a capture switch (ALT) which, when armed, causes

the aircraft to stop climbing when the altitude indicated in the MCP

is reached.

The MCP operation is described by the interactor in Figure 10. Note

mcp.tex; 11/07/2000; 11:22; p.27

28 Campos & Harrison

that setting the climb rate or airspeed causes the pitch mode to change

accordingly (Axioms 1 and 2), and that setting the altitude dial arms

the altitude capture (Axioms 3). These axioms specify mode changes

that are implicitly carried out by the automation as a consequence

of user activity. Axioms 4 to 8 are introduced to de�ne the e�ect of

the interactor's own actions, basically changing between di�erent pitch

modes and toggling the altitude capture. Note that action enterAC (set-

ting the pitch mode to ALT CAP) is an internal system event. Axioms 9

and 10 specify the mode logic that regulates when the event happens:

the altitude capture must be armed, and the plane must be inside

some neighbourhood of the target altitude. Regarding our abstract

speci�cation, the restriction on the value of this distance is that it

should not be too small, in order to allow for the system to evolve

while inside the neighbourhood of the target altitude. We have chosen

the value 2. Similarly, Axiom 11 speci�es that the system must set the

pitch mode automatically to ALT HLD once the desired altitude has

been reached. And �nally, Axioms 12 to 15 describe the e�ect of the

pitch modes on the state of the aircraft.

Having built a model we now want to analyse it. Since the property

under analysis relates to the temporal behaviour of the model, model

checking is the natural choice of the technique to be used (Campos and

Harrison, 1998). Before we can do it two further steps are necessary.

First, we need to obtain a checkable version of the model. Second, we

must de�ne how the properties we are interested in can be expressed

in CTL. The next section deals with these issues.

5. Checking the Design

Having developed a model for the MCP we will now analyse it using

SMV, with the help of the tool described in Section 3. This section

deals with the steps required to perform the analysis.

5.1. Converting the Model

In order to check the speci�cation in SMV some adjustments have

to be made. The most relevant is the need to only have enumerated

types in the speci�cation. Regarding altitude and velocity this does

not represent a problem. In fact, the aircraft will have its own physical

limitations on maximum speed and altitude. We must only make sure

that the selected maximum value (hence, the maximum altitude) is

higher than the tolerance distance in Axiom 9 of interactor MCP. We

choose to represent both as the range 0 to 5. Regarding climb rate, we

mcp.tex; 11/07/2000; 11:22; p.28

Model Checking Interactor Speci�cations 29

have to distinguish between three situations: climbing, holding altitude

or descending. Hence, we will consider three values: -1 (to represent all

negative climb rates), 0, and 1 (to represent all positive climb rates).

This abstraction process is similar to the Application State abstrac-

tion in (Dwyer et al., 1997). Hence, because the properties we will

check are all universally quanti�ed, we will not have the problem of

false positives.

We add the following types to the speci�cation:

Altitude = f0, 1, 2, 3, 4, 5g

Velocity = f0, 1, 2, 3, 4, 5g

ClimbRate = f-1, 0, 1g

As a consequence of this, we have to change the behaviour of the inter-

actor plane to take into account the maximum and minimum altitudes

(see Appendix A).

Since the use case we are considering deals with altitude acquisition

we have chosen not to include negative (below the sea-level) altitudes

in the model: the minimum value for altitude is zero. Considering neg-

ative altitudes would be trivial: only the de�nition of Altitude, and the

minimum altitude in interactor plane would need to be adapted to the

new minimum value. If this was done, the kill the capture problem

would still be detected.

Besides the changes above, the name of interactor MCP must be

changed to main. Additionally we add a fairness condition: in this

case that the system should not be continuously idle. The checkable

version of the speci�cation is presented in Appendix A. This version is

automatically convertible to SMV using the compiler.

We are now able to translate our model to SMV. We now have to

express, as CTL formulae, the properties which we want to analyse

using the model checker. These formulae can then be included in the

model using test clauses.

5.2. Formulating and checking properties

CTL formulae can be automatically checked by SMV. We need, then,

to express relevant user properties as CTL formulae.

