
Electronic Communications of the EASST
Volume (FMIS09 Preliminary Proceedings)

Preliminary Proceedings of the
Third International Workshop on

Formal Methods for Interactive Systems
(FMIS 2009)

Guest Editors: Michael Harrison, Mieke Massink
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Volume (FMIS09 Preliminary Proceedings)

Preface

This third edition of the International Workshop on Formal Methods for Interactive Systems
(FMIS 2009) is a forum for the presentation and discussion of research in the interface between
formal methods and interactive system design. This subfield, within applied formal methods,
provides interesting challenges to the specification and analysis of systems: what features of
interactive systems can be specified that contribute to an understanding of their usability? what
analytic techniques are appropriate to assessing whether the design represented by the specifi-
cation has appropriate properties relating to its use? The theme of the workshop is admirably
scoped by the keynote address: “Who wants a model and why?” in which Muffy Calder reflects
on the role of models in recent analyses relating to pervasive and uniquitous systems.

The papers presented here combine traditional concerns of formal methods in HCI with novel
concerns associated with more recent software applications. Hence Bowen and Reeves’ paper
focuses on the model based development problem and considers the role of testing in relation
to the specification of interactive systems, while Combéfis is concerned with the integration
of knowledge about user tasks and the operating environment into the system model. These
are traditional concerns and it is encouraging to see continuing development of these themes.
Several of the papers deal with emerging mainstream application areas including ubiquitous
systems in general and techniques for their analysis (Arapinis and others, Calder and others),
social networking (Catano and others) and enterprise systems (Overbeek and others). These
applications require novel analysis from the perspective of human computer interaction. They
require focus on interoperability (Arapinis and others), context awareness (Calder and others),
multiple viewpoints (Overbeek and others) and privacy (Catano and others). Further papers in
the collection focus on particular frameworks and analytic techniques that are required to model
and analyse trust-related emotion (Bonnefon and others) and the stochastic properties of software
based systems (Anderson and others).

Previous workshops in this series were held in Macau (October 2006) and Lancaster (Septem-
ber 2007). This year FMIS is co-located with the 16th International Symposium on Formal
Methods. It is a privilege to be co-located with this international forum for researchers, practi-
tioners and educators in the field of formal methods which is held in Eindhoven, the Netherlands.

We would like to thank all the members of the Programme Committee and the additional
referees for their careful and timely evaluation and discussion of the submitted papers. We are
grateful to the FM2009 Conference for hosting the FMIS 2009 this year and taking care of
many organisational aspects, and to FM Europe for its financial support. We would also like to
thank all authors for their submissions without which this workshop could not have taken place.
Additionally, we thank EASST (European Association of Software Science Technology), and
our home institutions Newcastle University and CNR-ISTI for their support.

We hope that you will find this programme interesting and thought-provoking and that the
workshop will provide you with a valuable opportunity to share ideas with other researchers and
practitioners from institutions around the world.

October, 2009 Michael Harrison Mieke Massink
Newcastle University CNR-ISTI
FMIS09 Co-Chair FMIS09 Co-Chair

Prel. Proc. FMIS 2009

ECEASST

Volume (FMIS09 Preliminary Proceedings)

Organisation

Programme Committee Chairs

Michael Harrison Newcastle University, UK
Mieke Massink National Research Council, CNR-ISTI, Italy

Programme Committee

Ann Blandford UCL Interaction Center, UK
Judy Bowen University of Waikato, New Zealand
Paul Cairns University of York, UK
José Creissac Campos University of Minho, Portugal
Antonio Cerone UNI-IIST, Macau SAR China
Paul Curzon Queen Mary, University of London, UK
Alan Dix Lancaster University, UK
Gavin Doherty Trinity College, University of Dublin, Ireland
David Duce Oxford Brookes University, Oxford, UK
Stefania Gnesi CNR-ISTI, Pisa, Italy
Michael Harrison Newcastle University, UK
C. Michael Holloway NASA Langley Research Center, USA
Chris Johnson University of Glasgow, UK
Mieke Massink CNR-ISTI, Pisa, Italy
Philippe Palanque University of Toulouse III, France
Luca Simoncini University of Pisa, Italy
Daniel Sinnig Concordia University, Canada
Harold Thimbleby University of Wales Swansea, Wales

External Referees

Alessandro Fantechi University of Florence, Italy

Prel. Proc. FMIS 2009

ECEASST

Volume (FMIS09 Preliminary Proceedings)

Contents

Regular papers:

A Logical Framework for Trust-Related Emotions. 1
Jean-François Bonnefon, Dominique Longin and Manh Hung Nguyen

UI-Design Driven Model-Based Testing 15
Judy Bowen and Steve Reeves

Towards the Verification of Pervasive Systems 31
Myrto Arapinis, Mark Ryan, Eike Ritter, Michael Fisher, Savas Konur, Louise Dennis,
Sven Schewe, Muffy Calder, Chris Unsworth, Phil Gray, Alice Miller and Rehana Yasmin

Tightly Coupled Verification of Pervasive Systems 47
Muffy Calder, Phil Gray and Chris Unsworth

Markov Abstractions for Probabilistic π-Calculus 63
Hugh Anderson and Gabriel Ciobanu

Short papers:

Poporo: A Formal Framework for Social Networking 79
Nestor Catano, Vassilis Kostakos and Ian Oakley

Operational Model: Integrating User Tasks and Environment Information with
System Model 83
Sébastien Combéfis

Roadmap for a Formal Approach to Reduce Inconsistencies in Enterprise
Architecture Views 87
Sietse Overbeek, Antonio Cerone and Marijn Janssen

Prel. Proc. FMIS 2009

ECEASST

Volume (FMIS09 Preliminary Proceedings)

ECEASST

A Logical Framework for Trust-Related Emotions

Jean-François Bonnefon1, Dominique Longin2 and Manh-Hung Nguyen3

1 bonnefon@univ-tlse2.fr
University of Toulouse, CNRS, CLLE, France

2 Dominique.Longin@irit.fr
University of Toulouse, CNRS, IRIT, France

3 Manh-Hung.Nguyen@irit.fr
University of Toulouse, UPS, IRIT, France

Abstract: Emotion and trust are two important concerns for the elaboration of inter-
action systems that would be closer and more attractive to their users, in particular
by endowing machines with the ability to predict, understand, and process emotions
and trust. This paper attempts to construct a common logical framework for the rep-
resentation of emotion and trust. This logical framework combines a logic of belief
and choice, a logic of time, and a dynamic logic. Using this common framework,
we identify formal relations between trust and emotions, for which we also provide
behavioral validation.

Keywords: Modal logic, emotions, trust, distrust

1 Introduction

The rapidly growing field of affective computing aims at developing interaction systems that are
closer and more attractive to their users, in particular by endowing machines with the ability to
predict, understand, and process emotions (on the one hand), and trust (on the other hand). In
this article, we introduce a unified logical approach to represent the cognitive structure of some
emotions, of trust/distrust, and their relations at a formal level.

We formalize the concepts of emotions as well as trust/distrust based on cognitive models
proposed by cognitive psychologists. Regarding emotions, we draw on cognitive theories (for
more detail, see [SSJ01]) which assume that emotions are closely tied to changes in beliefs and
desires. We capitalize on psychological models that allow to recognize and distinguish emotions
based on their decomposition in cognitive factors particularly the cognitive structure of emotion
of Ortony et al. [OCC88], the cognitive patterns of emotion of Lazarus [Laz91] and the belief-
desire theory of emotion (BDTE) [Rei09, Dre95]. Similarly, we attempt to adhere closely to
cognitive definition of trust [CF01] and distrust [CFL08].

Although there are tight conceptual connections between emotion and trust [Lah01], and al-
though trust [HLH+08] and emotions [AHL09] have been separately formalized, there is not yet
a common logic to represent them both. Our work aims at filling that gap by formally repre-
senting trust and emotions in a common logic; this common logic will enable us to lay bare the
formal relations between trust and emotion. The logic we offer is a combination of the logic of

Volume (FMIS09 Preliminary Proceedings)

1

mailto:bonnefon@univ-tlse2.fr
mailto:Dominique.Longin@irit.fr
mailto:Manh-Hung.Nguyen@irit.fr

A Logical Framework for Trust-Related Emotions

beliefs and choices [HL04] (a refinement of [CL90]), the logic of time (introduced by Arthur
Prior [Pri57]), and dynamic logic [FL79, HKT00].

This paper is organized as follows: Part 2 introduces the logical framework. Part 3 formalizes
some emotions, Part 4 formalizes trust and distrust. Part 5 shows some formal relations between
emotions and trust, and provides behavioral validation for these relations.

2 Logical Framework

Syntax. The syntactic primitives of our logic are as follows: a nonempty finite set of agents
AGT = {i1, i2, . . . , in}, a nonempty finite set of atomic events EVT = {e1,e2, . . . ,ep}, and a
nonempty set of atomic propositions ATM = {p1, p2, . . .}. The variables i, j, k. . . denote agents.
The expression i1:e1 ∈ AGT×EVT denotes an event e1 intentionally caused by agent i1 and e1
is thus called an “action”. The variables α , β . . . denote such actions. The language of our logic
is defined by the following BNF :

ϕ :=p | i:α-happens | ¬ϕ | ϕ ∨ϕ | Xϕ | X−1
ϕ | Gϕ | Beli ϕ | Choicei ϕ | GrdIϕ

where p ranges over ATM, i:α ranges over AGT × EVT , i:α-happens ranges over ATM, and
I ⊆ AGT . The classical boolean connectives ∧ (conjunction),→ (material implication),↔ (ma-
terial equivalence), > (tautology) and ⊥ (contradiction) are defined from ¬ (negation) and ∨
(disjunction).

i:α-happens reads “agent i is just about to perform the action α”; Xϕ reads “ϕ will be true next
time”; X−1ϕ reads “ϕ was true at the previous time”; Gϕ reads “henceforth, ϕ is true”; Beli ϕ

reads “agent i believes that ϕ is true”; Choicei ϕ reads “agent i prefers that ϕ be true”; GrdIϕ

reads “ϕ is publicly grounded between the agents in group I” (It is nothing else that a standard
common belief operator). We define the following abbreviations:

i:α-done
def
= X−1i:α-happens (Defi:α-done)

Happensi:αϕ
def
= i:α-happens∧Xϕ (DefHappensi:α

)

Afteri:αϕ
def
= i:α-happens→ Xϕ (DefAfteri:α)

Donei:αϕ
def
= i:α-done∧X−1

ϕ (DefDonei:α)

Fϕ
def
= ¬G¬ϕ (DefF)

Goali ϕ
def
= ChoiceiFBeli ϕ (DefGoali)

Intendi (i:α)
def
= ChoiceiFi:α-happens (DefIntendi)

Capablei(i:α)
def
= ¬Afteri:α⊥ (DefCapablei

)

Possibleiϕ
def
= ¬Beli¬ϕ (DefPossiblei)

Awarenessiϕ
def
= X−1¬Beli ϕ ∧Beli ϕ (DefAwarenessi)

i:α-done reads “agent i has done action α”; Happensi:αϕ reads “agent i is doing action α and
ϕ will be true next time”; Afteri:αϕ reads “ϕ is true after any execution of α by i”; Donei:αϕ

Prel. Proc. FMIS 2009

2

ECEASST

reads “agent i has done action α and ϕ was true at previous time”; Fϕ reads “ϕ will be true in
some future instants”; Goali ϕ reads “agent i has the goal (chosen preference) that ϕ be true”;
Intendi (i:α) reads “agent i intends to do α”; Capablei(i:α) reads “agent i is capable to do α”;
Possibleiϕ reads “agent i believes that it is possible ϕ”; Awarenessiϕ reads “agent i has just
experienced that ϕ is true”.

