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Abstract Mobility of ubiquitous systems offers the possibility of using
the current context to infer information that might otherwise require user
input. This can either make user interfaces more intuitive or cause sub-
tle and confusing mode changes. We discuss the analysis of such systems
that will allow the designer to predict potential pitfalls before the design
is fielded. Whereas the current predominant approach to understanding
mobile systems is to build and explore experimental prototypes, our ex-
ploration highlights the possibility that early models of an interactive
system might be used to predict problems with embedding in context
before costly mistakes have been made. Analysis based on model check-
ing is used to contrast configuration and context issues in two interfaces
to a process control system.

1 Background

Mobile interactive technologies bring new opportunities for flexible work and
leisure. The fact that the mobile device is context aware means that user in-
teraction can be more natural. The system (that is the whole software, human
and hardware infrastructure) can detect where the device and its user are, infer
information about what the user is doing, recognise urgency, even be aware of
the user’s emotional state. As a result user actions may be interpreted appropri-
ately. The benefits that context awareness brings can be obscured by difficulties.
Interaction may be confusing, surprising the user, and causing failure to occur.

Context aware systems are still mainly at an experimental stage of develop-
ment and there is considerable interest in how these systems are used. The cost
of user confusion about how action is interpreted may be expensive in terms
of poor take up and potential error in safety critical situations. Techniques are
required that can help predict these difficulties at design time. An important
question therefore is what these techniques should be and whether the cost of
using them is justified by the early understanding of design. The work underlying
this paper uses formal modelling techniques and model checking. The point of
using these techniques is not to suggest necessarily that an industrially scaleable



technique should use them precisely as given in the paper nor that these tech-
niques be used alone. It is instead the purpose to illustrate the type of issues
that approaches such as these can help understand. An important question to
be asked of any technique is whether early analysis requires a level of effort that
can be justified in terms of potential costs of user confusions in business and
safety critical systems.

The purpose here is to explore how analytic techniques might be used to:

– analyse differences between different interface configurations, in this case the
difference between a central control room and a mobile hand-held PDA.

– analyse contextual effects. A simple model of context based on location is
developed to analyse user action and user process.

The structure of the paper is as follows. The next section gives a scenario to
illustrate the kind of system that is being considered here. Section 3 discusses
the analysis to be performed. Section 4 presents briefly the model of the two
user interfaces to the system. Section 5 explores the analysis of the system based
on the models. The paper concludes by discussing the relevance of this approach
and how future techniques might emerge.

2 A Scenario

A control room contains full wall displays on three sides. Plant schematics are
displayed to represent the plant’s state and can be manipulated through the con-
trol room interface using physical devices (e.g., switches), command line or direct
manipulation interaction techniques, through the PDA interface, or through the
physical components of the plant itself (e.g., closing a valve). Trend data about
the plant is also displayed and helps operators anticipate emerging situations.
Workflow information indicating today’s schedule for an individual operator is
contained in the operator’s window also displayed on part of the wall.

A problem occurs in the plant requiring “hands-on” inspection and possible
action from one or several operators. Operators (perhaps working as a team) take
PDAs as they go to find out what has happened. General situation information
and prompts about what to do next can be accessed from the PDA. The PDA
can also be used to monitor and control a valve, pump or heater in situ (some
of the monitoring characteristics of this device are similar to those described
in [16]). A limited subset of information and controls for these components will
be “stored” in the PDA to ease access to them in the future – analogous to
putting them on the desktop. These desktop spaces are called buckets in [16].
The operator can view and control the current state of the components when in
their immediate vicinity. Context is used in identifying position of an operator,
checking validity of a given action, inferring an operator’s intention, checking
action against an operator’s schedule assessing and indicating urgency.

For example, a leak in a pipe is indicated in the control room by a red flashing
symbol over the relevant part of the schematic. Two operators walk out of the
control room leaving it empty, one walks to the location of a heater downstream



of the leak, the other walks to the valve upstream of the leak. The operator
upstream attempts to close off the valve using the PDA but is warned not to,
while the other operator is told by the PDA that the heater should be turned
off quickly because the first operator is waiting. Both operators, after having
carried out their actions, put heater and pump status and controls (respectively)
in buckets in their PDAs and move to the location of the leak to deal with it.
When they have fixed the leak together they each check and restore the controls
that they had previously put in buckets to the state before the leak was identified
and walk back to the control room.