As seen in Section 4.2, the design of the interface has been based on

the plausible assumption that pilots expect that, if the altitude capture

(ALT) is armed, the aircraft will stop at the desired altitude (selected

in ALTDial). We can express this as the CTL formula:

AG((plane.altitude < ALTDial.needle & ALT) ->

AF(pitchMode=ALT_HLD & plane.altitude=ALTDial.needle))

mcp.tex; 11/07/2000; 11:22; p.29

30 Campos & Harrison

which reads: it always (AG) happens that, if the plane is below the

altitude set on the MCP and the altitude capture is on, then it is

inevitable (AF) that the altitude be reached and the pitch mode be

changed to altitude hold.

Note that no knowledge of the SMV input language is needed to

write the property, only knowledge of CTL. The properties are written

at the interactor model level, and the translation and veri�cation steps

can be seen as a single \black-box" step. In order to refer to actions

in CTL the occurrence operator can be used. Hence, it is possible to

check whether an action will be possible or not, although CTL has no

direct notion of action.

When we model check a speci�cation, the checker answers whether

or not the test succeeds. If the answer is false, and a counter example

can be found, it gives the �rst counter example it �nds. When we check

the model against the formula above, we get the following result6:

-- specification AG (plane.altitude < ALTDial... is false

-- as demonstrated by the following execution sequence

state 1.1:

...

state 1.2:

...

state 1.3:

...

-- loop starts here --

state 1.4:

plane.climbRate = 1

plane.altitude = 1

ALTDial.action = set_4

crDial.action = set_1

crDial.needle = 1

state 1.5:

plane.climbRate = -1

plane.altitude = 0

crDial.action = set_-1

crDial.needle = -1

6 Note that from state to state only those values that have changed are shown.

Also, for brevity we only show enough of the counter example to make the point.

mcp.tex; 11/07/2000; 11:22; p.30

Model Checking Interactor Speci�cations 31

state 1.6:

plane.climbRate = 1

plane.altitude = 1

crDial.action = set_1

crDial.needle = 1

resources used:

user time: 198.7 s, system time: 2.91 s

BDD nodes allocated: 625225

Bytes allocated: 11075584

BDD nodes representing transition relation: 1787 + 301

What the model checker points out is that the pilot might continuously

change the climb rate so as to keep the aircraft ying below the altitude

set on the MCP (look at crDial.action). Although this might seem

an obvious (if arti�cial) situation, it does raise the issue of how the

automation reacts to changes in the climb rate when an altitude capture

is armed, in particular changes that cause the aircraft to deviate from

the target altitude.

Since the model does not describe that aspect in detail, we would

have to refer back to the designers in order to raise the point. If needs

be, the model could then be re�ned to include this particular aspect

of the automation behaviour in greater detail. These are valuable out-

comes of the veri�cation process and show that the process is not self

contained, but prompts questions that have to be dealt with at other

stages of design.

With this information, we can continue to explore the model. As a

result of the previous scenario, our expectations of pilot's beliefs must

be re�ned to include the fact that changing the climb rate can prevent

the aircraft from reaching the desired altitude. The test formula now

becomes:

AG((plane.altitude < ALTDial.needle & ALT) ->

AF((pitchMode=ALT_HLD & plane.altitude=ALTDial.needle)

| plane.climbRate = -1))

It reads: in the conditions stated, the plane will stop at the desired

altitude, unless action is taken to start descending. Again, this is a

reasonable expectation to have. Note how the tool has prompted us to

include the circumstance of the plane starting to descend.

Despite being a reasonable expectation, when we try the previous

property in the new system, the answer is still no. This time, the model

checker points out that changing the pitch mode to VERT SPD (for in-

stance by setting the corresponding dial) when in ALT CAP, e�ectively

mcp.tex; 11/07/2000; 11:22; p.31

32 Campos & Harrison

kills the altitude capture (i.e. the request to stop climbing at the target

altitude). In e�ect, when the pitch mode changes to ALT CAP, the
altitude capture is automatically switched o�. However, the aircraft is

still climbing. This means that any subsequent action from the pilot

that causes the pitch mode to change, will cause the aircraft to keep

climbing past the target altitude.

If we refer back to (Palmer, 1995) we see that this is a similar

problem to that detected during simulation. Basically, once the aircraft

changes into ALT CAP mode, there are user actions that might lead to

a \kill the capture" mode error and a consequent altitude bust. We

claim that we could have achieved this result without knowledge of

the simulation results. In particular, we gave SMV no speci�c chain of

events to analyse, rather the analysis revolved around a simple generic

use case concerned with altitude capture. It was the tool that pointed

out to us a particular sequence of events that could lead to a hazardous

situation. We could have applied this automated veri�cation process

based only on a pen and paper scenario of an aircraft that was yet

in its early design stages (in fact, that is the aim of the process) and

e�ectively detected the problem.