Semantics. We use a semantics based on linear time described by a history of time points.
(This semantics is very closed to CTL* [CES86]) A frame F is a 4-tuples 〈H,B,C ,G 〉 where:
H is a set of histories that are represented as sequences of time points, where each time point
is identified by an integer z ∈ Z, a time point z in a history h is called a situation < h,z >;
Bi(h,z) denotes the set of histories believed as being possible by the agent i in the situation
< h,z >; Ci(h,z) denotes the set of histories chosen by the agent i in the situation < h,z >;
GI(h,z) denotes the set of histories which are publicly grounded in the group I of agents, in the
situation < h,z >.

All the accessibility relations Bi are serial, transitive and euclidean. All the accessibility Ci

are serial. Moreover, we impose for every z ∈ Z that: if h′ ∈Bi(h,z) then Ci(h,z) = Ci(h′,z).
A model M is a couple 〈F ,V 〉 where F is a frame and V is a function associating each

atomic proposition p with the set V (p) of couple (h,z) where p is true. Truth conditions are
defined as follows:

M ,h,z |= p iff (h,z) ∈ V (p)
M ,h,z |= Xϕ iff M ,h,z+1 |= ϕ

M ,h,z |= X−1
ϕ iff M ,h,z−1 |= ϕ

M ,h,z |= Gϕ iff M ,h,z′ |= ϕ for every z′ ≥ z

M ,h,z |= Beli ϕ iff M ,h′,z |= ϕ for every (h′,z) ∈Bi(h,z)
M ,h,z |= Choicei ϕ iff M ,h′,z |= ϕ for every (h′,z) ∈ Ci(h,z)

M ,h,z |= GrdIϕ iff M ,h′,z |= ϕ for every (h′,z) ∈ GI(h,z) so that GI = (
⋃
i∈I

Bi)+

GI is the transitive closure of the belief accessibility relations. Other truth conditions are defined
as usual.

Axiomatics. Due to our linear time semantics, the temporal operators satisfy the following
principles:

i:α-happens↔Xi:α-done (1)

Xϕ ↔¬X¬ϕ (2)

ϕ ↔XX−1
ϕ (3)

ϕ ↔X−1Xϕ (4)

Gϕ ↔ϕ ∧XGϕ (5)

G(ϕ → Xϕ)→(ϕ → Gϕ) (6)

Volume (FMIS09 Preliminary Proceedings)

3

A Logical Framework for Trust-Related Emotions

Beli and Choicei operators are defined in a normal modal logic plus (D) axioms. Thus, if 2

represents a Beli operator or Choicei operator:
ϕ

2ϕ
(RN2)

2(ϕ → ψ)→(2ϕ →2ψ) (K2)

2ϕ →¬2¬ϕ (D2)

(RN2) means that all theorems are believed (respectively: chosen) by every agent i; (K2) means
that beliefs (respectively: choices) are closed under material implication for every agent i; (D2)
means that beliefs (respectively: choices) of every agent i are rational: they cannot be contradic-
tory.

The Beli operators satisfy the following principles of introspection:

Beli ϕ ↔BeliBeli ϕ (4Beli)

¬Beli ϕ ↔Beli¬Beli ϕ (5Beli)

that mean that agent i is conscious of its beliefs and of its disbeliefs.
The following principle follows from the semantical constraint between belief accessibility

relation and choice accessibility relation, and from axiom (D2) for Beli :

Choicei ϕ ↔BeliChoicei ϕ (4BC)

¬Choicei ϕ ↔Beli¬Choicei ϕ (5BC)

that means that agent i is conscious of its choices and of its dischoices.
The sound and complete axiomatization of GrdI operator is defined two following axioms:

GrdIϕ ↔ (EBIϕ ∧EBIGrdIϕ) (FP)

(EBIϕ ∧GrdI(ϕ → EBIϕ))→ GrdIϕ (LFP)

where EBIϕ
def
=

∧
i∈I Beli ϕ .

(FP) is the fixpoint axiom and (LFP) is the leant fixpoint axiom. Such GrdI operator has every
properties of operators defined in the normal modal logic KD. Moreover, the following theorems
hold for every agent i, j in I ⊆ AGT:

GrdIϕ ↔ BeliGrdIϕ (4BG)

Beli¬GrdIϕ →¬GrdIϕ (5BG)

GrdIϕ → Beli ϕ ∧Bel j ϕ (7)

GrdIϕ → BeliBel j ϕ ∧Bel j Beli ϕ (8)

GrdIϕ → BeliBel j Beli ϕ ∧Bel j BeliBel j ϕ (9)

Theorem (4BG) means that each member in group conscious about their public grounding.
Theorem (5BG) means that if a member in group conscious that there is no public grounding,
then there is no public grounding. Theorem from (7) to (9) mean that if ϕ is publicly grounded

Prel. Proc. FMIS 2009

4

ECEASST

in a group, then each member of group conscious about ϕ and conscious that other member also
conscious about ϕ , etc.

Linear time semantics entail the following principles:

Gϕ →Afteri:αϕ (10)

Happensi:αϕ →After j:β ϕ (11)

Afteri:αϕ ↔¬Happensi:α¬ϕ (12)

3 Formalization of the cognitive structure of emotion

In this section, we present the formalization of emotions, based on their cognitive structure as
proposed by Ortony et al. [OCC88], Frijda [Fri86] as well as those of Reisenzei [Rei09] and
Scherer et al. [Sch01].

Joy/Distress. The cognitive structure of Joy consists of two main factors: (i) an event ϕ is
desirable for agent i, and (ii) agent i believes that event ϕ just happened. To formalize the
first factor, we consider that agent i desiring event ϕ means that i wants ϕ to be the case. So we
formalize desire as a goal (chosen preference). Therefore, the first factor is potentially formalized
as Goali ϕ , the second factor may be formalized as Beli ϕ .

However, we assume that emotion is triggered at the moment when all its factors are fulfilled,
and that its intensity then decreases with time [dS01, Fri86]. Accordingly, we include the time
factor into most emotional formulas. Thus, the first factor of Joy in particular means that at the
previous instant, agent i desired ϕ , until experiencing that ϕ was in fact true: X−1Goali ϕ . The
second factor means that agent i has just experienced that ϕ is true and did not previously know
it: Awarenessiϕ .

Moreover, we consider that in order to be joyful, agent i must keep in mind his desire in the
previous instant. It means that until now, i believes about his desire: BeliX−1Goali ϕ . Hereafter,
we add this analysis for almost emotional formulas.

The same analysis applies to Distress, except that in the first factor of Distress, event ϕ is
undesirable for agent i, which we assume to mean that agent i desired event ¬ϕ: X−1Goali¬ϕ .
We accordingly formalize the concept of Joy and Distress:

Definition 1 (Joy/Distress)

Joyi ϕ
def
=BeliX

−1Goali ϕ ∧Awarenessiϕ

Distressi ϕ
def
=BeliX

−1Goali¬ϕ ∧Awarenessiϕ

To illustrate the definition of Joy, we can say that an individual is joyful when he has just
realized that he won the lottery (Awarenessman(win lottery)) with the trivial assumption that
he had been desiring to win the lottery (X−1Goalman (win lottery)). In contrast, to illustrate
the definition of Distress, we can say that an individual feels distress when she learns she has
lost her job (Awarenesswoman(lost job)) assuming that she had the goal not to lose her job
(X−1Goalwoman¬(lost job)).

Volume (FMIS09 Preliminary Proceedings)

5

A Logical Framework for Trust-Related Emotions

Hope/Fear. The cognitive structure of Hope consists of two factors: (i) an event ϕ is desirable
for agent i, and (ii) agent i believes that event ϕ may happen in the future. To formalize the first
factor, we consider that event ϕ has not yet happened at the moment when i hopes for it: Goali ϕ .

We interpret the second factor, as meaning that among all of possible future worlds, agent i
believes that there is at least one world in which ϕ will be the case. In other terms, agent i does
not believe that ϕ will be false in all of possible future worlds: PossibleiFϕ . If i believes that
ϕ can never be the case in all of possible future worlds, then i has no ground for hope.

The same analysis applies to Fear, except that event ϕ is now undesirable for agent i: Goali¬ϕ .
We accordingly formalize the concept of Hope and Fear:

Definition 2 (Hope/Fear)

Hopei ϕ
def
=Goali ϕ ∧PossibleiFϕ

Feari ϕ
def
=Goali¬ϕ ∧PossibleiFϕ

For example, a debutante is hopeful about being asked to dance, for she thinks it is possi-
ble (PossiblegirlF(being asked to dance)) and this is what she wants (Goalgirl (being asked to
dance)). In contrast, an employee fears to be fired when he does not wish to be fired
(Goalemployee¬(f ired)) but believes it is a possibility PossibleemployeeF(to be fired)).