This scenario indicates the variety of modes and contexts that can occur.
Confusions can arise if there is more than one plant component in close proximity,
if the operator forgets which component they have saved, if one operator forgets
that another operator is nearby. These problems can be exaggerated by poor
design.

3 Analysing the interface

Given a design such as the one above, it is clear that configuration and context
are important to the success of the system. What happens to the interface when
the operator moves from the control room to the handheld device and begins
to move around the plant? What changes occur between the control room and
the hand held device? How is the hand held device affected by the context? An
operator will have a number of goals to achieve using these interfaces and the
actions that are involved to do this will be different in the two interfaces, and in
the mobile case dependent on context.

A typical approach to analysing these differences might be to perform a task
analysis in different situations and produce task descriptions that can be used to
explore the two interfaces and how the interfaces support the interactions. This
might involve considering the information resources that would be required in the
two cases [19]. Such an approach would have much in common with [17,7]. Indeed
this analysis is performed in Loer’s thesis [13]. However there are difficulties with
such an approach. Task descriptions assume that the means by which an operator
will achieve a goal can be anticipated with reasonable accuracy. In practice a
result is that strategies or activities that the operator actually engages in may
be overlooked.

A different approach is to take the models and check whether a goal can be
reached at all. The role of a model checker is to find any path that can achieve
a user goal. This new approach also has difficulties because the sequence of
actions may not make any sense in terms of the likely actions of an operator. In
order to alleviate this the analyst’s role is to inspect possible traces and decide
whether assumptions should be included about use that would enable sequences
to be generated that are more realistic. The advantage of this approach is that
it means that analysis is not restricted to sequences that are imposed – the
presumed tasks. The disadvantage is that in some circumstances there may be
many paths that might require such exploration.



A model of context is required, as well as of the devices, that will enable
an analysis of the effects of the user interface of the mobile device in this way.
Since the problem here is that action or sequences of actions (process) may
have different meanings depending on context a clear definition of context is
required. Persistently forgetting to restore information when the context has
changed could be one effect of context, and can be considered as part of the
analysis. In the case study the environment is described simply in terms of
physical positions in the environment and transitions between these positions. As
the hand-held device makes transitions it is capable of interacting with or saving
different plant components onto the device. A model of the plant is included in
order to comprehend how the interfaces are used to monitor and control.

Context confusions can be avoided through design by changing the action
structure (for example, using interlocks) so that these ambiguities are avoided
or by clearly marking the differences to users. Techniques are required that will
enable the designer to recognise and consider situations where there are likely to
be problems. The process is exploratory, different properties are attempted and
modified as different traces are encountered as counter-examples or instances.
Traces that are “interesting” are scrutinised in more detail to investigate the
effectiveness of the design and the possibility of confusion – discovering an inter-
esting trace does not of itself mean that the design is flawed or is prone to human
error. Implications of different configurations are explored by considering simple
assumptions about the user. In what follows we describe an experiment in which
questions are articulated in LTL (Linear Temporal Logic) and recognised by the
SMV model checker [15].

4 Modelling the user interface

The characterisation of the device and of the control room are both much sim-
plified for the purposes of exposition. The icons on the hand-held device are
the only means available to the user to infer the current system state and the
available operations. Since the visibility of icons is important to the operation
of the plant and the usability of the hand-held device, the basis for the analysis
is (i) that all available operations are visible, and (ii) that all visible operations
are executable. The analysis uses Statecharts [9]: an example of how an inter-
face can be developed using Statecharts is given in [11]. The Statecharts in the
current scenario are structured into different components as suggested by [4] to
make interaction with the device and the effect of the environment clearer and
is based on a more detailed analysis described in [13].

The interactive system that controls the process is designed: (1) to inform the
operator about progress; (2) to allow the operator to intervene appropriately to
control the process; (3) to alert the operator to alarming conditions in the plant
and (4) to enable recovery from these conditions. A model is required to explore
usability issues and design alternatives in the light of these goals of the under-
lying process. The central control mechanism provides all information in one
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Figure 1. Control Screen layout.

display (Section 4.1), while the personal appliance displays partial information
(Section 4.2).

4.1 Representing and modelling the central panel

This paper deliberately glosses over the model of the process. The process in-
volves tanks and pumps that feed material between tanks. The tanks can be
used for more than one process and, in order to change processes, a tank must
be evacuated before material can be pumped into it. In order to achieve this
some of the pumps are bi-directional. In fact the process is expressed as a sim-
ple discrete model in which the significant features of the environment can be
explored, for more details, see [14] or [2]. Hence the state of the tank is simply
described as one element of the set {full, empty, holding} — there is no notion
of quantity or volume in the model. This is adequate to capture the key features
of the process from the point of view of interaction with the system.

The control panel contained in the control room can be seen in Figure 1. All
the pumps in the plant are visible and can be adjusted directly using a mouse.
As can be seen from the display all the pumps can be switched on and off, some
pumps (3 and 4) can be reversed and the volume of flow can also be modified in
the case of pumps 1 and 2.

The control room, with its central panel, aims to provide the plant operator
with a comprehensive overview of the status of all devices in the plant. Avail-
ability and visibility of action will be the primary concern here. Other aspects
of the problem can be dealt with by using complementary models of the inter-
face, for example alarms structure and presentation, but analysis is restricted
for present purposes. The specification describes the behaviour of the displays
and the associated buttons for pump 1 (and equivalently pump 2). The effects
of actions are described in terms of the signals that are used to synchronise with
the pump description and the states in which the buttons are illuminated.
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Figure 2. Initial specification of control screen behaviour.

The control panel is implemented by a mouse-controlled screen (see Figure 1).
Screen icons act as both displays and controls at the same time. Hence from
Figure 2 we can see that PUMP1USERINTERFACE supports four simple on-off state
transitions defining the effect of pressing the relevant parts of the display. The
state indicates when icons are illuminated but also shows that the actions trigger
corresponding actions in the underlying process. The Statechart here builds a
bridge between actions that relate to the behaviour of the process underneath
and actions that correspond to using the mouse to point and click at the relevant
icons. A detailed account of what the specification means is not presented here.
An indication of what it would look like is all that is intended at this stage – an
indication of the scale of the modelling problem using this style of specification.
Many other approaches could have been used: Paternò used LOTOS [17], Cam-
pos and Harrison used MAL [2]. Notations such as Promela that are supported
directly by model checkers are also relatively straightforward to use [10].

4.2 Representing context and the hand-held control device

The hand-held device uses individual controls that are identical to those of the
central control panel but only a limited amount of space is available for them.
As a controller walks past a pump it is possible to “save” the controls onto the
display. Thereafter, while the controls continue to be visible on the display, it is
possible to control the pumps from anywhere in the system.

The hand-held control device (Figure 3) knows its position within the spatial
organisation of the plant. Hence the Environment model to describe the system
involving this device is extended to take account of context. A simple discrete
model describes how an operator can move between device positions in the plant
modelled as transitions between position states, as shown in Figure 4.

By pointing the laser pointer at a plant component and pressing the compo-
nent selector button, the status information for that component and soft controls
are transferred into the currently selected bucket. Components can be removed



from a bucket by pressing the delete button. With the bucket selector button
the user can cycle through buckets. The intended use of the device has been
altered from the description contained in [16] from monitoring and annotating
to monitoring and manipulation.

The specification of the hand-held device describes both the physical buttons
that are accessible continuously and other control elements, like pump control
icons, that are available temporarily and depend on the position of the device.
When the operator approaches a pump, its controls are automatically displayed
on the screen (it does not require the laser pointer). The component may be
“transferred” into a bucket for future remote access by using the component
selector button. Controls for plant devices in locations other than the current
one can be accessed remotely if they have been previously stored in a bucket.
When a plant component is available in a bucket and the bucket is selected,
the hand-held device can transmit commands to the processing plant, using the
pump control icons.

Figure 5 shows an extract of the specification. Here the user can choose
between three buckets and each bucket can store controls for up to two compo-
nents. In the BUCKETS state the current contents of each bucket x are encoded
by variables “BxCONTENT”.

The environment in this case is a composition of the tank content model and
the device position model in Figure 4. The model presumes that the appliance
should always know its location. This is of course a simplification. Alternative
models would allow the designer to explore interaction issues when there is a
dissonance between the states of the device and its location. A richer model in
which variables are associated with states, and actions may depend on values of
the state that have actually been updated, may lead to asking questions of the
models as whether “the action has a false belief about the state”. These issues
are important but are not considered in this paper.
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Figure 3. A hand-held control device (modified version of the “Pucketizer” device in
[16]).
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5 Analysis

Model-checking is a technique for analysing whether a system model satisfies a
requirement. These requirements may be concerned with a number of issues in-
cluding safety and usability. The model checker traverses every reachable system
state to check the validity of the given property. If the property “holds”, a True

answer is obtained. Otherwise, the property is False, and the tool attempts to
create a sequence of states that lead from an initial state to the violating state.
These “traces” are a valuable output because they help understanding why a
specification is violated. There are many detailed expositions of approaches to
model checking, see for example [3,12,1,10] and a number of treatments of inter-
active systems from a model checking perspective, see for example [17,7,2,18].

5.1 Comparing the control room and the hand held device

In order to explore the effect of the difference between the control room and
the hand-held device a reachability property may be formulated for a user level
“goal” of the system. The goal chosen here for illustration is “Produce substance

C” which is a primary purpose of the system.
The idea is that differences are explored between the traces by two models:

on the one hand containing the control room interface; on the other hand con-
taining the mobile device. If a property does not hold then the checker finds
one counter-example. Alternatively, the negated property may be used to find
a trace that satisfies the property. Usually the model checker only produces a
single trace giving no guarantee that it is an interesting one from the point of
view of understanding design implications. Additional traces can be created by
adding assumptions about the behaviour. This contrasts with an approach us-
ing explicit tasks (see for example, [7,13]) where the model checker is used to
explore a particular way in which the goal can be achieved (the task). So far as
this paper is concerned any behaviours required to achieve a goal are of interest.

The sequences in Figure 6 are visualisations of the traces obtained by checking
for different models if and how the plant can deliver substance C to the outside



world. The property asserts that, eventually, pump 5 will be turned on with tank
1 holding substance C. This is specified as:

SAN1:

F (PUMP5CTRLM.state=PMP5ON)

& (TANK1.state = HOLDS_C)

In this case the negated property “not SAN1” is used because instances that
satisfy the property are required. The two models involving the different inter-
faces are checked with the same property. The first sequence in Figure 6 satisfies
the control room interface. The second sequence was generated by checking the
property against the hand-held device model. While the first two traces assume
a serial use of pumps, the third and fourth sequences show the same task for
a concurrent use of pumps. Comparison of these sequences yields information
about the additional steps that have to be performed to achieve the same goal.

5.2 Analysing context effects

As a result of making a comparison between the traces for the control room and
for the hand held, the analyst might come to the conclusion that the repetitive
process of saving controls may cause slips or mistakes, a direct effect of location
on the actions of the hand-held device. To explore the effect of this a further
assumption may be introduced to the property to be analysed, namely that an
operator might forget certain steps.

This assertion “alwaysForget” which states that controls for any of the
pumps are never saved is described as follows:

assert alwaysForget:

G !(savePmp1ctrls| [...] |savePmp5ctrls);

The original property SAN1 is checked under the assumption that this assertion
holds:

assume alwaysForget;

using alwaysForget prove SAN1;

Checking this property leads to the sixth sequence in Figure 6. A consequence
of exploring this sequence highlights the likelihood of context confusions and
therefore the need for the redesign of the device. As can be seen, an identical
subsequence of actions at positions 2 and 6 have different effects. An interlock
mechanism is therefore introduced with the aim of reducing the likelihood that
human error arising from forgetfulness might arise. The proposed redesign warns
the user and asks for acknowledgement that the currently displayed control ele-
ments are about to disappear.

The warning is issued whenever a device position is left and the device’s
control elements are neither on screen nor stored in a bucket. It is straightforward
to adjust the model of the interface to the hand-held device to capture this idea,



and this specification is given in the fuller paper [14]. The design however does
not prevent the user from acknowledging and then doing nothing about the
problem.