As stated previously, �nding a problem is just a trigger for further

analysis and discussion. Dialogue must be undertaken with the design-

ers and human-factors experts in order to clarify the full consequences

of the problem, and how it can be solved. How aware will the pilot be

of the mode change to ALT CAP performed by the automation? Is this

issue adequately covered in the manuals, and during training? Should

the system be redesigned and how? What engineering constraints come

into play regarding the design? Being able to raise these issues a-

gainst a formal proof background in early design stages, and not only

when the design reaches the level of prototyping and user testing, will

undoubtedly allow for a better/safer design from the start.

6. Related Work

In recent years, the use of automated reasoning tools for software

veri�cation has attracted considerable interest. In this paper we have

considered model checking interactive systems' speci�cations for the

veri�cation of interactive systems designs. Our work can be compared

to current literature in a number of ways.

mcp.tex; 11/07/2000; 11:22; p.32

Model Checking Interactor Speci�cations 33

6.1. The Case study

The speci�c case study that we have used is also analysed in (Leveson

and Palmer, 1997) and (Rushby, 1999). Leveson and Palmer (1997)

write a formal speci�cation, based on a control loop model of process-

control systems, using AND/OR tables. This speci�cation is then anal-

ysed manually in order to look for potential errors caused by indirect

mode changes (i.e. changes that occur without direct user intervention).

An advantage of using a manual analysis process is greater freedom in

the speci�cation language, which can lead to more readable speci�ca-

tions. However, we feel that the possibility of performing the analysis

in an automated manner will be an advantage when analysing complex

systems and will potentially remove some elements of analyser bias.

We address the issue of readability by using a high level speci�cation

language (interactors) which is then translated into SMV.

Rushby (1999) reports on the use of Mur� to automate the detection

of potential automation surprises, using (Palmer, 1995) as an example.

He builds a �nite state machine speci�cation that describes both the

behaviour of the automation, and of a proposed mental model of its

operator. He then expresses the relation between the two as an invariant

on the states of the speci�cation. Mur� is used to explore the state

space of the speci�cation and look for states that fail to comply with

the invariant (i.e. mismatches between both behaviours).

Unlike us, however, Rushby (1999) builds his speci�cation around

the speci�c sequence of events that is identi�ed in (Palmer, 1995) as

the cause for the altitude bust. We believe that our approach is more

exible. In fact, our aim is to develop a general purpose methodology

for the automated analysis of interactive systems. While we used the

mode problem as a case study, the methodology can also be applied to

the analysis of other issues. For example, task related properties, lock-

in and interlock issues, or awareness | in (Campos and Harrison, 1999)

we give an example involving the analysis of awareness in a computer

mediated communications system.

6.2. SMV and requirements verification

Although the use of model checking as a veri�cation tool has met with

more acceptance in the areas of hardware and communication protocols

design, its use in more general settings (as is the case in this paper)

is also being addressed. In (Atlee and Gannon, 1993) the use of the

MCB model checker for the veri�cation of safety properties of software

requirements is reported. More recently (see Sreemani and Atlee, 1996)

the use of SMV has also been addressed. In both cases the model

mcp.tex; 11/07/2000; 11:22; p.33

34 Campos & Harrison

checker is used to analyse properties of model transition tables of SCR

(Software Cost Reduction) speci�cations.

The work above relates to properties of single mode transition ta-

bles with boolean variables only. This has been expanded upon by

Heitmeyer's group to consider properties of complete SCR speci�ca-

tions (Heitmeyer et al., 1998; Bharadwaj and Heitmeyer, 1999). In

order to reduce the complexity of the state machines being analysed,

(Bharadwaj and Heitmeyer, 1999) proposes two abstraction methods

that allow the elimination of unnecessary variables. We note that these

abstractions are applied to the whole speci�cation. This di�ers from

our approach where abstractions and information about the properties

to be checked are used to build a partial models of the system. We

believe our approach to be more appropriate for early stages of design,

since it does not impose the need for a full model of the system. In any

case, abstractions such as those proposed can be used in the context of

our approach.