Satisfaction/Disappointment. The cognitive structure of Satisfaction consists of three factors:
(i) agent i desires event ϕ , (ii) agent i used to believe that event ϕ might happen in the near future,
and (iii) agent i now believes that event ϕ really just happened. The first two factors mean that,
at the previous instant, i desired ϕ (X−1Goali ϕ), and i believed that ϕ could be true in the future
(X−1PossibleiFϕ) (cf. the analysis of the second factor of Hope). The last factor means that i
now believes that ϕ is true, but did not know it the previous instant (Awarenessiϕ).

The only difference in the case of Disappointment is that, in the previous instant, agent i
desired event ¬ϕ instead of ϕ (X−1Goali¬ϕ), and that i believed that ¬ϕ was possibly true in
the future (X−1PossibleiF¬ϕ). We formalize Satisfaction and Disappointment as

Definition 3 (Satisfaction/Disappointment)

Satisfactioni ϕ
def
=BeliX

−1(Goali ϕ ∧PossibleiFϕ)∧Awarenessiϕ

Disappointmenti ϕ
def
=BeliX

−1(Goali¬ϕ ∧PossibleiF¬ϕ)∧Awarenessiϕ

For example, when the debutante realizes that she is indeed asked to dance
(Awarenessgirl(asked to dance)) she is satisfied. Were she not to be asked to dance
(Awarenessgirl(not asked to dance)), she would feel disappointed.

We can point out the relations between Satisfaction, Disappointment and Hope:

Satisfactioni ϕ ↔BeliX
−1Hopei ϕ ∧Awarenessiϕ (13)

Disappointmenti ϕ ↔BeliX
−1Hopei¬ϕ ∧Awarenessiϕ (14)

The relation between Satisfaction and Joy can be formalized as Proposition 1: if we feel
satisfaction about something, then we will also feel joy about it.

Prel. Proc. FMIS 2009

6

ECEASST

Proposition 1 (Satisfaction implies Joy)

Satisfactioni ϕ →Joyi ϕ

Fear-confirmed/Relief. The cognitive structure of Fear-confirmed consists of three factors: (i)
an event ϕ was undesirable for agent i, (ii) agent i believed that event ϕ might happen in the near
future, and (iii) agent i now believes that event ϕ really just happened.

We use the same analysis as for Satisfaction, except that in the previous instant, ¬ϕ was
desirable for agent i (X−1Goali¬ϕ).

The difference in the case of Relief is that, in the previous instant, agent i desired event ϕ

(X−1Goali ϕ), and i believed that ¬ϕ might be true in the near future (X−1PossibleiF¬ϕ). We
formalize Fear-confirmed and Relief as:

Definition 4 (Fear-confirmed/Relief)

FearConfirmedi ϕ
def
=BeliX

−1(Goali¬ϕ ∧PossibleiFϕ)∧Awarenessiϕ

Reliefi ϕ
def
=BeliX

−1(Goali ϕ ∧PossibleiF¬ϕ)∧Awarenessiϕ

For example, the employee’s fear of being fired is confirmed when he learns that he is indeed
about to be fired (Awarenessemployee(f ired)) which he had been afraid of
(X−1(Goalemployee¬(f ired)∧PossibleemployeeF(f ired))). In contrast, were he to learn that he
is not going to be fired (Awarenessemployee(not fired)), he would feel relief.

We can also point out the relations between Fear-confirmed, Relief and Fear:

FearConfirmedi ϕ ↔BeliX
−1Feari ϕ ∧Awarenessiϕ (15)

Reliefi ϕ ↔BeliX
−1Feari¬ϕ ∧Awarenessiϕ (16)

The relation between Fear-confirmed and Distress is stated in Proposition 2: if our fears about
something are confirmed, then we feel distressed.

Proposition 2 (Fear-confirmed implies Distress)

FearConfirmedi ϕ → Distressi ϕ

4 Formalization of Trust

We now present the formalization of trust and distrust based on the cognitive definition of Castel-
franchi and colleagues [CF01, CFL08].

Trust. We formalize the concept of trust based on Castelfranchi and Falcone’s definition [CF01]
of trust in action which says that agent i trusts agent j to ensure ϕ by performing action α if and
only if agent i desires to achieve ϕ (Goali ϕ), and agent i expects that: (i) ϕ can be achieved by
doing action α (BeliAfter j:αϕ); (ii) agent j is able to perform action α (BeliCapable j:α); and
(iii) agent j has the intention to do such an action (BeliIntend j (j:α)).

Volume (FMIS09 Preliminary Proceedings)

7

A Logical Framework for Trust-Related Emotions

However, these three factors are only necessary conditions, but not sufficient ones. For ex-
ample, imagine that a robber wants to steal something located on the second floor of a mansion.
There is a nurse on the first floor. The robber desires that the nurse stays where she is, because it
makes his robbery possible. He also believes that it is possible that the nurse will stay where she
is, and that it is actually her intention. Thus, the three conditions are satisfied, but we are reluc-
tant nonetheless to say that the robber trusts the nurse to stay where she is in order to allow for
his stealing, because there is no agreement between the nurse (trustee) and the robber (trustor).
So here we need to add another condition for trust: an agreement between trustor and trustee that
the trustee will perform such an action (GrdIF(trustee : α)), where I = {trustor, trustee}. We
accordingly formalize the concept of trust as:

Definition 5 (Trust)

Trust(i, j,α,ϕ)
def
=Goali ϕ ∧BeliAfter j:αϕ ∧BeliCapable j:α∧
BeliIntend j (j:α)∧Grd{i, j}F j:α-happens

For example, a boss trusts his secretary to prepare a report in order to present it at a com-
pany meeting because the boss desires the report (Goalboss (report)), and in his opinion, the
report can be possibly ready after the secretary prepares it (Belboss A f tersecretary:prepare(report)),
the secretary has the ability and intention to prepare the report (BelbossCapablesecretary:prepare∧
BelbossIntendsecretary (secretary : prepare))). It is clear that in the relation between the boss and
his secretary, there is an agreement that the secretary will prepare the report in time
(Grdboss,secretaryFsecretary : prepare-happens).

Distrust. We also adopt the definition of distrust given by Castelfranchi et al. [CFL08] which
says that agent i distrusts agent j to ensure ϕ by performing action α if and only if agent i desires
to achieve ϕ (Goali ϕ), and agent i believes that at least one of these conditions is fulfilled: (i)
agent j is not in the capacity to do action α: Beli¬After j:αϕ , or (ii) agent j is able to do α

but he has not intention to do α: PossibleiAfter j:αϕ ∧Beli¬Intend j (j:α) . We accordingly
formalize this concept as:

Definition 6 (Distrust)

DisTrust(i, j,α,ϕ)
def
= Goali ϕ ∧ (Beli¬After j:αϕ∨

(PossibleiAfter j:αϕ ∧Beli¬Intend j (j:α)))

For example, in spite of desiring the report (Goalboss (report)), the boss does not trust a
new employee to prepare it because he believes the new employee is unable to perform that
task(Belboss¬Afteremployee:prepare(report)).

From this definition, we can decompose the concept of distrust based only on the ability of
trustee:

Definition 7 (Distrust based on ability)

C-DisTrust(i, j,α,ϕ)
def
=Goali ϕ ∧Beli¬After j:αϕ

Prel. Proc. FMIS 2009

8

ECEASST

5 Trust-Related Emotions

5.1 Formal Relations

Trust and Hope. Trust and Hope have an important relation because they both feature a pos-
itive expectation [CF01]. When i trusts j, i has a positive expectation about j’s power and
performance. Hope also implies some positive expectation. The greater the expectations, the
deeper the trust; and, conversely, the deeper the disappointment when expectations are unreal-
ized [Bry07]. We formalize the former relation as Proposition 3, the latter as Proposition 5.

Proposition 3 (Trust implies Hope)

Trust(i, j,α,ϕ)→Hopeiϕ

This means that when we trust someone about an action that will bring some results, we are
hopeful that the results will be obtained. For example, in a commercial transaction, when the
buyer trusts his seller to send him a product after payment (Trust(buyer,seller,send,receipt)),
he will be hopeful that he will receive the product (Hopebuyer receive product). This proposition
will be proved by applying Lemma 1: if we believe that ϕ is true after every execution of action
α , and that someone is able to do α , then we believe that there is at least a future world in which
ϕ is true.

Lemma 1

BeliAfter j:αϕ ∧BeliCapable j:α →PossibleiFϕ

Once we trust someone to do an action to bring us something, we hope for the positive result
of the action. In case of success, we feel satisfaction (formalized as Proposition 4). Conversely,
in case of failure, we feel disappointment (formalized as Proposition 5).

Proposition 4 (Successful Trust implies Satisfaction)

BeliDone j:αTrust(i, j,α,ϕ)∧Awarenessiϕ →Satisfactioniϕ

This means that when we believe that what we trusted has now occurred, we are satisfied about
it. For example, when the boss trusted his secretary to prepare the report
(Donesecretary:prepareTrust(boss,secretary, prepare,having report)), and on the morning of the
day after, he has received the report (Belboss having report), then he is satisfied
(Satisfactionbosshaving report). This proposition has a corollary which is deduced from
Proposition 1 and 4: When we experience that what we trusted has really occurred, we will
also feel joy about it.

Corollary 1

BeliDone j:αTrust(i, j,α,ϕ)∧Awarenessiϕ →Joyiϕ

Proposition 5 (Unsuccessful Trust implies Disappointment)

BeliDone j:αTrust(i, j,α,ϕ)∧Awarenessi¬ϕ →Disappointmenti¬ϕ

Volume (FMIS09 Preliminary Proceedings)

9

A Logical Framework for Trust-Related Emotions

This means that we feel disappointed if what we trusted does not in fact occur. For example, a
businessman trusted his partner to arrive on time to negotiate a contract. The businessman feels
disappointed if the partner has not yet arrived at the scheduled time.

DisTrust and Fear. Distrust features a negative expectation, involving fear of the other [LW00,
AACS08]. We state the relation between Distrust based on ability and Fear as Proposition 6.

Proposition 6 (DisTrust implies Fear)

C-DisTrust(i, j,α,ϕ)→Feari¬ϕ

This means that if we distrust someone to do an action to bring us something then we fear
that our desire might not be fulfilled. For example, the boss might distrust his assistant with the
preparation of a report he needs, and more specifically distrusts him to finish the report by the
next morning (DisTrust(boss,assistant, f inish,report)). Therefore, he is fearful that he might
miss the report the next morning (Fearboss¬report). This proposition will be proved by applying
Lemma 2: if we believe that someone is unable to do an action to bring about something, then
we believe that there is at least a future world without the expected result of this action.

