
Using Interaction Style to Match the Ubiquitous User
Interface to the Device-to-Hand

Stephen W. Gilroy and Michael D. Harrison1

Dependability Interdisciplinary Research Collaboration,
Department of Computer Science, University of York, York YO10 5DD, UK.

steveg@cs.york.ac.uk

Abstract. Ubiquitous computing requires a multitude of devices to have access
to the same services. Abstract specifications of user interfaces are designed to
separate the definition of a user interface from that of the underlying service
This paper proposes the incorporation of interaction style into this type of
specification. By selecting an appropriate interaction style, an interface can be
better matched to the device being used. Specifications that are based upon
three different styles have been developed, together with a prototype Style-
Based Interaction System (SIS) that utilises these specifications to provide
concrete user interfaces for a device. An example weather query service is
described, including specifications of user interfaces for this service that use the
three different styles as well as example concrete user interfaces that SIS can
produce.

1 Introduction

The increasing availability of personalized and ubiquitous technologies leads to the
possibility that whatever the device-to-hand is, it becomes the way to access services
and systems. Therefore, interfaces to services must be designed for a variety of
different types of device from desktop systems to handheld or otherwise portable
devices. Different styles of interaction often suit different devices most effectively.
While the appearance of ubiquitous devices has brought forth a proliferation of
innovative interactive techniques, the broad categories and aspects of style as, for
example, identified by Newman and Lamming [1] can still be applied. While a key-
modal interface may be appropriate for a mobile telephone, with its limited screen and
restricted keypad, a direct manipulation (DM) interface may be appropriate for a
device based around touch / pen interactive techniques, such as current models of
palmtop or tablet PCs. Typically in such situations a different low-level interface will
have to be designed separately for each device. It is possible that several interaction
styles may have to be supported for different users or parts of the system on the same
device. As new technologies evolve to meet the demands of ubiquitous computing
additional styles will emerge.

1Mailing address: Informatics Research Institute, University of Newcastle upon Tyne, NE1

7RU, UK. michael.harrison@ncl.ac.uk

2 Stephen W. Gilroy and Michael D. Harrison

Style-specific design considerations normally take the form of guidelines,
heuristics or ad-hoc rationalizations by designers [2]. Designs to support many
devices may be facilitated by incorporating interaction style explicitly into an
implementation. In this paper we demonstrate that incorporating style-level
descriptions into a model of a user interface can give more flexibility than forcing a
single user interface model on a heterogeneous selection of devices. This paper is
concerned with an approach in which interaction with a service is bound to the
features of the platform through a mediating style description. The aim is to support
an interface that is appropriate given the technological constraints or opportunities
afforded by the platform. In section 2 the approach to the style-based interaction
system is contrasted with other approaches to platform independent service provision.
In section 3 the interaction style approach is described in more detail. In section 4 an
implementation of a style-based system and the specifications that drive it are
described. In section 5 an example of a weather system is used to illustrate the idea. In
section 6 the approach is discussed again in relation to other similar approaches and in
section 7 the paper draws conclusions.

2. Modelling the Ubiquitous User Interface

Separating the user interface from application functionality [3] is a key theme in the
delivery of interactive applications to multiple platforms. This is achieved by
abstracting the interaction with a user interface from its presentation on a specific
device. Model-based user interface development [4] provides useful tools to cleanly
separate the parts of an application. However, its potential for easing cross-platform
user interface development is less apparent when platforms differ in their support for
styles.

The rise of ubiquitous computing and the proliferation of user appliances of widely
differing capabilities and limitations have given new impetus to the need for cross-
platform interface design. A provider of ubiquitous services typically wishes to target
different users who may use devices of different capabilities, or a user or set of users
who wish to migrate their use of services across several different devices.

Separation of application functionality and delivery via abstractly defined
interfaces can be addressed in this broader context by the use of service frameworks
[5] that organize and aggregate software functionality and data, and facilitate
universal access to it. Universal user interfaces will provide interaction with services
on a variety of devices, tailoring the interface to suit the device.

2.1 Service Frameworks

A service framework enables application functions to be delivered to devices
whatever and wherever the devices are. The Web is an example of a framework for
the delivery of many similar services through Hyper-Text Markup Language (HTML)
files provided by web servers. Web services are delivered via Universal Resource
Locators (URLs) that identify a particular service (usually requesting a single page of
information). A user therefore makes the required service explicit by entering a URL

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 3

into the browser manually, through a bookmark, or via a hyperlink. Other
frameworks, e.g., XWeb [6], use similar approaches to existing web services and
provide better support for diverse interaction.