Also in the context of the veri�cation of requirements speci�cations,

SMV is also used by (Chan et al., 1998) to analyse RSML (Require-

ments State Machine Language) speci�cations. In this case, however,

the translation to SMV is not necessarily semantics-preserving, which

might lead to SMV models whose semantics di�ers from the original

RSML speci�cations.

All of the work above concentrates on veri�cation of the require-

ments speci�cation. This di�ers from our work in that we are mainly

interested in verifying the interaction between the user and the system,

not the system by itself. While it is obvious that the systemmust behave

correctly, this is clearly not enough. It is also necessary that system and

user interact correctly. Hence, our work can be seen as complementary

to the work in requirements veri�cation.

While SCR and RSML have been used with success for the speci-

�cation of safety critical systems, we think that the use of MAL as a

speci�cation language provides greater expressive power. The deontic

operators for permission and obligation allow the speci�cation of more

complex behaviour patterns, yet maintain a good degree of readability

and ease of use. In fact, experience has shown that behaviour of MAL

based interactor models will be mostly based on the notion of event,

with permission axioms stating the conditions for the events to be valid,

and modal axioms stating the e�ect of the event on the state. This is

basically the traditional style of specifying a system using pre- and

post-conditions for the possible events.

Additionally, we are able to translate the MAL based models into

SMV in a fully automated manner. As far as we can tell, in all the

approaches above some degree of manual intervention continues to be

mcp.tex; 11/07/2000; 11:22; p.34

Model Checking Interactor Speci�cations 35

needed. The possibility of automated translation is crucial, since human

intervention has the potential to introduce translation errors, which can

be hard to detect.

Chan et al. (1998) discus the need for an iterative approach to devel-

opment, where model checking is used as a design tool. This is similar

to our view of the role of veri�cation in interactive systems design.

In (Campos and Harrison, 1998) we have argued for the use of both

model checking and theorem proving during design to help guide the

design process. Additionally, the need for ways to identify meaningful

properties to check is also mentioned in (Chan et al., 1998). We believe

that considering the user during veri�cation is one such approach to

generating properties..

6.3. Interactive Systems verification

In recent years a number of authors have started studying the appli-

cation of automated reasoning tools to the development of interactive

systems. Patern�o has proposed the use of the Lite tool set (Ma~nas

et al., 1992) in the analysis of interactive systems speci�cations (see,

for example, Patern�o, 1995, Patern�o and Mezzanotte, 1995). He uses

a avour of Interactors written in LOTOS (Bolognesi and Brinksma,

1987) to make a hierarchical speci�cation of the user interface, based

on the task analysis output. The translation process from a LOTOS

speci�cation to a �nite state machine implies that information will be

lost. The loss of conditional guards, in particular, will cause the check-

able version of the speci�cation to admit more traces of behaviour than

the original LOTOS version. Approaches have been proposed to solve

this problem, but they imply either restrictions on how systems can be

modelled (Patern�o, 1995) or a manual translation of the speci�cation

(Palanque et al., 1996).

The properties to verify are written in ACTL (Nicola et al., 1993),

this means that the approach is heavily based on the notion of event.

We believe that in this case the state based approach of CTL is a

better choice. While it is simple to encode actions as state attributes,

encoding state information as actions is a complicated task (and one

that is not easily amenable to automation). Additionally, since the spec-

i�cations are basically architectural descriptions of the user interface,

as resulting from the task analysis, it is not possible to reason about

the relation between interface and system behaviour. Our iterative view

of the veri�cation process allows simpler models and properties which

are more directly connected to user considerations, encoding not only

information about the system, but also about the user. In particu-

lar, a task based approach could be used to generate properties for

mcp.tex; 11/07/2000; 11:22; p.35

36 Campos & Harrison

veri�cation but there is danger in such an approach that we can be

over prescriptive about what the operator does. Humans do not follow

procedures instruction by instruction in general.

Bumbulis et al. (1996) reports on the use of HOL (a theorem prover)

for interactive systems veri�cation. The approach deals with properties

of the interface at the device level. This type of approach is rather

restrictive in the properties that can be veri�ed. In our proposal, the

analysis starts much sooner and can be performed as the development

progresses. In (Doherty et al., 2000) we show how theorem proving

can be used to perform a more powerful analysis of the actual interface

being built. This is accomplished by analysing the relationship between

user interface devices, underlying system state, and the perception the

users might have of the system.