Lemma 2

Beli¬After j:αϕ →PossibleiF¬ϕ

Once we distrust someone to do an action to bring about something, we experience fear. If the
results are indeed negative, we feel fear-confirmed (formalized as Proposition 7). If, however the
action is in fact successfully performed, we feel relief (formalized as Proposition 8).

Proposition 7 (Confirmation of DisTrust implies Fear-confirmed)

BeliDone j:αC-DisTrust(i, j,α,ϕ)∧Awarenessi¬ϕ →FearConfirmedi¬ϕ

If the boss realizes that his assistant really did not finish the report (Belboss¬report), he feels
fear-confirmed (FearConfirmedboss¬report). Combining the two Propositions 2 and 7, we
arrive at a corollary: when we experience that what we distrusted has now happened, we feel
distressed about it.

Corollary 2

BeliDone j:αC-DisTrust(i, j,α,ϕ)∧Awarenessi¬ϕ →Distressi¬ϕ

Proposition 8 (Non-confirmation of DisTrust implies Relief)

BeliDone j:αC-DisTrust(i, j,α,ϕ)∧Awarenessiϕ →Reliefiϕ

If the boss discovers that his assistant did in fact finish the report (Belboss report), he feels
relieved (Reliefbossreport).

Prel. Proc. FMIS 2009

10

ECEASST

5.2 Behavioral validation

Although the propositions that we proved in the previous section are intuitively plausible, some
of them have not yet received behavioral validation from the field of experimental psychology.
We decided to collect empirical data concerning three propositions in this article, related to the
emotions that follow trust when it is confirmed (Proposition 4), and when it is unconfirmed
(Proposition 5); and the emotions that follow distrust, when it is unconfirmed (Proposition 8) 1.

Following the analysis in (Section 4) which argues that trust is the conjunction of the intention,
the capacity, and the agreement of trustee, the presence of Agreement is intentionally fixed for
the future test. We therefore operationalize Trust as the conjunction of Intention and Capacity,
and Distrust as the three remaining cases. Participants to the survey read 8 different stories, fol-
lowing a 2×2×2 within-subject design. The variables manipulated in the stories were Intention
(Yes/No), Capacity (Yes/No), and Outcome (Success/Failure). As an example, here is the story
corresponding to Intention = Yes, Capacity = Yes, and Outcome = Success.

Mr. Boss is the marketing director of a big company. He needs an important financial report
before a meeting tomorrow morning, but he has no time to write it because of other priorities.
He asks Mr. Support to prepare it and put it on his desk before tomorrow morning.

• Mr. Boss believes that Mr. Support has the intention to prepare the report in time.

• Mr. Boss believes that Mr. Support is able to prepare the report in time.

The morning after, Mr. Boss finds the report on his desk when he arrives. In your opinion,
what does he feel?

In the condition Intention = No, “Mr. Boss believes that Mr. Support has the intention to
prepare the report in time” was replaced with “Mr. Boss believes that Mr. Support has no
intention to prepare the report in time.” In the condition Capacity = No, “Mr. Boss believes that
Mr. Support is able to prepare the report in time” was replaced with “Mr. Boss believes that Mr.
Support is unable to prepare the report in time.” Finally, in the condition Outcome = Failure,
“Mr. Boss finds the report on his desk when he arrives” was replaced with “Mr. Boss does not
find the report on his desk when he arrives.”

After reading each story, participants rated the extent to which the main character would feel
each of 7 emotions, which included our target emotions, satisfaction, disappointment, and relief;
but also some emotions that we included for exploratory purposes, such as anger or thankfulness.
Ratings used a 6-point scale anchored at Not at all and Totally.

A total of 100 participants took part in an online survey. The survey was offered in two
languages, French (30% of the final sample) and Vietnamese (70%). Language was entered
as a control variable in all statistical analyses, but added only a small overall main effect on
participants’ responses, and will not be discussed any further.

Descriptive statistics are displayed in Table 1. Participants’ responses were analyzed by means
of a repeated-measure analysis of variance, aimed at detecting statistically reliable effects of
Trust and Outcome on our emotions of interest.

1 We could not test Proposition 7 for a linguistic reason: Neither in French nor in Vietnamese (the two languages
used in our experiment) could we find an everyday term equivalent to ‘fear confirmed’.

Volume (FMIS09 Preliminary Proceedings)

11

A Logical Framework for Trust-Related Emotions

Satisfaction Relief Disappointment
Trust Distrust Trust Distrust Trust Distrust

Success 4.9 (1.5) 4.6 (1.6) 2.8 (1.9) 3.6 (1.9) 1.1 (0.6) 1.3 (0.8)
Failure 1.1 (0.5) 1.4 (1.0) 1.3 (1.0) 1.3 (0.9) 4.6 (1.7) 3.2 (1.4)

Table 1: Mean and standard deviations of affective ratings, as a function of Trust and Outcome.

Satisfaction. Unsurprisingly, the analysis of variance detected a huge effect of Outcome,
F(1,98) = 597, p < .001, accounting for most of the observed variance, η2

p = .86. In other terms,
Satisfaction is almost perfectly predicted by Outcome alone. The analysis, however, also detects
a comparatively small interaction effect Outcome × Trust, F(1,98) = 8.8, p < .01, η2

p = .08,
reflecting the fact that success is even more pleasant in case of trust. Table 1 shows that the
biggest score of Satisfaction is in the case of Trust follows a Failure: M = 4.9, SD < 1.5. The
data are in line with what was expected from Proposition 4.

Relief. The analysis detected main effects of Trust, F(1,98) = 19.1, p < .001, η2
p = .23; and

Outcome, F(1,98) = 127, p < .001, η2
p = .80. However, these main effects were qualified by an

interaction effect Trust × Outcome, F(1,98) = 12.3, p < .001, η2
p = .31. Table 1 shows that the

score of Relief is especially high in the case of success is obtained despite of distrust: M = 3.6,
SD < 1.9. This interaction reflects our expectation (Proposition 8).

Disappointment. The analysis detected main effects of Trust, F(1,98) = 28.4, p < .001,
η2

p = .16; and Outcome, F(1,98) = 389, p < .001, η2
p = .56. However, these main effects were

qualified by an interaction effect Trust × Outcome, F(1,98) = 44.7, p < .001, η2
p = .11. Table

1 shows that the score of Disappointment is especially high in the case of failure is obtained
despite of trust: M = 4.6, SD < 1.7. This interaction reflects our expectation (Proposition 5).

6 Conclusion

This paper introduced a logical framework that can represent emotions, trust, and the formal
relations between them. In other terms, it enables to analyze the transformation of trust (and
distrust) into emotions. Furthermore, this logical framework fully respects the instantaneity of
emotions that previous logics of emotions did not fulfill. Finally, the formal relations between
emotion and trust laid bare by the logical framework were subjected to a behavioral validation
following the methods of experimental psychology. The success of this behavioral validation
gives strong support to our approach, which is shown to capture lay users’ intuitions about trust-
related emotion.

Although we have added time factor into almost emotional formulas, which enables to elim-
inate rightly emotion when the relevant event has passed a long time, but it have not yet helped
us to represent the nature of continuous intensity of emotions. Additionally, this paper has
formalized only the effect of trust/distrust on emotions but not yet the effect of emotions on
trust/distrust. These current limitations are also the potential perspective for our future research.

Acknowledgements: This work has been supported by the Agence Nationale de la Recherche

Prel. Proc. FMIS 2009

12

ECEASST

(ANR), contract No. ANR-08-CORD-005-1, and by a doctoral scholarship awarded by the Uni-
versity of Toulouse, contract No. 26977-2007.

Bibliography

[AACS08] P. Aghion, Y. Algan, P. Cahuc, A. Shleifer. Regulation and Distrust. SUS.DIV–
CEPR–PSEConference of Models of Cultural Dynamics and Diversity, 2008.

[AHL09] C. Adam, A. Herzig, D. Longin. A logical formalization of the OCC theory of emo-
tions. Synthese 168(2):201–248, 2009.

[Bry07] H. J. Bryce. Formalizing Civic Engagement: NGOs and the Concepts of Trust, Struc-
ture, and Order in the Public Policy Process. Workshop on Building Trust Through
Civic Engagement and for the International Political Science Association, Section on
Governance, conference on Government Crisis in Comparative Perspective, Seoul,
Korea, 2007.

[CES86] E. M. Clarke, E. A. Emerson, A. P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Program-
ming Languages and Systems 8(2):244–263, 1986.

[CF01] C. Castelfranchi, R. Falcone. Social Trust: A Cognitive Approach. In Castelfranchi
and Tan (eds.), Trust and Deception in Virtual Societies. Pp. 55–90. Kluwer Aca-
demic Publishers, Dordrecht, 2001.

[CFL08] C. Castelfranchi, R. Falcone, E. Lorini. A non-reductionist Approach to Trust. In
Goldbeck (ed.), Computing with Social Trust. Pp. 45–72. Springer, Berlin, 2008.

[CL90] P. R. Cohen, H. J. Levesque. Intention is choice with commitment. Artificial Intelli-
gence 42:213–261, 1990.

[Dre95] F. Dretske. Naturalizing the mind. MIT Press, Cambridge, 1995.

[FL79] M. Fischer, R. Ladner. Propositional dynamic logic of regular programs. Journal of
Computer and System Sciences 18(2):194–211, 1979.

[Fri86] N. H. Frijda. The Emotions: Studies in Emotion & Social Interaction. Edition de la
Maison des Sciences de l’Homme. Cambridge University Press, Paris, 1986.

[HKT00] D. Harel, D. Kozen, J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[HL04] A. Herzig, D. Longin. C&L intention revisited. In Proceedings of Int. Conf. of knowl-
edge representation and reasoning KR’04. Pp. 527–535. Morgan Kaufmann, 2004.

[HLH+08] A. Herzig, E. Lorini, J. F. Hübner, J. Ben-Naim, O. Boissier, C. Castelfranchi, R. De-
molombe, D. Longin, L. Perrussel, L. Vercouter. Prolegomena for a logic of trust and
reputation. In Proceedings of 3rd International Workshop on Normative Multiagent
Systems (NorMAS). Luxembourg, July 2008.