Checking the same properties, including the assumptions about the forgetful
user, produces Sequences 7 and 8 in Figure 6. In this example the central control
panel characterises the key actions to achieving the goal since the additional
actions introduced by the hand held device are concerned exclusively with the
limitations that the new platform introduces, dealing with physical location,
uploading and storing controls of the visited devices as appropriate. The analysis
highlights these additional steps to allow the analyst to subject the sequence to
human factors analysis and to judge if such additional steps are likely to be
problematic. The reasons why a given sequence of actions might be problematic
may not be evident from the trace but it provides an important representation
that allows a human factors or domain analyst to consider these issues. For
example, action goPOS6 may involve a lengthy walk through the plant, while
action savePmp4ctrls may be performed instantaneously and the performance
of action getPmp3ctrls might depend on additional contextual factors like the
network quality. The current approach leaves the judgement of the severity of
such differences to the designer, the human factors expert or the domain expert.
It makes it possible for these experts to draw important considerations to the
designer’s attention.

6 Conclusions

The paper illustrates how configuration and context confusions might be anal-
ysed in the early stages of design before a system is fielded. We emphasise again
that the exploration of these techniques makes no presumption that these would
be the only techniques used to explore potential user confusions. The particular
method described involves comparing and inspecting sets of sequences of actions
that reach a specified goal state. No assumptions are made about user behaviour
initially, constraints based on domain and user concerns are used to explore sub-
sets of the traces that can achieve the goals. Experts assist the process of adding
the appropriate constraints to the properties to be checked. In order to do this
a human factors expert or a domain expert may be provided with sufficiently
rich information that it is possible to explore narratives surrounding the traces
generated.

Hence traces can form the basis for scenarios that aid exploration of potential
problems in the design of mobile devices, e.g. the additional work that would
be involved for the system operator if subtasks are inadvertently omitted in
achieving the goal. The tool can also be used to find recovery strategies if an
operator forgets to store control elements.

Further work is of course needed to devise strategies for appropriate guidance
with respect to (i) finding an efficient sequence of analysis steps and (ii) devising
a strategy for the introduction of appropriate assumptions. Guidance is also
required to help limit the size of the models to be analysed. Suitable techniques



and heuristics for semantic abstraction of system models need to be devised to
avoid the state explosion problem. However, the size of models that can be dealt
with is encouraging and this situation can be improved through appropriate
abstraction and consistency checking.

As has been said the case described in the paper involves an oversimplistic
model of context for the purpose of presentation. The following questions require
exploration:

– What are the key features of the design that are relevant to these context
confusions? In the work described here the further step of evaluating whether
the properties that are analysed actually cause user confusion is assumed
to be carried out by a human factors expert who would assess the traces
generated by the technique.

– What are appropriate models of context — what about the information that
might be inferred at these different positions? What about knowledge about
history or urgency? What about the proximity, knowledge and behaviour
of other mobile agents in the environment? What about issues such as the
staleness of data? A number of papers [5,8] classify and critique notions of
context.

– If more than one model is appropriate, at different stages of the design or
at the same time, how are these different stages and complementary models
used together?

More elaborate analysis would involve models of context in which other users
and configurations (for example PDAs) may enter or leave dynamically. In order
to reason about context such as these, knowledge logics using operators such
as the K operator could be used to express what an agent knows in a given
context [6]. Since K-logic is described in terms of a Kripke model it is relatively
straightforward to perform model checking using it. Hence given the scenario
example, a question may be asked such as whether it is common knowledge that
the repair has been completed in order that all agents can restore the state of
the components they were dealing with to their original states. The model and
logic may also be used to ask whether it is possible that an agent can think that
the state of their component can be restored before it is time to do it. Hence the
logic will be used to express properties that capture potential user confusions in
this richer notion of context.

With appropriate models and notions of user context confusion, it becomes
possible to consider the pragmatics of modelling and analysis using these tech-
niques. Similar strategies may also be adopted for exploring other aspects of
context confusion, for example exploring the significance of the temporal valid-
ity of the state of a bucket on the user’s ability to achieve goals within different
timescales.
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Figure 5. Ofan model for the hand-held device: The User Interface and Control

Mechanism modules.
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Figure 6. Traces generated by runs of the model checker