7. Discussion and Conclusions

In this paper we have looked at the automated veri�cation of early

speci�cations of interactive systems. Interactive systems are complex

systems which pose diÆcult challenges to veri�cation. By bringing the

veri�cation process closer to the design process we aim at better captur-

ing the multiple concerns that come into play in the design of interactive

systems, and at making better use of the available techniques.

We have shown how interactor speci�cations can be translated into

SMV and described a tool to automate this translation. We have also

shown how we can use such interactor speci�cations in conjunction with

the tool to model and analyse a realistic case of mode confusion. Having

decided to analyse the MCP panel, we built a model of the artifact.

We then used CTL formulae to express user expectations about the

operation of the artifact. During veri�cation of such formulae, issues

were raised about the behaviour of the system, and scenarios were

found where the system did not behave as expected. The analysis of

these results acted as a focus for further interdisciplinary discussion

regarding the meaning of the results and how they should inuence the

design. A revised version of the proposed veri�cation process taking

into account these discussions is presented in Figure 11.

One problem in relation to model checking is to �nd a model that

is both suÆciently expressive and consisting of a small enough number

of states. One aim of the paper has been to show how reasoning about

interesting features of a complex system can be done without resorting

to a complete speci�cation of the system.

The use of interactors and SMV gives us a degree of freedom and

expressive power, but that does not come without a cost. In particular,

mcp.tex; 11/07/2000; 11:22; p.36

Model Checking Interactor Speci�cations 37

System

Design

Model

Build

Principles
Psychologists

Psychologists

Requirements

Analysis

Properties

Verify

Results

Analyse

Select

Figure 11. The veri�cation process revisited

the use of CTL, while allowing for the expression of possibility, means

that fairness concerns become an issue. As an example, in the case

study above we can have a situation where the pilot sets the climb

rate of the aircraft to zero, e�ectively preventing it from reaching the

altitude set in the capture. Situations of this kind can be solved either

by imposing stronger fairness constraints on the system, by altering

the property being checked, or by reworking the speci�cation with the

particular context of analysis in mind.

Another potential problem with model checking is the size of the

counter examples generated by the tool. So far experience has shown

the counter examples to be small (tens of states). We believe this is

due to the use of partial models of the systems.

An issue that is raised by the use of partial models is whether we are

using the appropriate scenarios and abstractions. However, this is not

an exclusive problem of this approach. Rather, it is a characteristic of

veri�cation in general. Even if we could build a complete speci�cation

encompassing all relevant aspects of a system, and we had a powerful

enough tool to analyse every aspect of it that we might wish, it would

still be the case that it would be up to us to decide what questions

to ask of that speci�cation. And we would still have the problem of

determining if we have asked all the right questions. Formal veri�cation

mcp.tex; 11/07/2000; 11:22; p.37

38 Campos & Harrison

does not give us an absolute guarantee of correctness (Clarke andWing,

1996; Henzinger, 1996), it is up to designers and human-factors experts

to identify what are the critical issues in the design of an interactive

system. What formal veri�cation techniques o�er is a way to rigorously

reason about such issues, and to prove formally whether the criteria are

met or not early in the design cycle.

Another question that could be raised is how to guarantee that

di�erent models of the same system are consistent between each other.

In (Campos and Harrison, 1999) we show how this can be achieved by

consistent overlapping of the di�erent models, and even how discrep-

ancies between di�erent models can be used to detect problems in the

design.

Finally we have hinted at how the veri�cation process can be useful

by raising questions that have to be addressed in a broader context

than the veri�cation itself. This is in line with our aim of developing a

comprehensive methodology for the development of interactive systems.

Acknowledgements

The authors thank Bob Fields and Karsten Loer for their useful com-

ments on earlier versions of this paper.

References

Abowd, G. D., H.-M. Wang, and A. F. Monk: 1995, `A formal technique for automat-

ed dialogue development'. In: Proceedings of the First Symposium of Designing

Interactive Systems - DIS'95. ACM Press, pp. 219{226.

Atlee, J. M. and J. Gannon: 1993, `State-Based Model Checking of Event-Driven

Systems Requirements'. IEEE Transactions on Software Engineering 19(1).

Bharadwaj, R. and C. L. Heitmeyer: 1999, `Model Checking Complete Requirements

Speci�cations Using Abstractions'. Automated Software Engineering 6(1), 37{68.