Volume (FMIS09 Preliminary Proceedings)

13

A Logical Framework for Trust-Related Emotions

[Lah01] B. Lahno. On the Emotional Character of Trust. Journal of Ethical Theory and Moral
Practice 4:171–189, 2001.

[Laz91] R. S. Lazarus. Emotion & Adaptation. Oxford University Press, 1991.

[LW00] R. Lewicki, C. Wiethoff. Trust, Trust Development, and Trust Repair. In Deutsch
and Coleman (eds.), The Handbook of Conflict Resolution: Theory and Practice.
Pp. 86–107. Jossey-Bass, San Francisco, CA, 2000.

[OCC88] A. Ortony, G. L. Clore, A. Collins. The Congnitive Structure of Emotions. The Cam-
bridge University Press, 1988.

[Pri57] A. N. Prior. Time and Modality. Clarendon Press, Oxford, 1957.

[Rei09] R. Reisenzein. Emotions as metarepresentational states of mind: Naturalizing the
belief-desire theory of emotion. Cognitive Systems Research 10(1):6–20, 2009.

[Sch01] K. R. Scherer. Appraisal Processes in Emotion : Theory, Methods, Research. Chap-
ter Appraisal Considered as a Process of Multilevel Sequential Checking, pp. 92–
120. Oxford University Press, New York, 2001.

[dS01] R. de Sousa. The Rationality of Emotion. MIT Press, 6 edition, 2001.

[SSJ01] K. R. Scherer, A. Schorr, T. Johnstone. Appraisal Processes in Emotion: Theory,
methode, Research. Series in Affective Science. Oxford university Press, 2001.

Prel. Proc. FMIS 2009

14

ECEASST

UI-Design Driven Model-Based Testing
1Judy Bowen and Steve Reeves

1University of Waikato, Hamilton, New Zealand

Abstract: Testing interactive systems is notoriously difficult. Not only do we need
to ensure that the functionality of the developed system is correct with respect to the
requirements and specifications, we also need to ensure that the user interface to the
system is correct (enables a user to access the functionality correctly) and is usable.
These different requirements of interactive system testing are not easily combined
within a single testing strategy. We investigate the use of models of interactive sys-
tems, which have been derived from design artefacts, as the basis for generating tests
for an implemented system. We give a model-based method for testing interactive
systems which has low overhead in terms of the models required and which enables
testing of UI and system functionality from the perspective of user interaction.

Keywords: User interface, prototyping, formal methods, unit testing

1 Introduction

Testing of interactive systems is a difficult task. It requires that we test the system’s functionality,
the interactive behaviour of the system and that the user interface (UI) is usable and aesthetically
acceptable for users. As UIs become more complex and software applications become ubiqui-
tous, often relying on new, and sometimes novel, modes of interaction, this difficulty increases.
Testing for UIs is often confined to human-based usability testing which is used primarily to
ensure users are able to understand and successfully interact with the system under test (SUT)
and to measure qualitative responses to aesthetic considerations. While usability testing is an
important activity, it is known to be time-consuming and costly and is therefore more successful
when performed on systems which have already been well tested.

It is not always practical to separate the testing of system functionality from the UI, and relying
on usability testing for interactive elements as well as usability increases time and cost as well
as putting a heavier burden on the process in terms of the number and types of errors we rely on
it to catch.

In any testing process generating the tests is a critical activity as we want to ensure that the
tests have as wide coverage as possible in order to find as many errors as possible, but at the
same time we do not want the test generation process to be so onerous that the process becomes
impractical due to the length of time it takes and the level of expertise required. In the case of
interactive systems the difficulty is again increased as test generation requires knowledge of, and
the ability to formally consider, both the underlying functionality and the interactive behaviours.

Model-based testing alleviates some of the problems of test generation in general by providing
a formal basis for the tests as well as oracles to compare results against. It lends itself to auto-
matic generation of tests via tool support (see [UL06] for a comprehensive discussion of this)
which helps reduce both time and effort required. It also provides a way of generating repeatable

Volume (FMIS09 Preliminary Proceedings)

15

UI-Design Driven Model-Based Testing

tests and gives confidence in the coverage of the testing. However, model-based testing methods
for interactive systems are not yet widespread and have several challenges to overcome if they
are to become so.

Choosing an appropriate model to describe the UI is one such issue. Paiva et al. [PFV07] for
example, highlight and try to address this problem by combining the formal testing framework
of a popular programming language, Spec# for the C# language [Spe], with UML. Their aim
is to integrate the formality of Spec# with the visual familiarity of UML to develop abstract
models of both functional and UI behavioural requirements which can be used to test for coverage
and correctness. They have also chosen state-based models to work with, which is a common
choice, but this then requires work to manage the complexity caused by the management of large
numbers of states, for example by working with hierarchical models such as those proposed
in [PTFV05]. Belli [Bel01, Bel03] extends this idea by using regular expressions to model
sequences of user interactions as part of a fault-modelling technique. The exploration of all
possible sequences is, however, necessarily large, and the overhead in creating the models not
insubstantial.

Comprehensive research on model-based testing for interactive systems has been undertaken
by Memon et al. (see for example [XM06], [Mem07], [YCM09] and [Mem09]). One of the
fundamental concerns of this work is the development of the model to be used for testing. Their
methods are based on creating a model of an existing implementation which is then used to
develop tests of event and interaction sequences which can be used for regression testing as new
functionality is added or the SUT is refactored. In contrast, we are investigating the use of a
pre-implementation model of the interactive system which is derived from UI design artefacts
and which is linked to a formal specification of the functionality of the system. We aim to find
out if such a model can be successfully used to generate tests and provide an oracle to test if a
subsequent implementation correctly instantiates the specified interactive system.

In previous work we have developed models for UIs [BR08a, Bow08] which are based upon
design artefacts created as part of a user-centred design (UCD) process. In this paper we in-
vestigate whether we can use these models as the basis for model-based testing for interactive
systems. We propose that this will provide several benefits. Firstly, the models themselves are
lightweight and easy to produce as part of standard UCD processes. They use abstraction within
the state-based models to avoid state-explosion problems and as such they do not lead to some
of the problems associated with other UI models (high overhead of development, complexity
of understanding etc.) Secondly, we use these models to link the UI and interactive behaviours
to a formal system specification which provides a formal model of the entire system enabling
us to derive tests which are comprehensive and cover all aspects of the SUT. Thirdly, using the
models in this way not only increases the benefits that the use of such models provides, but also
enables us to further support UCD techniques formally and test our system from the perspective
of interactivity. The models describe both the intended design from the point of view of the UI
designer (in conjunction with their informal artefacts such as prototypes) as well as a demonstra-
tion of correctness with respect to the overall system and the relationship between system and UI
designs. So, we can use the models to derive tests for the properties which have been captured
informally and formally within early designs.

Using UI designs as the basis for testing is an approach also taken in [ACE+06] but their work
is used as the basis for a test-driven development approach for the UI and follows the approach

Prel. Proc. FMIS 2009

16

ECEASST

of complete separation of UI considerations from underlying functionality. We are concerned
with the integration of UI and system behaviours once we are at the point of implementation,
and our aim is to use the formal models of the UI to derive tests which ensure correctness of the
integration.

The IEEE Software Engineering Body of Knowledge [96494] says:

“Testing is an activity performed for evaluating product quality, and for improving
it, by identifying defects and problems.”

That is, the purpose of testing is to find errors: a successful test is one that finds an error. In
model-based testing the model gives us a description of correct behaviour, so we use this to
determine where incorrect behaviour occurs by looking for situations which violate the model.
This means finding defects in the functionality and in the way we present that functionality to
users, via the user interface. The testing we propose is dynamic, running the program to check
behaviour under certain test cases, so it is a post-implementation activity. There are, of course,
limitations to model-based testing; we are not guaranteed to find all errors. But by examining the
underlying specification for expected behaviours as described in the model we hope to expose as
many as possible before we move on to human-based usability testing, which can then focus on
finding the sorts of errors which cannot be detected by other testing means.

2 Example System

The example we use throughout this paper is a calendar application called SimpleCalendar which
is used to display a monthly view of a calendar with events which are assigned to a particular
day. The user can view a calendar as a monthly view or as a single day view. They can add events
to any given day, view the events of any given day and can also edit or delete those events. Based
on these functional requirements a formal specification was developed using Z [13502]. Here
we give only some of the relevant (to our exposition here) parts of that specification, namely the
description of the system state along with descriptions of some of the operations as an example
of how the system is specified. We omit, for brevity, the type definitions, axiomatic definitions
and the rest of the operations.

The system state contains various observable values: a set allevents of events (each event
containing a valid date and a title); the current day, month and year; and a set vdates which
represents the dates currently visible in the application, which is in turn a subset of allDates, the
set of all valid dates.

The AddEvent operation extends the set allevents in the Calendar state by adding to it the
event given in the observation i?, the rest of the state remains unchanged. The RemoveEvent
operation performs the reverse by removing the event given in i? from the set of events.

The ShowPreviousMonth and ShowNextMonth operations increment or decrement the obser-
vation currentMonth, and depending on the initial value of currentMonth increment or decre-
ment the currentYear observation when necessary (if we move forward a month from December
or back a month from January).

Volume (FMIS09 Preliminary Proceedings)

17

UI-Design Driven Model-Based Testing

Calendar
allevents : PEVENT
currentMonth : MONTH
currentYear : N
vdates : PallDates

AddEvent
∆Calendar
i? : EVENT

allevents′ = allevents∪{i?}
currentMonth′ = currentMonth
currentYear′ = currentYear
vdates′ = vdates

RemoveEvent
∆Calendar
i? : EVENT

allevents′ = allevents\{i?}
currentMonth′ = currentMonth
currentYear′ = currentYear
vdates′ = vdates

ShowPreviousMonth
∆Calendar

allevents′ = allevents
currentMonth > 1⇒ currentMonth′ = currentMonth−1 ∧ currentYear′ = currentYear
currentMonth = 1⇒ currentMonth′ = 12 ∧ currentYear′ = currentYear−1
vdates′ = allDatesB (currentMonth′ . . currentMonth′)

ShowNextMonth
∆Calendar

allevents′ = allevents
currentMonth < 12⇒ currentMonth′ = currentMonth+1 ∧ currentYear′ = currentYear
currentMonth = 12⇒ currentMonth′ = 1 ∧ currentYear′ = currentYear +1
vdates′ = allDatesB (currentMonth′ . . currentMonth′)

A series of designs and prototypes of the UI for SimpleCalendar were developed following a
user-centred design process. At the end of the design iterations the prototypes given in figures 1
and 2 were accepted as the basis for the application’s UI.