2.2 Universal Interface Specification

An application's behaviour can be defined independently of platform, through the use
of services. However, a mechanism is required to map that behavior to the specific
interface components of a device. Model-based approaches map abstractions of
interaction objects onto platform-specific implementations. The interactive
components of the interface, for example a text box for inputting text or a drop-down
list for making a choice, are abstracted and encapsulated in terms of a relatively small
set of “interactors” [7]. Other approaches utilize several levels of abstraction that
may include low-level “widgets”, as well as more abstract components such as
“group” or “choice”. The sets of widgets available on different platforms may not
intersect in terms of detail but as long as the abstraction can be fulfilled by a widget
that is available on a particular platform then a concrete interface can be rendered.

2.3 Problems of Abstract User Interface Models

Abstract interface models [6, 8-12] are problematic when abstraction is such that there
is no convenient implementation of the low-level interaction objects on a particular
platform. A model must be defined to either restrict the set of objects to ones that are
common across all platforms, or provide a wider set of objects to cover the variation
in platform. In the former case, the interface becomes the “lowest common
denominator” of all target platform capabilities, and is unsuitable if a new platform
has interaction objects that do not exist in the available set. In the latter case, abstract
objects are a union of available platforms. This gives rise to the two-fold problem of
an ever-expanding library, or “toolkit”, of widgets and an overly complicated
mapping scheme to select the correct widgets for a platform.

Presenting a user interface for a UIML [11,12] specification on a specific platform
involves more than selecting an appropriate widget representation. An interface
structure that is defined canonically may fit one platform but not another. It is then
necessary to have different specifications for cross platform structure variations, or
alternatively a generic structure specification, which may be overridden when
mapping the parts of the interface to actual platform elements. This defeats some of
the point of a single structure definition. UIML also assumes a one-to-one mapping
of parts to toolkit implementations. If a part in one interface implementation is
needed it is added to the canonical definition of parts, even if it is not mapped to a
particular platform.

XWeb [6], on the other hand, provides a higher-level formal specification of
semantic interaction than a simple widget mapping. However, it still suffers from the
“structure” problems of UIML in that it uses “grouping” interactors that arrange other
interactors in a hierarchical structure, incorporating a canonical XView. An XView
defines which elements of a data tree are manipulated by each interactor. While

4 Stephen W. Gilroy and Michael D. Harrison

XWeb allows designers to reuse a view specification across clients with no extra
effort, designs have to combine the interactors into views that are suitable for all
platforms. The designer can therefore either design one set of views that maps to all
client devices, or create a different set of views for different client types, losing the
advantage of a single specification. Even if this is done, a new client with new
interactor implementations might have usability problems with existing views, a
problem encountered when speech widgets were implemented in an XWeb client [6].

3. A Model of Interaction Style

A model that incorporates interaction style makes it possible to vary the structure or
interface semantics applied across devices. User interface descriptions are defined on
a per-style basis and a target device selects the description that best maps onto its
capabilities. Hence, if a form-fill interaction style is most appropriate for the device in
the context of a particular application then that style is bound to the application and
mapped to the interactive components of the device. For another target device a
dialogue style might be more appropriate and in this case, the same application
software would be bound with this different style.

The number of styles supported in the model should be finite and small, to allow a
designer to target the maximum number of devices with the minimum amount of
effort. It should also be possible to add a completely new style by creating additional
definitions for existing interfaces. Although a designer does not have to support all
styles, compatibility will be lost if devices do not support the styles chosen.

Two distinguishing features of a style are the manner in which they guide the user
to the desired task or function and how they gather required input from the user.
There may be semantic relationships that are shared across styles but which manifest
themselves in different ways.

The style-based interaction system described in section 4 incorporates support for
three styles: form-fill, dialogue and menu. Although these three are considered
“classic” styles that can be applied to desktop systems, they also apply equally to
other kinds of device. The services provided may be targeted at both desktop and
mobile devices. Form-fill would map onto a web-style interface on desktop type
systems, dialogue for voice-based telephone systems and menu for mobile phones or
embedded devices.

3.1 Form-Fill Style

Forms are two-dimensional rather than one-dimensional, so navigation is important.
The organization of a form on the display of the device requires a logical structure so
that it can be decomposed to suit different display capabilities [13].

Form elements have different interaction requirements. Simple elements just
require text entry while complex elements involve groups of choices or data of a
particular format and may be mandatory or optional. The relation between elements
might mean that two elements are mutually exclusive, or that filling in an element

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 5

makes other elements or form sections mandatory. In addition, the elements that are
filled in might affect what actions are available with the form data.

When the form is filled in, an action must be chosen to process the information.
This is usually done by special commands, or buttons. An action might specify a
certain set of form elements from which it processes information or the action
invoked by a command might depend on the value of certain form elements.
Validation of elements could occur before processing or feedback given if the
processing finds invalid information.

A typical example of a form-fill style is the web-based form illustrated in figure
1(a).

Fig. 1(a). A Web-based Form Interface

3.2 Dialogue Style

The key feature of this style is the structure of the dialogue with the user. As
questions are posed, the user's answer determines the next question asked and that
answer may be a piece of data that is gathered. A state-chart notation is useful in
describing this interface. Each state is a mode of the interface, and the transitions
between states are the available choices. On entering a state the appropriate prompt is
displayed. Input and output in a question/answer interface is one-dimensional so,
while it is limited in terms of interaction, it can be supported by devices without
complex graphical capabilities and the conversational nature of interaction facilitates
the use of speech. VoiceXML systems (figure 1(b)) are an example of a dialogue style
of interface.

6 Stephen W. Gilroy and Michael D. Harrison

Fig. 1(b) A Voice XML Dialogue Interface

3.3 Menu Style

The navigational structure of a menu style is governed by how best to partition the
menu space to provide meaning to guide the user. Breadth is preferred over depth, as
deep menus have the same orientation problems as dialogue structures. Devices that
employ menu interfaces have a limited, customised input mechanism based around a
small number of specialized buttons or keys. Input and navigation must be designed
to facilitate easy mapping from an unknown layout of keys. Current generation
mobile phones typically utilize a menu interface as shown in figure 1(c).

Fig. 1(c) A Mobile Phone Menu Interface

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 7

4 Style-Base Interaction System (SIS) Framework

A prototype application framework supports interfaces using a variety of styles as
outlined in section 3. The components of the framework are shown in figure 2. The
framework consists of a runtime system that is configured by a set of eXtensible
Mark-up Language (XML) specifications describing the service and style-based user
interfaces of an application.

Fig. 2. SIS Framework

SIS consists of both components that reside on a client appliance and those that can
be managed on a remote server. Within a running ubiquitous application, this
distinction is transparent. SIS is designed to switch easily between different style
instantiations running on a single service instantiation. A user may thus migrate
between different appliances without losing saved task-level information. It is feasible
to swap a running style between different instances of the same service or two
different services that both support the set of tasks required by the style definition.

The three components that deal with the initialization and management of an
application are the Service Browser on the client, a Style Manager to look after styles
and a Task Manager to look after the tasks required by services. Managers exist as
separately running entities, possibly residing on remote servers, with their own
resources and are configured using XML specifications of task and style. They use
this configuration to generate the run-time components of the interface: Service
Instances and an Abstract Interface for each style. Device specific Presentation Units
provide concrete interface instantiations on each client. A weather service application
is used to illustrate the approach.

Task
Manager

Style
Manager

Service
Instance

Abstract
Interface

Presentation
Unit

Service
Browser

Client

Server

8 Stephen W. Gilroy and Michael D. Harrison

4.1 Task Definition using Service Specifications

The XML specification of a service defines its tasks, required function and data
storage. A task manager generates run-time instantiations of services called service
instances from these specifications. A service instance provides the data storage for
its component tasks and a list of all the tasks in the service. Task instantiations are
shared between services that use them, and are maintained by the task manager.
When a service instance needs a task, it calls the task using the manager that created
it. Tasks are identified by a namespace scheme2 to avoid clashes between tasks of the
same name utilized by different services.

Functions. Service functions implement the tasks that are part of a service and
“wrap” the logic implementation so that there is a consistent interface for use in SIS.
SIS also allows external functions (utility functions) to manipulate data before it is
used in a function call. An example service and utility function specification are
shown in figure 3. The class and method attributes identify a function's Java
implementation. The <return> and <parameter> elements identify the
function's return type and required parameters respectively. Utility functions do not
affect the state of the underlying application logic, but are assumed to perform some
repeatable translation upon data. SIS therefore does not need to know the
implementation of data types to be able to manipulate them.

Fig. 3. Function Definitions: A Service Specification XML Fragment

Tasks. A single task within a service represents the lowest level of interaction with an
application that is understandable to the user. Tasks describe a flat pool of possible
functions and define how they are invoked. Task parameters can be provided either by
user input or by a stored value. In the case where a needed parameter is a stored value
that is not initialized, that task can be defined as unavailable.

Each task can call on at most one service function to guarantee atomicity of tasks
and avoid problems of sub-task ordering. The provision of utility functions is meant
to encourage data representation issues to be separated from logic. Hence, logically

2 A namespace is a unique identifier that labels a group of related items. Different groups can

then use the same identifiers internally to label different items.