Bodart, F. and J. Vanderdonckt (eds.): 1996, `Design, Speci�cation and Veri�cation

of Interactive Systems '96', Springer Computer Science. Springer-Verlag/Wien.

Bolognesi, T. and E. Brinksma: 1987, `Introduction to the ISO Speci�cation

Language LOTOS'. Computer Networks and ISDN Systems 14(1), 25{59.

Bumbulis, P., P. S. C. Alencar, D. D. Cowan, and C. J. P. Lucena: 1996, `Validat-

ing Properties of Component-based Graphical User Interfaces'. in (Bodart and

Vanderdonckt, 1996), pp. 347{365.

Burch, J. R., E. M. Clarke, and K. L. McMillan: 1990, `Symbolic model checking:

1020 States and Beyond'. In: Proceedings of the Fifth Annual IEEE Symposium

on Logic In Computer Science. IEEE Computer Society Press, pp. 428{439.

Campos, J. C.: 1999, `Automated Deduction and Usability Reasoning'. DPhil thesis,

Department of Computer Science, University of York.

mcp.tex; 11/07/2000; 11:22; p.38

Model Checking Interactor Speci�cations 39

Campos, J. C. and M. D. Harrison: 1997, `Formally Verifying Interactive Systems:

A Review'. in (Harrison and Torres, 1997), pp. 109{124.

Campos, J. C. and M. D. Harrison: 1998, `The role of veri�cation in interactive

systems design'. In: P. Markopoulos and P. Johnson (eds.): Design, Speci�ca-

tion and Veri�cation of Interactive Systems '98, Springer Computer Science.

Springer-Verlag/Wien, pp. 155{170.

Campos, J. C. and M. D. Harrison: 1999, `Using automated reasoning in the design

of an audio-visual communication system'. In: D. J. Duke and A. Puerta (ed-

s.): Design, Speci�cation and Veri�cation of Interactive Systems '99, Springer

Computer Science. Springer-Verlag/Wien, pp. 167{188.

Chan, W., R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J. D.

Reese: 1998, `Model Checking Large Software Speci�cations'. IEEE Transactions

on Software Engineering 24(7), 498{520.

Clarke, E. and J. M. Wing: 1996, `Tools and partial analysis'. ACM Computing

Surveys 28(4es), 116{es.

Clarke, E. M., E. A. Emerson, and A. P. Sistla: 1986, `Automatic Veri�cation of

Finite-State Concurrent Systems Using Temporal Logic Speci�cations'. ACM

Transactions on Programming Languages and Systems 8(2), 244{263.

Clarke, E. M., O. Grumberg, and D. Peled: 1999, Model Checking. MIT Press.

de Roever, W.-P.: 1998, `The Need for Compositional Proof Systems: A Survey'. in

(de Roever et al., 1998), pp. 1{22.

de Roever, W.-P., H. Langmaack, and A. Pnueli (eds.): 1998, `Compositionality: The

Signi�cant Di�erence', Vol. 1536 of Lecture Notes in Computer Science. Springer.

Doherty, G., J. C. Campos, and M. D. Harrison: 2000, `Representational Reasoning

and Veri�cation'. Formal Aspects of Computing (in press).

Duke, D., P. Barnard, J. May, and D. Duce: 1995, `Systematic Development of the

Human Interface'. In: Asia Paci�c Software Engineering Conference. IEEE

Computer Society Press, pp. 313{321.

Duke, D. J. and M. D. Harrison: 1993, `Abstract Interaction Objects'. Computer

Graphics Forum 12(3), 25{36.

Dwyer, M. B., V. Carr, and L. Hines: 1997, `Model Checking Graphical User In-

terfaces Using Abstractions'. In: M. Jazayeri and H. Schauer (eds.): Software

Engineering | ESEC/FSE '97, No. 1301 in Lecture Notes in Computer Science.

Springer, pp. 244{261.

Faconti, G. and F. Patern�o: 1990, `An Approach to the Formal Speci�cation of the

Components of an Interaction'. In: C. Vandoni and D. Duce (eds.): Eurographics

'90. North-Holland, pp. 481{494.

Fiadeiro, J. and T. Maibaum: 1991, `Temporal Reasoning over Deontic Speci�ca-

tions'. Journal of Logic and Computation 1(3), 357{395.

Fields, B., N. Merriam, and A. Dearden: 1997, `DMVIS: Design, Modelling and

Validation of Interactive Systems'. in (Harrison and Torres, 1997), pp. 29{44.

Harrison, M., R. Fields, and P. C. Wright: 1996, `The User Context and Formal

Speci�cation in Interactive System Design (invited paper)'. In: C. R. Roast and

J. I. Siddiqi (eds.): Formal Aspects of the Human Computer Interface, electronic

Workshops in Computing. Springer-Verlag London.

Harrison, M. D. and J. C. Torres (eds.): 1997, `Design, Speci�cation and Veri�cation

of Interactive Systems '97', Springer Computer Science. Eurographics, Springer-

Verlag/Wien.

Heitmeyer, C., J. Kirby, and B. Labaw: 1998, `Applying the SRC Requirements

Method to a Weapons Control Panel: An Experience Report'. In: Proceedings of

mcp.tex; 11/07/2000; 11:22; p.39

40 Campos & Harrison

the Second Workshop on Formal Methods in Software Practice (FMSP '98). pp.

92{102.

Henzinger, T. A.: 1996, `Some myths about formal veri�cation'. ACM Computing

Surveys 28(4es), 119{es.

Honeywell Inc.: 1988, `SAS MD-80: Flight Management System Guide'. Honeywell

Inc., Sperry Commercial Flight Systems Group, Air Transport Systems Division,

P.O. Box 21111, Phoenix, Arizona 85036, USA. Pub. No. C28-3642-22-01.

Leveson, N. G. and E. Palmer: 1997, `Designing Automation to Reduce Operator

Errors'. In: Proceedings of the IEEE Systems, Man, and Cybernetics Conference.

Ma~nas, J. A. et al.: 1992, `Lite User Manual'. LOTOSPHERE consortium. Ref.

Lo/WP2/N0034/V08.

McMillan, K. L.: 1993, Symbolic Model Checking. Kluwer Academic Publishers.

Monk, A. F. and M. B. Curry: 1994, `Discount dialogue modelling with Action

Simulator'. In: G. Cockton, S. W. Draper, and G. R. S. Weir (eds.): People and

Computer IX - Proceedings of HCI'94. Cambridge University Press, pp. 327{338.

Newman, W. M. and M. G. Lamming: 1995, Interactive System Design. Addison-

Wesley.

Nicola, R. D., A. Fantechi, S. Gnesi, and G. Ristori: 1993, `An action-based frame-

work for verifying logical and behavioural properties of concurrent systems'.

Computer Networks and ISDN Systems 25(7), 761{778.

Palanque, P., F. Patern�o, R. Bastide, and M. Mezzanote: 1996, `Towards an inte-

grated proposal for Interactive Systems design based on TLIM and ICO'. in

(Bodart and Vanderdonckt, 1996), pp. 162{187.

Palmer, E.: 1995, `"Oops, it didn't arm." - A Case Study of Two Automation

Surprises'. In: R. S. Jensen and L. A. Rakovan (eds.): Proceedings of the Eighth

International Symposium on Aviation Psychology. Columbus, Ohio, pp. 227{232.

Patern�o, F. and M. Mezzanotte: 1995, `Formal Analysis of User and System In-

teractions in the CERD Case Study'. Technical Report SM/WP48, Amodeus

Project.

Patern�o, F. D.: 1995, `A Method for Formal Speci�cation and Veri�cation of Inter-

active Systems'. Ph.D. thesis, Department of Computer Science, University of

York.

Rushby, J.: 1999, `Using Model Checking to Help Discover Mode Confusions and

Other Automation Surprises'. In: (Pre-) Proceedings of the Workshop on Human

Error, Safety, and System Development (HESSD) 1999. Li�ege, Belgium.

Ryan, M., J. Fiadeiro, and T. Maibaum: 1991, `Sharing Actions and Attributes in

Modal Action Logic'. In: T. Ito and A. R. Meyer (eds.): Theoretical Aspects of

Computer Software, Vol. 526 of Lecture Notes in Computer Science. Springer-

Verlag, pp. 569{593.

Sreemani, T. and J. M. Atlee: 1996, `Feasibility of Model Checking Software Re-

quirements: A Case Study'. In: Proceedings of the 11th Annual Conference on

Computer Assurance (COMPASS '96). pp. 77{88.

Wall, L., T. Christiansen, and R. L. Schwartz: 1996, Programming Perl. O'Reilly &

Associates, Inc., 2nd edition.

Woods, D. D., L. J. Johannesen, R. I. Cook, and N. B. Sarter: 1994, `Behind Human

Error: Cognitive Systems, Computers, and Hindsight'. State-of-the-Art Report

SOAR 94-01, CSERIAC.

mcp.tex; 11/07/2000; 11:22; p.40

Model Checking Interactor Speci�cations 41

Appendix

A. Checkable Speci�cation

This is the translatable version of the interactor speci�cation for the

MCP. Besides the usual substitution of >= for �, etc., action is used

instead of >action. The compiler is line oriented, hence, each expression

must be fully contained in a single line. However, line breaks can be

escaped with the backslash character, thus allowing, for example, multi-

line axioms.

MCP example

types

PitchModes = {VERT_SPD, IAS, ALT_HLD, ALT_CAP}

Altitude = {0, 1, 2, 3, 4, 5}

Velocity = {0, 1, 2, 3, 4, 5}

ClimbRate = {-1, 0, 1}

interactor aircraft

attributes

altitude: Altitude

airSpeed: Velocity

climbRate: ClimbRate

actions

fly

axioms

(altitude>0 & altitude<5) -> [fly] \

((altitude'>=altitude - 1 & \

altitude'<=altitude + 1) & \

(altitude'<altitude -> climbRate'<0) & \

(altitude'=altitude -> climbRate'=0) & \

(altitude'>altitude -> climbRate'>0))

altitude=0 -> [fly] \

((altitude'>=altitude & altitude'<=altitude + 1) & \

(altitude'=altitude -> climbRate'=0) & \

(altitude'>altitude -> climbRate'>0))

altitude=5 -> [fly] \

((altitude'>=altitude - 1 & altitude'<=altitude) & \

(altitude'<altitude -> climbRate'<0) & \

(altitude'=altitude -> climbRate'>=0))

fairness

!action=nil

mcp.tex; 11/07/2000; 11:22; p.41

42 Campos & Harrison

interactor dial(T)

attributes

needle: T

actions

set(T)

axioms

[set(v)] needle'=v

interactor main

includes

aircraft via plane

dial(ClimbRate) via crDial

dial(Velocity) via asDial

dial(Altitude) via ALTDial

pitchMode: PitchModes

ALT: boolean

actions

enterVS enterIAS enterAH enterAC toggleALT

axioms

[asDial.set(t)] pitchMode'=IAS & ALT'=ALT

[crDial.set(t)] pitchMode'=VERT_SPD & ALT'=ALT

[ALTDial.set(t)] pitchMode'=pitchMode & ALT'

[enterVS] pitchMode'=VERT_SPD & ALT'=ALT

[enterIAS] pitchMode'=IAS & ALT'=ALT

[enterAH] pitchMode'=ALT_HLD & ALT'=ALT

[toggleALT] pitchMode'=pitchMode & ALT'=!ALT

per(enterAC) -> (ALT & \

(ALTDial.needle - plane.altitude)<=2 &\

(ALTDial.needle - plane.altitude)>=-2)

[enterAC] pitchMode'=ALT_CAP & !ALT'

(ALT & pitchMode!=ALT_CAP & \

(ALTDial.needle - plane.altitude)<=2 & \

(ALTDial.needle - plane.altitude)>=-2) -> obl(enterAC)

pitchMode=VERT_SPD -> plane.climbRate=crDial.needle

pitchMode=IAS -> plane.airSpeed=asDial.needle

pitchMode=ALT_HLD -> plane.climbRate=0

pitchMode=ALT_CAP -> plane.climbRate=1

ALTDial.needle < 5

(pitchMode=ALT_CAP & plane.altitude=ALTDial.needle) -> \

obl(enterAH)

[] plane.altitude = 0

fairness

!action=nil

mcp.tex; 11/07/2000; 11:22; p.42

Model Checking Interactor Speci�cations 43

test

AG((plane.altitude < ALTDial.needle & ALT) ->

AF((pitchMode=ALT_HLD & plane.altitude=ALTDial.needle)

| plane.climbRate = -1))

Address for O�prints:

Jos�e C. Campos

Departamento de Inform�atica

Universidade do Minho

Campus de Gualtar

4710-057 Braga, Portugal

e-mail: jfc@di.uminho.pt

fax: +351 253 60 4471

mcp.tex; 11/07/2000; 11:22; p.43

mcp.tex; 11/07/2000; 11:22; p.44

