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This position paper discusses extensions to concepts of Dynamic Function Allocation (DFA) that 
could improve our understanding of the trade-offs involved in designing and operating human-
automation systems. We suggest that current DFA paradigms, focusing predominantly on allocation 
along the human-automation resource dimension, may provide an insufficient basis for design 
decisions as they fail to take account of alternative function management strategies. Of these 
strategies, Dynamic Function Scheduling (DFS), the allocation of functions along the temporal 
dimension, is of particular interest, not least because scheduling is both a mature engineering 
discipline and a ubiquitous aspect of human behavior. Understanding these scheduling decisions 
requires consideration of the temporal properties of functions (e.g. continuous, periodic, sporadic, 
pre-emptable, interleavable), temporal requirements (e.g. deadlines), and the temporal properties of 
the agents, human or automatic (e.g. service rates, interruption handling, task switch costs, temporal 
reasoning abilities, control modes). The paper reviews engineering and human factors approaches 
that could support the representation, analysis and design of DFS. 

 
INTRODUCTION 

 
Function Allocation, the process of dividing or 

sharing responsibilities among humans and automation at 
the design stage, is driven by several, partly conflicting, 
motivations. Automation promises to extend or support 
human performance, to compensate for human 
performance deficits, to relieve the human of routine 
tasks, or to replace the human altogether. At the same 
time, it transforms the role of the human to strategic 
decision maker and supervisory controller of an ever-
increasing multitude of functions. The operator may 
have to switch between functions, react to unforeseen 
events or demands, and compensate for automation 
failures. To fulfill this role, the human needs to be kept 
informed of, and involved in, the operation of the 
system. Consistent and transparent automation behavior 
can help to maintain the compatibility of the operation 
strategies of the human and the automation, and 
mismatches between these strategies can lead to failure. 

The challenge for automation designers lies in providing 
automation that can act rapidly and dependably under 
hard deadlines, while allowing the human to control, 
configure or intervene in the operation of the system. 

Dynamic Function Allocation (DFA) addresses 
the problems of static allocation by providing multiple 
levels of automation, and decision rules (potentially also 
automated) to switch between them at runtime. This 
creates a workload balancing mechanism that makes the 
system more adaptive to a wide range of operational 
parameters, as the agents – human(s) and automation – 
can supply mutual back-up in case of performance 
degradation or changing demand characteristics. 
Changes in automation levels may occur as part of a 
planned operation strategy (e.g. engage autopilot during 
cruise phase, disengage during take-off / landing), but 
most empirical studies in this area have been concerned 
with allocation switches as a reaction to unforeseen 
events or workload changes (e.g. Endsley and Kaber, 
1999). It is important to notice that these allocation 



decisions are dynamic in time, but in a form that is best 
described as “snapshot allocation”. At any instant, the 
allocation algorithm (relying, for instance, on triggers 
from critical-event monitoring, performance or 
physiological measurement) assesses the need for re-
distribution of functions and suggests or implements the 
required changes by moving up or down the automation 
scale. In other words, the human-automation resource 
scale moves orthogonally along the timeline, but has 
itself little or no temporal extension. It is largely 
oblivious to the temporal characteristics of the current 
system state, the requirements and options for temporal 
function allocation, and the temporal effects of an 
allocation decision. Relying on snapshot information 
helps to keep the allocation decision computationally 
simple, but it also disconnects automation design 
considerations from another important class of 
workload management strategies: scheduling. 

 
FROM DYNAMIC FUNCTION ALLOCATION 

TO DYNAMIC FUNCTION SCHEDULING 
 

The focus of DFA research on automation is, at 
first glance, not surprising, given its origins in Function 
Allocation approaches. As a concept for guiding 
empirical research, DFA has provided important 
insights into the benefits and problems of adaptive 
automation, but unlike Function Allocation it has not yet 
been translated into a mature design approach (see, 
however, Hancock & Scallen, 1998, or Scerbo, 1996, 
for suggestions). Function Allocation design methods 
(e.g. Dearden, Harrison and Wright, 2000; 
Parasuraman, Sheridan and Wickens, 2000) may form 
the basis of such an approach, but to understand fully 
the design space for dynamic multitask environments, 
adaptive automation will have to be seen in the context 
of other operation strategies such as satisficing and 
scheduling.  

A closer look at the literature reveals that this is 
just the view adopted by earlier multitask studies (e.g. 
Chu and Rouse, 1979; Tulga and Sheridan, 1980). 
With Sheridan and Verplank’s (1978) much-cited 
paper on levels of automation appearing roughly at the 
same time, it is reasonable to argue for a historical link 

between automation and scheduling concepts. The 
variables considered in these early studies are just as 
relevant to current dynamic allocation research as they 
where then. They include task arrival rates, their 
predictability and distribution, the task’s deadline, its 
duration, and the service rates of the available agents. 
Of particular importance is the notion of “value” as a 
measure of a task’s relative importance or benefit, 
which allows the assessment of priority structures 
among concurrent tasks. Based on these parameters, 
scheduling and queuing theory can be used to optimise 
task servicing according to criteria such as, for example, 
maximising the number of tasks per time unit, minimising 
the number of tasks failing their deadline, minimising 
slack time, or maximising total value. As Tulga and 
Sheridan (1980), among others, have demonstrated, 
these normative engineering models also present a 
background against which human performance may be 
interpreted. Their particular appeal lies in making 
explicit the parameters of the decision procedure and 
the criteria for success. Since these early papers, our 
understanding of human performance on scheduling 
tasks has improved significantly (see Sanderson, 1989, 
for a review). However, this promising strand of Human 
Factors research has failed to enter into the DFA 
research and design agenda, so the challenge for 
contemporary workload management research is to 
integrate scheduling with other allocation options into a 
comprehensive design method. 

 
DYNAMIC FUNCTION SCHEDULING 

 
We use the term Dynamic Function Scheduling 

to refer to a perspective on work analysis that 
emphasises the temporal characteristics of multi-task 
environments and the temporal options for workload 
distribution (c.f. Hildebrandt and Harrison, 2002a). 
Scheduling involves value-based choices among 
concurrent functions, as well as value-based trade-offs 
in choosing among strategies for implementing a given 
function within its deadline (these strategies could, for 
instance, involve automation). To illustrate these 
concepts, consider the following four examples (for 



detailed analysis, see Hildebrandt and Harrison, 
2002b): 

(a) In a hospital, an expert system may be 
available for providing online diagnoses. Assume that 
the system’s diagnosis may not always be as accurate 
as that of a senior doctor, but might significantly support 
an unaided junior staff member. If the condition of a 
patient is not time-critical, a ‘manual’ diagnosis by a 
senior doctor would be the strategy of choice, but in a 
time-critical situation or in the absence of such a doctor, 
staff may have to rely on the automation’s advice.  

Note that the decision to rely on the automation 
may be influenced by more subtle temporal factors. For 
instance, the junior doctor may arrive at a highly 
accurate diagnosis, but it may take a considerable 
amount of time. This time/quality trade-off may be 
compared with the expected performance of the 
automation to choose the strategy that best suits the 
treatment objectives and constraints. This would suggest 
that time might moderate the effects of trust (in the 
reliability of automation) on automation use: Under high 
time pressure, users might be more likely to accept the 
advice of an automatic system that is not perfectly 
reliable than when there is sufficient time to check the 
system’s output.    

(b) In a chemical factory, leaks may appear in 
the pipes connecting different reactors. To repair the 
leak, the operator may have to close the pipe, which 
would interrupt the production process. Depending on 
the size of the leak, the operator may decide to 
postpone the repair and tolerate the fluid loss until the 
current production task is finished and the leak can be 
repaired without affecting production. Other measures 
such as pumping off the spilled chemicals may be taken 
to contain the situation. 

(c) Figure 1 illustrates a fault-servicing scenario 
for an aviation hydraulics system, where leaks may 
occur in any of the reservoirs or servos. Three strategies 
for dealing with the problem can be distinguished. The 
first strategy uniquely identifies the faulty element by 
going through a checklist procedure of selectively setting 
the valves connecting the reservoirs with the servos. The 
alternative strategy does not go through an initial 
diagnostic process, but switches to the redundant 

reservoir immediately. This fixes the problem quickly, 
but if the problem was located in one of the servos, then 
an intact reservoir has been disconnected and is 
unavailable. One or the other strategy may be used 
depending on the operational parameters (are there 
other high-value functions waiting to be serviced? May 
the reservoir be needed during the rest of the mission?). 
The pilot may even decide to take no action at all (i.e. 
drop the function) if the leak is unlikely to become 
critical before touchdown, and there are other urgent 
functions waiting. 

 

 
Fig. 1. Hydraulics system (top). Leaks can occur in the servos 
or reservoirs. Lower diagram shows scheduling options. 
 

(d) Finally, consider the example of a 
supermarket checkout, where the prices are scanned by 
the checkout operator and the goods are packed by the 
customer (Fig. 2). If the customer cannot pack quickly 
enough, products build up waiting to be packed, which 
reduces the overall service rate of the checkout system. 
From the cashier’s perspective, the value of the 
scanning function relative to the packing function is 
reduced. Therefore, the cashier may decide to postpone 
scanning to assist the customer with the packing, and 
resume scanning only after the backlog has been 
cleared.  
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Fig. 2. Fixed (top) and flexible (bottom) scheduling, involving 
function postponement. Curved line represents value of 
scanning function 

 
REPRESENTATION, ANALYIS AND DESIGN 

OF DYNAMIC FUNCTION SCHEDULING 
 

The aim of Dynamic Function Scheduling is to 
make scheduling decisions and their associated trade-
offs transparent to the designer, and to enable him/her 
to support the operator’s online control decisions. This 
support may involve the visualisation of timing 
constraints, or the design of sequentially flexible 
functions, e.g. functions that allow pre-emption or 
interleaving (an important contribution in this area is 
McFarlane’s “taxonomy of human interruption” and the 
associated empirical HCI research on different 
interruption methods; immediate, negotiated, scheduled 
and mediated interruption). Automation has a place in 
these considerations both as an operation strategy with 
particular temporal properties and as a support system 
for making online scheduling decisions. Formal analysis 
using scheduling or queuing models is a first step 
towards understanding these design choices, as it allows 
the representation of workload levels, their distribution, 
and the required and available processing time of 
different function servicing strategies. On a lower level 
of analysis, task notations with a set of temporal 
operators are required to express the compatibility of 
different strategies (one candidate may be the User 
Action Notation, c.f. Hartson and Gray, 1992).  

However, in addition to formal analysis and 
representation methods, design of DFS needs to be 
informed by an understanding of the characteristics of 
human temporal cognition, and in particular temporal 
errors. As Hollnagel (1991) notes in his discussion of 
the phenotypes of human error, “[s]urprisingly, few of 

the existing action and error taxonomies include the 
aspect of time, but rather describe and classify human 
error on an atemporal (static) basis […] In many 
domains it is, however, necessary to include time in a 
much more conspicuous way, as, perhaps, one of the 
principal ‘mechanisms’ or ‘error areas’ of human action 
[…] This is particularly true with respect to planning and 
scheduling.” Human performance in temporal control 
tasks can deviate strongly from the normative model. 
These performance deficits may be related to low-level 
biases in the psychophysics of time perception, such as 
under or over estimation of durations. They may also be 
caused by decreased accuracy of decision-making due 
to time stress (see Edland and Svenson, 1993, for a 
review). Advances in the cognitive psychology of time 
(e.g. Block, 1990) have fostered an interest in higher-
level aspects of temporal cognition among the human 
factors community (c.f. De Keyser, 1995). For 
instance, Moray et al. (1991), using Tulga and 
Sheridan’s (1980) experimental paradigm, found 
evidence that operators faced with various tasks of 
different duration prefer to start the longest task first, 
even though the normative model would require the 
shortest task to be started first. In a multi-task micro 
world experiment (combined manual and supervisory 
control), Kirlik (1993) found evidence that operators 
are sensitive to the temporal costs of automation and 
refuse to use an automatic aid if its engagement is 
associated with a considerable delay. Both these studies 
discuss human performance data against the 
background of a normative model of the task and argue 
for the importance of combining empirical data and 
formal analysis. This approach is in the spirit of the early 
multitask studies mentioned above, and could serve as a 
blueprint for future Dynamic Function Scheduling 
research.  

Finally, a growing literature on temporal factors 
in judgement and decision making suggests that 
conventional utility models, where costs and benefits are 
usually described in terms of money or similar 
commodities, may not be valid models for describing 
the perception of temporal costs. For instance, Soman 
(2001) found that the “sunk cost” effect (where a prior 
investment has an irrational influence on a current 
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decision) disappeared when the investment was 
described in terms of time instead of money. Varey and 
Kahneman (1992) studied subjects’ retrospective 
evaluation of extended periods of aversive experiences 
and found evidence that these judgements are influenced 
by the peak discomfort, the discomfort towards the end 
of the episode, and the trend over the episode, but not 
by the duration of the episode. If such effects translate 
into the Human Factors domain, they may bias the 
operators’ assessment of the value of concurrent 
functions or the available function servicing strategies 
(e.g. various automation options). 

 
CONCLUSION 

 
This position paper argues for the introduction 

of a temporal perspective on Dynamic Function 
Allocation. A comprehensive understanding of 
workload management choices requires consideration 
of allocation along the human – automation resource 
dimension as well as the temporal dimension. Value-
based scheduling and strategy selection enables both the 
designer and the operator to consider priority structures 
among functions and the trade-offs involved in different 
function servicing strategies. Automation has an 
important role to play in making these trade-offs explicit 
and in supporting scheduling decisions. A design 
method for DFS may combine representations of the 
temporal structure of functions with formal workload 
management approaches such as queuing models. 
These normative models have also provided a useful 
basis for interpreting empirical data on human 
scheduling performance. Future Human Factors 
research into Dynamic Function Scheduling can draw 
on a growing body of literature on the cognitive 
psychology of time to explore temporal control 
strategies. 
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