<function class=”WeatherService” method=”getWeather”
name="GetWeather">
 <return type="weather">weatherData</return>
<parameter type="string">cityName</parameter>
</function>

<utility name="postalToCity" class="PostUtil"
method="postalToCity">
 <return type="alpha">cityName</return>
 <parameter type="string">postalCode</parameter>
</utility>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 9

similar tasks may use the same underlying service function and use utility functions to
manipulate the data they provide to that function.

An example task specification fragment is shown in figure 4. Note the definition of
the mapping of input from the user (<variable> elements) to parameters of the
service function (<parameter> elements). This mapping technique is described
below.

Fig. 4. Task Definition: A Service Specification XML Fragment

Mapping Tasks onto Functions. The data passed from tasks to their underlying
function are defined in terms of input variables and function parameters. These are
represented in task definitions by <variable> and <parameter> element tags.
The types of parameters defined in the task exactly match the input parameters of the
underlying service function. However, there need not be the same number of task
parameters as variables. The manipulation of a variable to provide a parameter value
is defined with the <parameter> element tag. It identifies the variable to be used,
what mapping to perform and whether to store the generated parameter value for later
use.

The default mapping, if no mapping is explicitly defined (as in figure 4), is no
manipulation at all. Data is output as a parameter exactly as it is received as a
variable.

Fig. 5. Utility Mapping in a Task Parameter: A Service Specification XML Fragment

A utility mapping (see figure 5) assigns a utility function to transform the data of a
variable that defines a mapping from postcodes to city names. The name attribute
identifies the utility function to use, and the nested <parameter> element tags
describe the mapping for the utility function's parameters.

Extract mappings take an element of a record type and return one of the items
within the record as specified in the parameter. (Figure 6 shows extraction of an ID
value from an account record.)

<task name="Get City Weather" taskFunction="Get Weather">
 <variable type="simple">cityName</variable>
 <parameter type="alpha"
 source="task"
 store="lastCity">cityName</parameter>
</task>

<parameter type="alpha"
 source="task"
 mapping="utility"
 store="lastCity"
 name="postalToCity">
<parameter type="alpha"
 source="task">postalCode</parameter>
</parameter>

10 Stephen W. Gilroy and Michael D. Harrison

Fig. 6. Extract Mapping in a Task Parameter: A Service Specification XML Fragment

Keeping Track of State. A task-based service keeps track of persistent state at a task
level separately from any provision made by underlying logic. State therefore can be
shared between tasks directly without the underlying logic. It is possible to support
stateless implementations of the logic (such as with raw HyperText Transfer Protocol
(HTTP) based systems). A task parameter can define a mapping from a state variable
instead of a task variable. In figure 7, a state variable keeps track of the name of a city
for which weather is requested and a task uses the name to give an update of that
request.

Fig. 7. State Definition and Use in a Task Parameter: A Service Specification XML Fragment

4.2 Interaction Style Specification

The key feature of the SIS approach is how tasks are implemented on different
platforms. Each platform supports a set of presentation objects. Between the tasks and
the presentation, each presentation style supports its own abstract user interface
elements that gather input and display output to the user. These elements have their
own distinctive way of navigating available tasks. No explicit layout or presentational
information is contained in a style description; rather it is the semantic relationship
between interface components that is described. It is the job of the presentation unit to
resolve these relationships into an appropriate presentation.

Style instances are generated in the SIS client in order to facilitate fast user
response. Therefore, events generated by presentation implementations are dealt with
by style-specific, presentation-independent, objects that reside locally. The style
manager generates each style instance from scratch locally on each client in order to
customize a client's access to a common service.

Three styles are currently implemented but aim to provide a foundation for a
potentially larger set.

<parameter type="alpha"
 source="task"
 mapping="extract">account
accID</parameter>

<state> <variable type="string">lastCity</variable> </state>
...
<task name="Update Weather" taskFunction="Get Weather">
 <parameter type="alpha" source="store">lastCity</parameter>
</task>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 11

Form-Fill Style
The style definition for a forms-based style involves: field elements for gathering user
input, actions that can be invoked and a mapping from actions and fields to
underlying tasks.

A field element is an abstract interactor that allows the user to enter a value to be
used in a task, for example text entry, password entry, single choice, multiple choice,
date entry, range entry and currency entry. Questions about whether a single choice
entry would be represented by a drop-down list, radio buttons or some other selection
method are deferred to platform implementation and depend on the actual data being
selected and the layout constraints of the presentation. An example of a simple text
field element and a single choice element are given in figure 8. The definition gives
the type of the field element and the type of its value.

Fig. 8. Form-fill Style Specification: Example text field and single choice field element
definitions

Each style provides mechanisms for processing the data to produce an appropriate
representation. Providers of services may specify functions that perform
representational transformations. For example, in the form-fill style an output
processor defines a set of items that can be extracted from a data type (see figure 9).
Several output processors can be defined to work on the same types and used for
different purposes.

Fig. 9. Form-fill Style Specification: An example output definition

A form is built out of fragments that map a set of fields to the inputs of a particular
task. A fragment's task is only invoked if the requirements of the fields of that
fragment are satisfied. A fragment also specifies an output processor that can extract
information from the output of the task.

<field name="postalText" type="text"/>

<field name="accountChoice" type="choice" value="AccountType">
 <n-selection>1</n-selection>
 <selection-values source="utility">Get Accounts</selection-
values>
</field>

<processor name="weatherOut" type="text">
 <input class="WeatherData">weatherData</input>
 <converter class="WeatherData">
 <item>
 <source>weatherData</source>
 <method>getWeatherText</method>
 </item>
 </converter>
</processor>

12 Stephen W. Gilroy and Michael D. Harrison

Fig. 10. Form-fill Style Specification: An example form fragment definition

This definition (figure 10) outlines a hierarchy of actions that may be invoked by a
user and associates with each action a set of form fragments that are evaluated when
that action is invoked. Typically an action would be invoked by the user pressing a
submit button to indicate completion of the form ready for processing. An action is a
semantic unit within the form. Trees of actions, together with form fragments allow a
presentation to compose a form representation. The presentation decides whether
fields are presented on several “pages” or on a single “page” and use different buttons
to invoke different actions.

Dialogue Style
Dialogue style definitions are described by a set of grammars of input token
combinations. Dialogue structures make use of these grammars to move between
elements of the dialogue. A grammar used in a transition between states is called a
match set and contains a list of match items that can be matched by a series of tokens
in input. For example in figure 12 <matchitem> contains a main <token> whose
contents must match the next input token and optionally a list of match items that can
be matched after that token. Items are evaluated in list order. As soon as an item
matches, no more items in a list are evaluated. An item only matches if its main token
matches and one of its sub items matches. That a possibility is optional is supported
by a special <lambda> match item that is matched if no other items in a list are
matched.

 Fig. 11. Dialogue Style Specification: An example match set definition fragment

The dialogue structure is a tree of states that has special task-invoking states as the
leaf nodes in the tree (see figure 12). States are defined with <dialogue-state>
element tags and contain possibly conditional prompts that are displayed if the
dialogue stops at that state. A transition attribute identifies match sets or stored
variables that a user's input must match. After a task is invoked, the dialog restarts at
the root of the tree.

<form_fragment name="cityForm">
 <task>Get City Weather</task>
 <input req="mandatory">cityText</input>
 <output type="text">weatherOut</output>
</form_fragment>

<matchset name="CityMatch">
 <matchitem>
 <token>city</token>
 <matchitem>
 <token>name</token>
 </matchitem>
 <lambda/>
 </matchitem>
</matchset>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 13

Fig. 12. Dialogue Style Specification: An example dialogue tree definition fragment

Task invocations are defined in special states that define the underlying task to be
invoked, which dialogue variables to use, and the response to be generated with the
output (figure 13).

Fig. 13. Dialogue Style Specification: An example task state definition fragment

Prompts can be either predefined questions or the response from a task invocation.
Responses can also be shared between task instances. User variable input is
transferred to the task states by use of a set of defined variables. The name of these
variables can be used in place of a grammar match set in a transition between states.

Menu Style
A menu-based interface is specified by a tree of menu items (see figure 14). Each
node representing an item has a label and an optional description of a task invocation.
Only the leaves of the tree can have task invocations. Details of the task are wrapped
into the menu item specification, with the name of the task and an output data
extraction defined as usual, together with a list of inputs. Inputs can have a label to be
displayed to the user when entering that input.

<dialogue-state>
 <prompt source="GetWeatherPrompt"/>
 <prompt source="GetUpdatePrompt">
 <condition task="Update Weather">
 <name>available</name>
 <value>true</value>
 </condition>
 </prompt>
 <dialogue-state transition="CityMatch">
 <prompt source="CityInput"/>
 <dialogue-state transition="$CITYVAR">
 <prompt source="CityWeather"/>
 </dialogue-state>
 </dialogue-state>
...
</dialogue-state>

<response name="weatherResponse" class="WeatherData">
 <output type="text">
 <method>getWeatherText</method>
 </output>
</response>
<task-state name="PostWeather">
 <task>Get Postal Weather</task>
 <parameter>$POSTVAR</parameter>
 <response>weatherResponse</response>
</task-state>

14 Stephen W. Gilroy and Michael D. Harrison

Fig. 14. Menu Style Specification: An example menu item definition

This current version is limited to descriptions of simple menus, but as an aim of the
specifications is to simplify interface definition for simple interfaces, the descriptions
are also simple. It is envisioned that the specification will be extended to cope with
more complicated menu semantics and user input.

4.3 Presentation

Presentation units run on the client device and prescribe a concrete user interface for
style definitions. Each style will have a presentation unit tailored for it that runs on a
particular device. A client presentation unit utilizes a reference to a remote service
instance and the appropriate style instance. They give access to the internal object
representations of tasks and the elements of styles. When a task is to be invoked, it
passes the appropriate data to the service instance.

Current implemented presentation units use simple techniques to deal with physical
layout and representational issues. An expansion of the presentation component in
the future might include dealing with details of physical layout in an abstract way.

5 Creating Interfaces with Styles

An example weather service together with definitions of the three different styles of
interfaces described above, and their rendering by presentation units is now described.
The service provides a single function that returns a textual description of the weather
for a given location supplied as a string.

5.1 The AnyWeather Service

The weather query service is described by a XML task specification for the service
shown in figure 15. Three separate tasks perform the service:

1. Request the weather for a city by name (“Get City Weather”)
2. Request the weather for a city by postcode (“Get Postal Weather”)
3. Refresh the last weather request (“Update Weather”)

Requesting the weather for a city by name utilizes the underlying service function
“Weather Service” directly, while a post-code based request requires the use of

<menu-item>
 <label>Weather by PostCode</label>
 <task>Get Postal Weather</task>
 <input type="string">
 <name>postalCode</name>
 <label>Enter postal code</label>
 </input>
 <output class="WeatherData" method="getWeatherText"/>
</menu-item>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 15

an external utility function, “postalToCity”, to convert postcodes to city names.
The “Update Weather” task utilizes a state store object to keep track of the last
city for which weather was requested.

Fig. 15. AnyWeather task specification

5.2 Form-Fill Interface

The specification of the form-fill style for the AnyWeather service is shown in figure
16. Two fields are defined, one to enter city names (“cityText”) and one to enter
postcodes (“postalText”). A processor (“weatherOut”) extracts the description
of the weather from a WeatherData output object. Three form fragments, for each
of the three tasks, use the defined processor for output and the two fields as inputs.
The <sub-form> definitions match the form fragments to an action and a single
display.

<service location="http://www-
users.cs.york.ac.uk/~steveg/weather/">
<function class="WeatherService" method="getWeather" name="Get
Weather">
<return type="weather">weatherData</return>
<parameter type="string">cityName</parameter>
</function>
 <utility name="postalToCity" class="PostUtil"
method="postalToCity">
 <return type="alpha">cityName</return>
 <parameter type="string">postalCode</parameter>
 </utility>
 <state>
 <variable type="string">lastCity</variable>
 </state>
<task name="Get City Weather" taskFunction="Get Weather">
<variable type="simple">cityName</variable>
 <parameter type="alpha"
 source="task"
 store="lastCity">cityName</parameter>
</task>
<task name="Get Postal Weather" taskFunction="Get Weather">
<variable type="simple">postalCode</variable>
 <parameter type="alpha"
 source="task"
 mapping="utility"
 store="lastCity"
 name="postalToCity">
<parameter type="alpha" source="task">postalCode</parameter>
</parameter>
</task>
 <task name="Update Weather" taskFunction="Get Weather">
 <parameter type="alpha"
source="store">lastCity</parameter>
 </task>
</service>

16 Stephen W. Gilroy and Michael D. Harrison

Fig. 16. AnyWeather form-fill style specification

The form-fill presentation unit renders the form components on a single screen
with two buttons representing the first sub-level of the action tree (see figure 17). The
interface uses the requirements of the form fragments to evaluate which of the two
user input tasks to invoke when the “Get Weather” button is pressed. The interface is
told that “City Name” is mandatory for the “Get City Weather” task, but not required
for the “Get Postal Weather” task, so if a city name is entered it can assume that the
city task is required, and the button will invoke that task. In addition all non-required
fields of that task will be disabled to help indicate which task has been chosen.

<style type="form"
 location="http://www.users.cs.york.ac.uk/~steveg/weather">
 <field name="cityText" type="text" />
 <field name="postalText" type="text" />
 <processor name="weatherOut" type="text">
 <input class="WeatherData">weatherData</input>
 <converter class="WeatherData">
 <item>
 <source>weatherData</source>
 <method>getWeatherText</method>
 </item>
 </converter>
 </processor>
 <form_fragment name="cityForm">
 <task>Get City Weather</task>
 <input requirement="mandatory">cityText</input>
 <output type="text">weatherOut</output>
 </form_fragment>
 …
 <form>
 <display type="text">weatherDisplay</display>
 <action-set>
 <action-set name="getWeather">
 <action name="getCity"/>
 <action name="getPostal"/>
 </action-set>
 <action name="updateWeather"/>
 </action-set>
 <sub-form>
 <fragment>cityForm</fragment>
 <action>getCity</action>
 <display>weatherDisplay</display
 </sub-form>
…
 </form>
</style>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 17

Fig. 17. Weather Service form-fill interface

5.3 Dialogue Interface

The specification of the dialog style for the AnyWeather service is shown in figure
18. Prompts are defined for the initial dialog state and for requesting user input. A
response extracts the weather description from a WeatherData object in much the
same way as for the form-fill style. A task state for each of the available
tasks is assigned a response and an appropriate variable. Three match set grammars
let a user enter a variety of phrases to select each of the tasks. For instance, a user can
enter “postcode”, “postal code” or just “postal” to access the Get Postal
Weather task. A dialogue with three paths leads to the three tasks. The paths to the
user input tasks have two states, one of which prompts the user to enter the
appropriate input if it is not already in the token string. The update task doesn't
require user input so only requires one state transition to reach it. The presentation
unit for the dialogue renders the interface shown in figure 19.

18 Stephen W. Gilroy and Michael D. Harrison

Fig. 18. AnyWeather dialogue style specification

<style type="dialogue">
<question name="GetWeatherPrompt">...</question>
<question name="GetUpdatePrompt">...</question>
<question name="CityInput">...</question>
<question name="PostInput">...</question>
<response name="weatherResponse" class="WeatherData">
 <output type="text"><method>getWeatherText</method></output>
</response>
<task-state name="PostWeather">
 <task>Get Postal Weather</task>
 <parameter>$POSTVAR</parameter>
 <response>weatherResponse</response>
</task-state>
...
<matchset name="PostMatch">
 <matchitem>
 <token>postcode</token>
 </matchitem>
 <matchitem>
 <token>postal</token>
 <matchitem>
 <token>code</token>
 </matchitem>
 <lambda/>
 </matchitem>
</matchset>
...
<dialogue-state>
 <prompt source="GetWeatherPrompt"/>
 <prompt source="GetUpdatePrompt">
 <condition task="Update Weather">
 <name>available</name>
 <value>true</value>
 </condition>
 </prompt>
 ...
 <dialogue-state transition="PostMatch">
 <prompt source="PostInput"/>
 <dialogue-state transition="$POSTVAR">
 <prompt source="PostWeather"/>
 </dialogue-state>
 </dialogue-state>
 ...
</dialogue-state>
</style>

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 19

Fig. 19. Weather Service dialogue interface

Fig. 20. AnyWeather menu style specification

5.4 Menu Interface

The specification for the menu style of interface for AnyWeather is shown in
figure 20. All three tasks are available from the main menu, one item per task. The
two tasks requiring user input have inputs fields rendered as separate entry screens in
a menu presentation implementation as shown in figure 21.

<style type="menu"
 location="http://www-users.cs.york.ac.uk/~steveg/weather">
 <menu>
 <title>Weather Service Menu</title>
 <menu-item>
 <label>Weather by City</label>
 <task>Get City Weather</task>
 <input type="string">
 <name>cityName</name>
 <label>Enter a city name</label>
 </input>
 <output class="WeatherData" method="getWeatherText"/>
 </menu-item>
 <menu-item>
 <label>Weather by PostCode</label>
 <task>Get Postal Weather</task>
 <input type="string">
 <name>postalCode</name>
 <label>Enter postal code</label>
 </input>
 <output class="WeatherData" method="getWeatherText"/>
 </menu-item>
 <menu-item>
 <label>Update Weather</label>
 <task>Update Weather</task>
 <output class="WeatherData" method="getWeatherText"/>
 </menu-item>
 </menu>
</style>

20

Fig. 21. Weather Service menu interface

6 Discussion

The specifications in SIS separate the specification of the functionality of a ubiquitous
application from the specification of its interface and provide a selection of different
styles of interface so that an interface can more closely match the capabilities and
limitations of a device. Both achievements are consistent with the original
requirements of User Interface Management Systems (UIMS). Having a clean
separation of function and interface has particular advantages when providing a
selection of interface descriptions. It is clearly less important when providing a single
“canonical” interface as in the case of XWeb and UIML (as discussed in section 2.3)
or a UIMS vision based around a single type of device.

SIS achieves this separation by making the abstraction of functionality very simple.
Any semantic relationships between the tasks must occur at the style level. In the
AnyWeather service the relationship of tasks in the form-fill style (figure 16) is
different from the dialogue style (figure 18), and this would be the case however
systematically the layering was achieved.

Style specifications do not dictate how a presentation unit displays the information
conveyed in the style. Presentation units on different devices display a style in
different ways to fit that device even though the style definition is the same on each
device. Applications can therefore use native applications on devices by having a
presentation unit that renders interfaces in a way that is consistent with them. For
instance a presentation unit could choose to display the AnyWeather form-fill actions
as three separate buttons, rather than two, or indeed display the three sub-forms on
different screens.

Although AnyWeather is designed to be simple to illustrate the basic ideas, more
features can be added to each of the different styles. A further application of these
features demonstrating SIS is based around an internet banking scenario. In this case
more complex data types need to be supported, and this requires development of a

Using Interaction Style to Match the Ubiquitous User Interface to the Device-to-Hand 21

richer type system. List and record types can be implemented to help support more
complex applications as well as user-defined custom types (similar to those in
XWeb).

The relative size of dialogue style definitions might be said to be in conflict with
the requirements for definitions for simple interfaces to be simple themselves.
However, the benefit of having a clear, extensible specification means that the parsing
engine of the system can be much simpler and allows for better integration with
simple tools. In future, size might be alleviated without affecting the parsing engine
by using transformations from more concise specifications into the current versions.

7 Conclusion

A model of interaction style has been devised that can be used to provide a range of
possible interfaces to be presented on a device. Basing a single interface specification
on simple (yet still abstract) concepts can work, but is limited if target devices are too
diverse in their interactive capabilities. Conversely, tying the specification too closely
to the capabilities of any one device leads to the situation of having a different
specification for each device. Having a finite set of styles specifications can be
complex enough to make fuller use of devices capabilities yet different and flexible
enough to work on a wide range of devices. Interaction styles have potential to be
viable for defining interfaces for ubiquitous interactive systems on many devices.
Additional applications will provide the impetus for expanding the features of SIS,
and demonstrate its potential and flexibility.

References

1. Newman, W., Lamming, M: Interactive System Design. Addison-Wesley (1995)
293—322

2. Shneiderman, B: Designing the User Interface, 3rd edition. Addison Wesley Longman
(1998) 71-74

3. Edmonds, E.: The emergence of the separable user interface. In Edmonds, E., ed.:
The Separable User Interface. Academic Press (1992) 5-18

4. Vanderdonckt, J.: Current trends in computer-aided design of user interfaces. In
Vanderdonckt, J., ed.: Computer-Aided Design of User Interfaces Proc.of CADUI
'96. Namur University Press (1996) xiii-xix

5. Abowd, G., Schilit, B.N.: Ubiquitous computing: The impact on future interaction
paradigms and HCI research. In: CHI97 Extended Abstracts. (1997)

6. Olsen, D.R., Jefferies, S., Nielsen, S.T., Moyes, W., Fredrickson, P.: Cross-modal
interaction using XWeb. UIST 2000. (2000) 191-200

7. Myers, B.A.: A new model for handling input. ACM Transactions on Information
Systems (TOIS) 8 (1990) 289-320

8. Ponnekanti, S.R., et~al.: ICrafter: A service framework for ubiquitous computing
environments. In: Proceedings of Ubicomp 2001. LNCS 2201 (2001) 56-75

9. Eisenstein, J., Vanderdonckt, J., Puerta, A.: Applying model-based techniques to the
development of UIs for mobile computers. In: IUI01:2001 International Conference
on Intelligent User Interfaces. (2001) 69—76

22

10. Muller, A., Forbrig, P., Cap, C.H.: Model-based user interface design using markup
concepts. In: DSV-IS. Volume 2220 of Lecture Notes in Computer Science, Springer
(2001) 16-27

11. Phanouriou, C.: UIML: A Device-Independent User Interface Markup Language.
PhD thesis, Virginia Tech (2000)

12. Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S.: UIML: an appliance-
independent XML user interface language. In: Computer Networks. Volume 31.
(1999) 1695-1708

13. Turau, V.: A framework for automatic generation of web-based data entry
applications based 0on XML. In: ACM Symposium on Applied Computing (SAC
2002). (2002)