We create a link between the formal specification of the system and the user interface de-
sign by creating presentation models and presentation and interaction models (PIMs) [BR06],

Prel. Proc. FMIS 2009

18

ECEASST

Figure 1: Main Month View for Simple Calendar

Figure 2: Subsidiary Views for Simple Calendar

Volume (FMIS09 Preliminary Proceedings)

19

UI-Design Driven Model-Based Testing

[BR08a]. The presentation model gives a description of the interface designs based on the inter-
active elements (widgets) of the design. Each widget is described by way of a tuple consisting of
a name, a category (which determines the type of interactive behaviour it exhibits) and a collec-
tion of behaviours associated with the widget. Behaviours either relate to system functionality
(i.e. provide a way of interacting with the underlying system functionality) or to interface func-
tionality, e.g. opening new dialogues, and are prefixed by S or I respectively. The UI for the
entire system is described by a single presentation model which consists of component models
for each of the distinct windows and dialogues. For the SimpleCalendar designs this is:

SimpleCal is MainView : DayView : AddView : EditView

MainView is
(QuitButton, ActionControl, (Quit))
(PrevArrow, ActionControl, (S PrevMonth))
(NextArrow, ActionControl, (S NextMonth))
(DayDisplay, ActionControl, (I DayView))

DayView is
(AddButton, ActionControl, (I AddView))
(EventList, ActionControl, (S RemoveEvent, I EditView))
(BackButton, ActionControl, (I MainView))

AddView is
(TitleEntry, Entry, ())
(StartEntry, Entry, ())
(EndEntry, Entry, ())
(CancelButton, ActionControl, (I DayView))
(SaveButton, ActionControl, (S AddEvent, I DayView))

EditView is
(TitleEntry, Entry, ())
(StartEntry, Entry, ())
(EndEntry, Entry, ())
(CancelButton, ActionControl, (I DayView))
(SaveButton, ActionControl, (S UpdateEvent, I DayView))

We link the UI design models and the specification by creating a presentation model relation
(PMR) between each S Behaviour of the presentation model and operations of the specification,
which for our example is SimpleCalPMR:

{S PrevMonth 7→ ShowPreviousMonth,S NextMonth 7→ ShowNextMonth,
S RemoveEvent 7→ DeleteEvent,S UpdateEvent 7→ EditEvent,S AddEvent 7→ AddEvent}

The third model, the PIM, denotes the dynamic behaviour of the UI by describing how each
individual dialogue or window is reached by way of I Behaviours. Each component presentation
model is associated with a state of the PIM, and I Behaviours of the relevant model act as labels

Prel. Proc. FMIS 2009

20

ECEASST

SimpleCalUI

MainView
I_DayView

DayView

I_AddView

I_EditView

I_MonthView I_DayView

I_DayView

AddView

EditView

Figure 3: SimpleCal PIM

on transitions between states, and hence, as intended, are behaviours which are purely interface
behaviours and so move us around the interface.

The combination of the system specification and the UI models (presentation models, PIM and
PMR) provides a formal description of the entire system. We have previously shown how we can
use this information as a way of ensuring correctness of the the proposed system [BR08a] and
also as the basis for refinement [BR08b]. In this paper, however, we will use the models to derive
tests which can then be run on an implementation of the system. The intention is that the models
give a description of how we require the implemented system to behave and by using them to
generate tests we hope to find errors where the implementation deviates from this behaviour. In
the next section we show how the tests are derived.

3 Deriving the Tests

The presentation models describe the interactive elements of the UI and their required behaviours.
That is, they describe the functionality that is accessible to a user who interacts with the UI. The
PIM extends this to describe which behaviours are available in different states of the UI and how
a user can move between these states. The testing approach we are proposing will ensure that
both the behaviours, and the availability of the behaviours, are provided by the implementation so
that we are sure that it satisfies the models. The PIM also describes modality: each independent
state of the PIM is modal so we include this as a condition which should be tested.

UI-based testing is often goal-driven. Tasks are defined (or taken from earlier task analysis
work) and then sequences of events and user interaction sequences are constructed to satisfy
these goals (see for example [Bel01, WA00]). In contrast, the tests we derive use the definitions
given within the models as their basis. These tests will be abstract (in that they are expressed at
the level of, and in the language of, the models) and can then be instantiated in any language or
using any testing framework as required. This will often be dependant on the choice of target
implementation language. In section 4 we give an example of one way of instantiating the
abstract tests for an implementation of SimpleCalendar in Java.

We begin by considering the dynamic behaviour of the UI. This is defined by I Behaviours in
the presentation models on transitions of the PIM showing how a user can move between states

Volume (FMIS09 Preliminary Proceedings)

21

UI-Design Driven Model-Based Testing

of the UI. In the PIM given in figure 3 there are four states to be considered, with the initial state
being MainView (denoted by the double ellipse). For all of the defined behaviours we will test
two things: firstly that a widget exists in a given state which provides the required behaviour;
and secondly that the behaviour is functionally correct. So, for example, the presentation model
for MainView describes an ActionControl called DayDisplay which has a behaviour I DayView.
From the PIM we determine that this behaviour should cause the UI to change from the state
MainView (i.e. a state where all of the defined behaviours of MainView are available) to the state
DayView (i.e. a state where all of the defined behaviours of DayView are available). So first we
will test that there is a widget available in MainView called DayDisplay and then we will ensure
that when interaction occurs the UI behaves as required, that is it changes from MainView to
DayView. During the testing process, in order to determine that we are in a correct state, we use
the defined behaviours for that state. For example, the state DayView is a state of the UI where the
behaviours of the DayView presentation model are available (a user has access to widgets with
the behaviours I AddView,S RemoveEvent, I EditView and I MonthView). The I Behaviours
and associated widgets for each of the states in our model are:

MainView : {DayDisplay 7→ I DayView}
DayView : {AddButton 7→ I AddView,EventList 7→ I EditView,BackButton 7→ I MonthView}
AddView : {CancelButton 7→ I DayView,SaveButton 7→ I DayView}
EditView : {CancelButton 7→ I DayView,SaveButton 7→ I DayView}

Using this information we derive our first set of tests used to ensure that the relevant widgets
exist in the appropriate states. To ensure that a widget is available for a user to interact with we
must not only test that it exists in the given state, but also that it is visible and active. We describe
the tests using first-order logic (which might be replaced by a table to show which predicates hold
for which values in each state if that would be more suitable for various audiences) as follows:

UIState(MainView)⇒Widget(DayDisplay) ∧ Visible(DayDisplay) ∧ Active(DayDisplay)
∧ hasBehaviour(DayDisplay, I DayView)

UIState(DayView)⇒Widget(AddButton) ∧ Visible(AddButton) ∧ Active(AddButton)
∧ hasBehaviour(AddButton, I AddView)

UIState(DayView)⇒Widget(EventList) ∧ Visible(EventList) ∧ Active(EventList)
∧ hasBehaviour(EventList, I EditView)

UIState(DayView)⇒Widget(BackButton) ∧ Visible(BackButton) ∧ Active(BackButton)
∧ hasBehaviour(BackButton, I MainView)

UIState(AddView)⇒Widget(CancelButton) ∧ Visible(CancelButton) ∧ Active(CancelButton)
∧ hasBehaviour(CancelButton, I DayView)

UIState(AddView)⇒Widget(SaveButton) ∧ Visible(SaveButton) ∧ Active(SaveButton)
∧ hasBehaviour(SaveButton, I DayView)

UIState(EditView)⇒Widget(CancelButton) ∧ Visible(CancelButton) ∧ Active(CancelButton)
∧ hasBehaviour(CancelButton, I DayView)

UIState(EditView)⇒Widget(SaveButton) ∧ Visible(SaveButton) ∧ Active(SaveButton)
∧ hasBehaviour(SaveButton, I DayView)

(The predicates here have the obvious (from their names) meaning, for now. They will be given
a formal meaning by associating them with computed properties (via pieces of code) later on.)
Next we ensure the modality of each state of the PIM (note that it is not necessary to put a

Prel. Proc. FMIS 2009

22

ECEASST

modality requirement on the initial state, MainView):

UIState(DayView)⇒Modal(DayView)
UIState(AddView)⇒Modal(AddView)
UIState(EditView)⇒Modal(EditView)

In order to derive tests for the system functionality we similarly identify the widgets with
S Behaviours and ensure that each of the widgets exist and that they have the required be-
haviours. When we come to instantiate the tests we can use the PMR to identify the specified
operation which relates to the behaviour and then use the specification to determine the function-
ality which must be satisfied when the widget is interacted with. The functional tests we derive
from the models are, therefore, as follows:

UIState(MainView)⇒Widget(QuitButton) ∧ Visible(QuitButton) ∧ Active(QuitButton)
∧ hasBehaviour(QuitButton,Quit)

UIState(MainView)⇒Widget(PrevArrow) ∧ Visible(PrevArrow) ∧ Active(PrevArrow)
∧ hasBehaviour(PrevArrow,S PrevMonth)

UIState(MainView)⇒Widget(NextArrow) ∧ Visible(NextArrow) ∧ Active(NextArrow)
∧ hasBehaviour(NextArrow,S NextMonth)

UIState(DayView)⇒Widget(EventList) ∧ Visible(EventList) ∧ Active(EventList)
∧ hasBehaviour(EventList,S RemoveEvent)

UIState(AddView)⇒Widget(SaveButton) ∧ Visible(SaveButton) ∧ Active(SaveButton)
∧ hasBehaviour(SaveButton,S AddEvent)

UIState(EditView)⇒Widget(SaveButton) ∧ Visible(SaveButton) ∧ Active(SaveButton)
∧ hasBehaviour(SaveButton,S UpdateEvent)

Finally we consider the widgets which do not have associated behaviours. In order for our
implementation to satisfy the requirements given in the models we must also ensure that these
non-functional widgets exist and can be seen by the user. Such widgets are used for a user to
provide information to the system by way of inputs or to give information regarding the state of
the system back to a user by way of displays.

UIState(AddView)⇒Widget(TitleEntry) ∧ Visible(TitleEntry) ∧ Active(TitleEntry)
UIState(AddView)⇒Widget(StartEntry) ∧ Visible(StartEntry) ∧ Active(StartEntry)
UIState(AddView)⇒Widget(EndEntry) ∧ Visible(EndEntry) ∧ Active(EndEntry)
UIState(EditView)⇒Widget(TitleEntry) ∧ Visible(TitleEntry) ∧ Active(TitleEntry)
UIState(EditView)⇒Widget(StartEntry) ∧ Visible(StartEntry) ∧ Active(StartEntry)
UIState(EditView)⇒Widget(EndEntry) ∧ Visible(EndEntry) ∧ Active(EndEntry)

This is the full set of abstract tests we derive from the models for the SimpleCalendar application.
They define all of the conditions on an implementation. The tests provide coverage criteria, we
know what we want to test and refer to the fixed properties of the UI which have been given
initially within the UI design artefacts (the prototypes of figures 1 and 2 in this example). When
we instantiate the tests we will see that we may need to define variables in some instances which
are subject to the usual testing considerations of boundaries and choice of values. We discuss
this further in the next section and show how we use the current visible state of the UI from a
user’s perspective to help with these choices.

In the next section we discuss how we instantiated the tests for a Java implementation of
SimpleCalendar and give some positive and negative results of the testing process.

Volume (FMIS09 Preliminary Proceedings)

23

UI-Design Driven Model-Based Testing

4 Instantiating and Running the Tests

Having shown how we can derive a set of abstract tests from formal models of UI design artefacts
we now give an example of instantiating and running these tests. The Simple Calendar applica-
tion has been implemented in Java and we have used the FEST testing framework [FES], which
is based on the principles of TestNG and Abbot [RP07], as a way of instantiating and running
the tests. While FEST is intended to provide a test-driven development approach to interactive
system development, its ability to replicate user interaction (by way of the underlying Java Robot
class) makes it a suitable approach for our work. It enables us to take a user-centred approach to
our testing in the manner of replicating user interaction with the system to determine correctness
of response to possible interaction with the UI and we can then use the underlying support of
JUnit to determine whether or not the system behaves as described in our abstract tests. Due to
the requirements of FEST classes, which rely on implementation details (such as widget names
etc.), we take a white-box approach to testing where we use code inspection to determine the
information required for FEST (as necessary).

Depending on how we want to test the system we might choose different ways of instantiating
the tests. For example it may be enough to determine that all required behaviours of all UI states
can be accessed by a user, or we might be stricter and require that if our model has two separate
controls with a particular behaviour then the tests must show that two such distinct widgets exist
with the required behaviour. This is the approach we have taken with this example as it adheres
to our commitment to using the designs as the basis for implementation. That is, we expect
everything described in the final design artefacts to become part of the implementation.

Just as we did when we began the test derivation process we start by considering the dynamic
behaviour of I Behaviours. In order to determine correctness of state we will ensure that each
named state has the correct set of widgets visible to a user and available for interaction. FEST
uses a package of classes called Fixtures which understand simulation of user events on Java
Swing objects and verify the state of these objects. There are different classes for different types
of widgets, for example a JButtonFixture enables simulation of clicks or double clicks etc. upon
an actual JButton of an implementation (which is passed to the constructor of the fixture object).
In order to test correctness of state, therefore, we create fixtures for each frame or dialogue which
instantiates one of the states given in the PIM and then interrogate this to determine whether or
not required widgets are present and correctly available. The following code is an example of
such a test for the MainView state:

mv = new FrameFixture(new MView());
public void mViewState(){

mv.button("quitButton").requireVisible();
mv.button("quitButton").requireEnabled();
mv.button("prevArrow").requireVisible();
mv.button("prevArrow").requireEnabled();
mv.button("nextArrow").requireVisible();
mv.button("nextArrow").requireEnabled();
mv.panel(testdate).requireVisible();
mv.panel(testdate).requireEnabled();

}

where MView is the class in our implemented system which provides the UI elements for the
MainView of the application. When we call the mViewState() method from within a JUnit test

Prel. Proc. FMIS 2009

24

ECEASST

method the MView frame is created and run in exactly the same way as if we had launched the
SimpleCalendar application, and the cursor can be seen moving around the UI over each widget
as it identifies it in the same manner as a user moving the mouse to hover over each of the
widgets. If any of the tests fail (for example if one of the widgets cannot be found or does not
have the required visibility property) we get the standard JUnit red failure bar along with an
explanation of the cause of the test failure.

We create similar test methods for DayView, AddView and EditView and then use these as
part of our I Behaviour tests. We can either instantiate each abstract test individually, or com-
bine two or more into a single test. For example we combine the modality requirement given
in UIState(DayView)⇒ Modal(DayView) with the state test method for DayView by adding
dv.requireModal(); to the state test. In order to instantiate an abstract test such as:

UIState(MainView)⇒Widget(DayDisplay) ∧ Visible(DayDisplay)
∧ Active(DayDisplay) ∧ hasBehaviour(DayDisplay, I DayView)

we determine from the PIM that a control called DayView should have the I DayView behaviour
which should change the state of the system from MainView to DayView. As part of the prepa-
ration for our tests we create a FrameFixture called mv which allows us to simulate interaction
with the UI and take us to any of the other states as required for testing. For example the FEST
code for the test given above is:

public void mvIDayViewTest(){
DialogFixture dv = mv.panel(testdate).click().dialog(testdate);
dViewState(dv);

}

This simulates a user clicking on a dayDisplay widget (a JPanel in our implementation) which
opens a new dialogue, dv, and we then check that this has the defined DayView state. One way
of identifying widgets using FEST is by using their name, and in SimpleCalendar we use the
current date of each DayDisplay panel as the name’s value. Testdate is a variable containing the
current date (as the system always starts up displaying the current month this is a suitable choice
for the test variable) and so represents the name of one of the JPanel widgets in MainView. This
is an example of a test which requires a variable value (a date). Our choice of value for this is
made based on what choices are available to a user when the system starts up, so we test based
on the dates of the current month and iterate through each of the values that would be visible to
the user. The range of the values chosen are then the limits of what a user has access to. We do
not randomly test arbitrary dates or seek to test boundary values, such as 01/01/00, 12/12/99 etc.
as these do not reflect choices the user can make in the current state.

We construct tests as described above for all of the I Behaviours, and when we run them one
at a time we discover our first error. The dvIAddViewTest(), which instantiates the abstract test:

UIState(DayView)⇒Widget(AddButton) ∧ Visible(AddButton) ∧ Active(AddButton)
∧ hasBehaviour(AddButton, I AddView)

fails, producing the error:

java.lang.AssertionError: .. property’modal’ expected <true> but was <false>

Volume (FMIS09 Preliminary Proceedings)

25

UI-Design Driven Model-Based Testing

When the aViewState test is called to ensure that the resulting state after clicking the Add
button is correct, the modality test fails. In the implementation of SimpleCalendar AddView has
not been set as a modal dialogue and so the test fails and our error is discovered. Once we have
corrected this problem all of the I Behaviour tests are passed.

We next move onto the non-behavioural widgets, which enables us to test that the implemented
UI for SimpleCalendar contains the required widgets for user entry and display. As there are no
behaviours associated with these widgets we test them based on their category, so for the abstract
test:

UIState(AddView)⇒Widget(TitleEntry) ∧ Visible(TitleEntry) ∧ Active(TitleEntry)

we identify the category of TitleEntry from the presentation model Entry and then instantiate
the test by checking that the widget allows user entry (we do not need to test that the widget is
visible and active in the state as we have already done this as part of our state tests). Using FEST
we simulate the user entering some string into the text field and then test that the value of the text
field is the entered string:

String tString = "Test Text";
av.textBox("titleEntry").enterText(tString);
av.textBox("titleEntry").requireText(tString);

It may seem strange to test the value of the titleEntry text box immediately after setting it, but
the enterText instruction does not set the value of the text box, it merely attempts to interact with
it in the same way a user would, by selecting it with the mouse and then entering the keystrokes
required to produce the string. If the ‘editable’ property of the text box was set to false the
enterText instruction would be carried out (by way of mouse movement and keyboard input) but
the textBox would not contain the required string and so the assertion would fail. Each of the
non-behavioural widgets are tested in this manner and all of the tests are passed.

Finally we move onto the S Behaviour widget tests. In order to create these we need to
identify and simulate user action on each of the widgets in each state in the same manner as for
the I Behaviours, and use the specified behaviour of operations related via the PMR to determine
whether or not behaviour is correct. As an example consider the abstract test:

UIState(MainView)⇒Widget(PrevArrow) ∧ Visible(PrevArrow)
∧ Active(PrevArrow) ∧ hasBehaviour(PrevArrow,S PrevMonth)

Just as we have done with the other widgets we need to ensure that the widgets are available and
visible in the required UI state and that the behaviour is correct. In the case of the S Behaviours
the meaning is given by the specified operation, ShowPreviousMonth (described in section 2)
which the S Behaviour is related to via the PMR. Because the S Behaviours enable the user
to access the system functionality (and therefore change the system state) as part of our test
we should ensure that whenever a user can perform such an operation (i.e when a widget with
that behaviour is available for interaction) the pre-condition of the related operation holds. This
ensures that we do not expose users to the possibility of putting the system into an unexpected
state. Secondly we must test that the post-condition given by the invariant in the operation
description holds after the interaction, i.e. that the correct operation has occurred and has left
the system in the expected state. In the example we present in this paper the specification of

Prel. Proc. FMIS 2009

26

ECEASST

the system is given in Z [13502] and we use standard conventions for determining pre- and
post-conditions for operations. However, it is not a requirement that Z is used, only that related
operations can be identified within the given specification and then appropriate methods used to
identify the requirements for testing the system state.

For the PrevArrow widget in the MainView UI state our test then entails the following steps:

• ensure the PrevArrow widget exists in the MainView state
• ensure the PrevArrow widget is visible and enabled in the MainView state
• ensure that the pre-condition of the ShowPreviousMonth operation holds in MainView
• ensure that the post-condition of the ShowPreviousMonth operation holds in MainView

after interaction with the DayView widget

The pre-condition of the operation schema can be calculated using standard Z techniques, and
can be simplified to currentMonth = 1 ∨ currentMonth ∈ 2 . . 12, which for the UI means test-
ing that the displayed month is either January, or between February and December. The post-
condition of the operation requires that we check the value of allevents is unchanged and that
the visible dates are correctly determined by the new value of currentMonth which should be
the month prior to the original value. For the FEST testing we are only interested in the UI el-
ements, and therefore separate the non-UI requirements (in this case the condition on allevents)
into a separate test which can be run using JUnit independently of UI elements. This leads to the
following test:

public void mvSPrevMonthTest(){
int cm = cal.get(Calendar.MONTH);
int year = cal.get(Calendar.YEAR);
String yearstring = Integer.toString(year);
mv.label("monthLabel").requireText(makeMonth(cm));
int pcm = cm -1;
for(int i = 0; i < 12; i++){

if(pcm == 11)
yearstring = Integer.toString(year-1);

if(pcm == 0)
pcm = 12;

String prevdate = makeMonth(pcm);
mv.button("prevArrow").click();
mv.label("monthLabel").requireText(prevdate);
mv.label("yearLabel").requireText(yearstring);
pcm --;

}
sysPostConditionPrevMonth();

}

The line mv.label("monthLabel").requireText(makeMonth(cm)); checks the pre-condition by
ensuring that the value of the month label is one of the values given by the makeMonth() utility
method in the test class (which returns only values in the range January to December). The test
runs through a twelve month cycle which ensures coverage of both possible post-condition cases
irrespective of the start month. Finally the method sysPostConditionPrevMonth() is called which
is the unit test for the non-UI parts of the post-condition.

As we work our way through the tests for the S Behaviours we obtain an unexpected result
for one of the tests. When we run the test instantiating the abstract test:

Volume (FMIS09 Preliminary Proceedings)

27

UI-Design Driven Model-Based Testing

UIState(DayView)⇒Widget(EventList) ∧ Visible(EventList)
∧ Active(EventList) ∧ hasBehaviour(EventList,S RemoveEvent)

we observe the simulated interaction, and conclude that the test should fail. We have created
an event titled “Dentist” for a given date, and then test that after S RemoveEvent this event is
no longer displayed in DayView or MonthView. What we observe upon closure of the DayView
dialogue is that the event is still displayed in MonthView.The test, however, which checks the
value of the label displaying event values in MainView is passed, as is the JUnit test of the
underlying system state which determines that the event has been successfully removed from the
collection of events maintained by the system. The error is caused by a lack of graphics refresh
by the Java Virtual Machine and so although the event has been correctly removed, and the label
text reset to empty, the previous value remains on the screen. Given that it is possible to run
all of the tests we created in the background and generate a report of any errors that occur it is
quite possible that such an error could be missed by this form of testing. It is a reminder of the
importance of performing usability testing with people at the conclusion of model-based testing
where such an error would be easily detected.

5 Conclusions

In this paper we have shown how our formal models of UI design artefacts can be used as the
basis for model-based testing of interactive systems. We showed how it was possible to derive
tests and oracles from the models which cover all of the behaviour captured by the UI designs
and system specification. The tests are UI driven (as the models are based on UI designs), which
reflects our desire to follow a UCD approach supported by formal methods.

We have given an example of how the abstract tests we derive can be instantiated and run
against a Java implementation using the FEST framework in conjunction with JUnit. This en-
abled us to program tests for the implementation (in the nature of white-box testing) and run
them to both observe the interaction produced as well as obtain the feedback from FEST and
JUnit with respect to whether the tests were passed or not.

During the testing of our example SimpleCalendar application we discovered a modality error
where the behaviour of the implementation did not match the oracle given by the model. We
also discovered an example of an error which could not be caught by either FEST or JUnit.
Our aim in performing model-based testing in this way is to find as many errors as possible
prior to performing human-based usability testing. We want to discover as many functional and
interaction errors as possible so that user testing can focus on usability and aesthetic issues.

Using the models enabled us to produce a range of abstract tests which covered all of the
described interactive behaviours of the UI design models. Further we have shown one way of
turning these abstract tests into an implemented test suite that can produce useful results. We
believe that this initial investigation into using design models for this purpose has shown it to be
a useful area of research to proceed with.

Our tool for creating, editing and storing presentation models and PIMs is currently being
extended to support creation and exporting of abstract tests in the manner described in this paper.
This will remove the necessity to manually create the abstract tests and may also be able to
support partial generation of concrete tests for particular testing strategies. For example we could

Prel. Proc. FMIS 2009

28

ECEASST

automatically generate test method stubs for Java to support the example given in this paper, or
use other suitable extensions to the tool depending on how the tests are to be implemented. This
seems feasible given the uniform way tests and their predicates are given semantics by code.

We are also interested in investigating this testing strategy further and looking at different ways
of instantiating the tests. In particular we would be interested to discover whether alternative
methods of instantiation lead to better, or worse, results than we obtained using FEST and JUnit.
Given that FEST is intended to be used within a test-driven development (TDD) process we
believe it is possible to perform TDD of interactive systems based on the same abstract tests as
we have presented here. That is we would use the UI designs as the basis of unit-tests (both for
the UI and functionality of the system) and then follow the usual TDD approach of implementing
the system with the objective of passing the tests.

Finally we also plan to investigate the use of the the abstract tests presented here as the basis
for usability testing. There are many ad hoc approaches taken to deciding how a system should
be tested with users and we are interested to see if these model-driven tests provide a useful basis
for such decisions, and what, if any, differences this leads to in terms of results when compared
with task-driven approaches to usability testing.

Bibliography

[13502] I. 13568. Information Technology—Z Formal Specification Notation—Syntax, Type
System and Semantics. Prentice-Hall International series in computer science.
ISO/IEC, first edition, 2002.

[96494] I. 9646-1. Information Technology—Open Systems Interconnection—Conformance
Testing Methodology and Framework, Part 1: General Concepts. International Stan-
dards Organisation. ISO/IEC, first edition, 1994.

[ACE+06] M. Alles, D. Crosby, C. Erickson, B. Harleton, M. Marsiglia, G. Pattison, C. Stien-
stra. Presenter First: Organizing Complex GUI Applications for Test-Driven Devel-
opment. AGILE Conference 0:276–288, 2006.

[Bel01] F. Belli. Finite-State Testing and Analysis of Graphical User Interfaces. In ISSRE
’01: Proceedings of the 12th International Symposium on Software Reliability En-
gineering (ISSRE’01). Pp. 34–43. IEEE Computer Society, Washington, DC, USA,
2001.

[Bel03] F. Belli. A Holistic View for Finite-State Modeling and Testing of User Interactions.
2003. Technical Report 2003/1, Institute for Electrical Engineering and Information
Technology, The University of Paderborn, April 2003.

[Bow08] J. Bowen. Formal Models and Refinement for Graphical User Interface Design. PhD
thesis, University of Waikato, Department of Computer Science, 2008.

[BR06] J. Bowen, S. Reeves. Formal Models for Informal GUI Designs. In 1st International
Workshop on Formal Methods for Interactive Systems, Macau SAR China, 31 Oc-
tober 2006. Volume 183, pp. 57–72. Electronic Notes in Theoretical Computer Sci-
ence, Elsevier, 2006.

Volume (FMIS09 Preliminary Proceedings)

29

UI-Design Driven Model-Based Testing

[BR08a] J. Bowen, S. Reeves. Formal Models for User Interface design artefacts. Innovations
in Systems and Software Engineering 4(2):125–141, 2008.

[BR08b] J. Bowen, S. Reeves. Refinement for User Interface Designs. Electronic Notes Theo-
retical Computer Science 208:5–22, 2008.

[FES] FEST (Fixtures for Easy Software Testing).
http://fest.easytesting.org/wiki/pmwiki.php

[Mem07] A. M. Memon. An event-flow model of GUI-based applications for testing. Software
Testing Verification and Reliability 17(3):137–157, 2007.

[Mem09] A. M. Memon. Using Reverse Engineering for Automated Usability Evaluation of
GUI-Based Applications. In Software Engineering Models, Patterns and Architec-
tures for HCI. Springer-Verlag London Ltd, 2009.

[PFV07] A. Paiva, J. C. P. Faria, R. F. A. M. Vidal. Towards the Integration of Visual and
Formal Models for GUI Testing. Electronic Notes Theoretical Computer Science
190(2):99–111, 2007.

[PTFV05] A. Paiva, N. Tillmann, J. Faria, R. Vidal. Modeling and testing hierarchical GUIs.
In D. Beauquier, E. Borger, and A. Slissenko, editors, ASM05. Universite de Paris,
2005.

[RP07] A. Ruiz, Y. W. Price. Test-Driven GUI Development with TestNG and Abbot. IEEE
Software 24(3):51–57, 2007.

[Spe] Spec #. Microsoft technical pages for Spec #:.
http://research.microsoft.com/specsharp/

[UL06] M. Utting, B. Legeard. Practical Model-Based Testing: A Tools Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

[WA00] L. White, H. Almezen. Generating Test Cases for GUI Responsibilities Using Com-
plete Interaction Sequences. In ISSRE ’00: Proceedings of the 11th International
Symposium on Software Reliability Engineering. P. 110. IEEE Computer Society,
Washington, DC, USA, 2000.

[XM06] Q. Xie, A. M. Memon. Model-Based Testing of Community-Driven Open-Source
GUI Applications. In ICSM ’06: Proceedings of the 22nd IEEE International Con-
ference on Software Maintenance. Pp. 145–154. IEEE Computer Society, Washing-
ton, DC, USA, 2006.

[YCM09] X. Yuan, M. B. Cohen, A. M. Memon. Towards Dynamic Adaptive Automated Test
Generation for Graphical User Interfaces. In ICSTW ’09: Proceedings of the IEEE
International Conference on Software Testing, Verification, and Validation Work-
shops. Pp. 263–266. IEEE Computer Society, Washington, DC, USA, 2009.

Prel. Proc. FMIS 2009

30

http://fest.easytesting.org/wiki/pmwiki.php
http://research.microsoft.com/specsharp/

ECEASST

Towards the Verification of Pervasive Systems

Myrto Arapinisa, Muffy Calderb, Louise Denisc, Michael Fisherd , