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This pogtion paper discusses extensons to concepts of Dynamic Function Allocation (DFA) that
could improve our underdanding of the trade-offs involved in desgning and operating human
automation systems. We suggest that current DFA paradigms, focusing predominantly on alocation
dong the humanautomation resource dimenson, may provide an insufficent bass for design
decisons as they fal to take account of adternative function management drategies. Of these
drategies, Dynamic Function Scheduling (DFS), the dlocation of functions dong the tempora
dimengon, is of particular interest, not leest because scheduling is both a mature engineering
discipline and a ubiquitous aspect of human behavior. Understanding these scheduling decisons
requires consderation of the tempord properties of functions (e.g. continuous, periodic, sporadic,
pre-emptable, interleavable), tempord requirements (e.g. deadlines), and the tempora properties of
the agents, human or automatic (e.g. service rates, interruption handling, task switch costs, tempora
reasoning abilities, control modes). The paper reviews engineering and human factors gpproaches

that could support the representation, analysis and design of DFS.

INTRODUCTION

Function Allocation, the process of dividing or
sharing respongihilities among humans and autometion at
the design dage, is driven by severd, partly conflicting,
motivations. Automation promises to extend or support
human peformance, to compensate for human
performance deficits, to rdieve the human of routine
tasks, or to replace the human atogether. At the same
time, it transforms the role of the human to draegic
decison maker and supervisory controller of an ever-
increesing multitude of functions. The operator may
have to switch between functions, react to unforeseen
events or demands, and compensate for automation
falures. To fulfill this role, the human needs to be kept
informed of, and involved in, the operation of the
system. Congstent and trangparent automeation behavior
can help to maintain the compdtibility of the operation
drategies of the human and the automation, and
mismatches between these dtrategies can lead to fallure.

The chdlenge for automation designers lies in providing
automation that can act rgpidly and dependably under
hard deadlines, while dlowing the human to contral,
configure or intervene in the operation of the system.
Dynamic Function Allocation (DFA) addresses
the problems of datic dlocation by providing multiple
levels of automation, and decision rules (potentidly also
automated) to switch between them a runtime. This
crestes aworkload balancing mechanism that makes the
sysem more adaptive to a wide range of operationd
parameters, as the agents — human(s) and automation —
can supply mutud back-up in case of performance
degradation or changing demand characterigtics.
Changes in automation levels may occur as part of a
planned operation strategy (e.g. engage autopilot during
cruise phase, disengage during take-off / landing), but
most empirica studiesin this area have been concerned
with alocation switches as a reaction to unforeseen
events or workload changes (e.g. Enddey and Kaber,
1999). It is important to notice that these dlocation
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decisons are dynamic in time, but in aform that is best
described as “sngpshot dlocation”. At any ingant, the
dlocation agorithm (rdying, for ingance, on triggers
from criticd-event monitoring, performance or
physiologica measurement) assesses the need for re-
digribution of functions and suggedts or implements the
required changes by moving up or down the automation
scale. In other words, the human-automation resource
scde moves orthogondly dong the timeling, but has
itsdf litle or no tempord extenson. It is largdy
oblivious to the tempord characterigtics of the current
system date, the requirements and options for tempora
function dlocation, and the tempora effects of an
dlocation decison. Relying on sngpshot information
helps to keep the dlocation decison computationdly
ample, but it aso disconnects automation design
condderations from another important class of
workload management strategies: scheduling.

FROM DYNAMIC FUNCTION ALLOCATION
TO DYNAMIC FUNCTION SCHEDULING

The focus of DFA research on automation is, at
firg glance, not surprisng, given its origins in Function
Allocation approaches. As a concept for guiding
empirical research, DFA has provided important
indghts into the benefits and problems of adaptive
automation, but unlike Function Allocation it has not yet
been trandated into a mature design approach (see,
however, Hancock & Scallen, 1998, or Scerbo, 1996,
for suggestions). Function Allocation desgn methods
(eg. Dearden, Harison and Wright, 2000;
Parasuraman, Sheridan and Wickens, 2000) may form
the basis of such an gpproach, but to understand fully
the design space for dynamic multitask environments,
adaptive automation will have to be seen in the context
of other operation drategies such as satisficing and
scheduling.

A closer look at the literature reveds that thisis
just the view adopted by earlier multitask studies (e.g.
Chu and Rouse, 1979; Tulga and Sheridan, 1980).
With Sheridan and Verplank's (1978) much-cited
paper on levels of automation appearing roughly a the
same time, it is reasonable to argue for a higoricd link

between automation and scheduling concepts. The
variables conddered in these early studies are just as
relevant to current dynamic dlocation research as they
where then. They include task ariva rates ther
predictability and digtribution, the task’s deadline, its
duration, and the service rates d the available agents.
Of particular importance is the notion of “vaue’ as a
measure of a task’'s relative importance or benefit,
which dlows the assessment of priority sructures
among concurrent tasks. Based on these parameters,
scheduling and queuing theory can be used to optimise
task servicing according to criteria such as, for example,
maximisng the number of tasks per time unit, minimisng
the number of tasks faling ther deadline, minimisng
dack time, or maximisang totd vadue As Tulga and
Sheridan (1980), among others, have demonstrated,
these normative engineering modds dso present a
background against which human performance may be
interpreted. Their particular aoped lies in making
explicit the parameters of the decison procedure and
the criteria for success. Since these early papers, our
underdanding of human performance on scheduling
tasks has improved sgnificantly (see Sanderson, 1989,
for areview). However, this promising strand of Human
Factors research has falled to enter into the DFA
research and design agenda, s0 the chdlenge for
contemporary workload management research is to
integrate scheduling with other dlocation options into a
comprehendve design method.

DYNAMIC FUNCTION SCHEDULING

We use the term Dynamic Function Scheduling
to refer to a perspective on work andyss that
emphasises the tempord characterigics of multi-task
environments and the tempora options for workload
digtribution (c.f. Hildebrandt and Harrison, 2002a).
Scheduling  involves  vaue-based choices among
concurrent functions, as well as vaue-based trade-offs
in choosng among drategies for implementing a given
function within its deedline (these drategies could, for
ingance, involve automation). To illudrate these
concepts, condder the following four examples (for



detaled andyss, see Hildebrandt and Harrison,
2002Db):

(@ In a hogpitd, an expet sytem may be
avalable for providing online diagnoses. Assume that
the system’s diagnosis may not dways be as accurate
asthat of a senior doctor, but might significantly support
an unaded junior staff member. If the condition of a
patient is not time-criticd, a ‘manua’ diagnoss by a
senior doctor would be the strategy of choice, but in a
time-critical Stuation or in the absence of such adoctor,
gaff may haveto rely on the automation’s advice.

Note that the decison to rely on the automation
may be influenced by more subtle tempord factors. For
indance, the junior doctor may arive & a highly
accurate diagnods, but it may take a consderable
amount of time This time/qudity trade-off may be
compared with the expected performance of the
automation to choose the drategy that best suits the
treatment objectives and congraints. Thiswould suggest
that time might moderate the effects of trust (in the
reliability of automation) on automation use: Under high
time pressure, users might be more likely to accept the
advice of an automatic sysem that is not perfectly
religble than when there is sufficient time to check the
System’ s output.

(b) In a chemical factory, leaks may appear in
the pipes connecting different reactors. To repair the
leak, the operator may have to close the pipe, which
would interrupt the production process. Depending on
the sze of the lesk, the operator may decide to
postpone the repair and tolerate the fluid loss until the
current production task is finished and the lesk can be
repaired without affecting production. Other measures
such as pumping off the spilled chemicals may be taken
to contain the Stuation.

(c) FHgure 1 illudrates a fault-servicing scenario
for an aviation hydraulics sysem, where lesks may
occur in any of the reservoirs or servos. Three dtrategies
for deding with the problem can be diginguished. The
firg drategy uniquely identifies the faulty dement by
going through a checklist procedure of sdlectively setting
the valves connecting the reservoirs with the servos. The
dternative drategy does not go through an initid
diagnostic process, but switches to the redundant

resarvoir immediately. This fixes the problem quickly,
but if the problem was located in one of the servos, then
an intact reservoir has been disconnected and is
unavailable. One or the other dtrategy may be used
depending on the operational parameters (are there
other high-vaue functions waiting to be serviced? May
the reservoir be needed during the rest of the misson?).
The pilot may even decide to teke no action at dl (i.e.
drop the function) if the lesk is unlikey to become
critica before touchdown, and there are other urgent
functions waiting.
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Fig. 1. Hydraulics system (top). Leaks can occur in the servos
or reservoirs. Lower diagram shows scheduling options.

(d Fndly, condder the example of a
supermarket checkout, where the prices are scanned by
the checkout operator and the goods are packed by the
customer (Fig. 2). If the customer cannot pack quickly
enough, products build up waliting to be packed, which
reduces the overal service rate of the checkout system.
From the cashier's perspective, the value of the
scanning function relative to the packing function is
reduced. Therefore, the cashier may decide to postpone
scanning to asss the customer with the packing, and
resume scanning only after the backlog has been
cleared.
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Fig. 2. Fixed (top) and flexible (bottom) scheduling, involving
function postponement. Curved line represents value of
scanning function

REPRESENTATION, ANALYISAND DESIGN
OF DYNAMIC FUNCTION SCHEDULING

The am of Dynamic Function Scheduling is to
make scheduling decisons and their associated trade-
offs trangparent to the designer, and to enable him/her
to support the operator’s online control decisons. This
support may involve the visudisaion of timing
condraints, or the desgn of sequentidly flexible
functions, eg. functions that alow pre-emption or
interleaving (an important contribution in this area is
McFarlane s “taxonomy of human interruption” and the
associated empiricd  HCI  research  on  different
interruption methods; immediate, negotiated, scheduled
and mediated interruption). Autormetion has a place in
these consderations both as an operation strategy with
particular tempora properties and as a support system
for making online scheduling decisons. Formd andyss
usng scheduling or queuing modds is a fird sep
towards understanding these design choices, asit dlows
the representation of workload levels, their distribution,
and the required and available processng time of
different function servicing drategies. On a lower leve
of andyds task notations with a st of tempord
operators are required to express the compatibility of
different drategies (one candidate may be the User
Action Notation, c.f. Hartson and Gray, 1992).

However, in addition to formd andyss and
representation methods, design of DFS needs to be
informed by an understanding of the characteristics of
human tempora cognition, and in particular tempord
errors. As Hollnagel (1991) notes in his discussion of
the phenotypes of human error, “[slurprisingly, few of

the exiding action and error taxonomies include the
aspect of time, but rather describe and classfy human
eror on an aempord (datic) bass [...] In many
domains it is, however, necessary to include time in a
much more conspicuous way, as, perhaps, one of the
principa ‘mechanisms or ‘error aeas of human action
[...] Thisis particularly true with respect to planning and
scheduling.” Human performance in tempora control
tasks can deviate srongly from the normative mode!.
These performance deficits may be related to low-leve
biases in the psychophysics of time perception, such as
under or over estimation of durations. They may aso be
caused by decreased accuracy of decision-making due
to time stress (see Edland and Svenson, 1993, for a
review). Advances in the cognitive psychology of time
(e.g. Block, 1990) have fostered an interest in higher-
level aspects of tempord cognition among the human
factors community (cf. De Keyser, 1995). For
intance, Moray e d. (1991), usng Tulga and
Sheridan’s  (1980) experimental paradigm, found
evidence that operators faced with various tasks of
different duration prefer to start the longest task fird,
even though the normative mode would require the
shortest task to be gsarted first. In a multi-task micro
world experiment (combined manud and supervisory
control), Kirlik (1993) found evidence that operators
are sendtive to the tempord costs of automation and
refuse to use an automdic ad if its engagement is
associated with a consderable delay. Both these studies
discuss human peformance data agang the
background of a normative mode of the task and argue
for the importance of combining empirical data and
formd anayss. This goproach isin the spirit of the early
multitask studies mentioned above, and could serve asa
blugprint for future Dynamic Function Scheduling
research.

Findly, a growing literature on tempord factors
in judgement and decison making suggeds tha
conventiond utility models, where cogts and benefits are
usudly described in teems of money or Smilar
commodities, may not be vaid modds for describing
the perception of tempora codts. For instance, Soman
(2001) found that the “sunk cost” effect (where a prior
invesment has an irrationd influence on a current



decison) disgppeared when the invetment was
described in terms of time instead of money. Varey and
Kahneman (1992) sudied subjects retrospective
evauation of extended periods of aversve experiences
and found evidence that these judgements are influenced
by the pesk discomfort, the discomfort towards the end
of the episode, and the trend over the episode, but not
by the duration of the episode. If such effects trandate
into the Human Factors domain, they may bias the
operators assessment of the value of concurrent
functions or the avalable function sarvicing Srategies
(e.g. various automation options).

CONCLUSION

This position paper argues for the introduction
of a tempord perspective on Dynamic Function
Allocation. A comprehensve underdanding of
workload management choices requires congderation
of dlocation dong the human — automation resource
dimengon as well as the tempord dimenson. Vaue-
based scheduling and strategy selection enables both the
designer and the operator to consider priority structures
among functions and the trade- offs involved in different
function sarvicing draegies. Automdion has an
important role to play in making these trade- offs explicit
and in supporting scheduling decisons. A design
method for DFS may combine representations of the
tempord sructure of functions with formal workload
management gpproaches such as queuing models.
These normative models have aso provided a useful
bads for interpreting empiricd data on human
scheduling  performance.  Future Human  Factors
research into Dynamic Function Scheduling can draw
on a growing body of literaiure on the cognitive
psychology of time to explore tempord control
drategies.
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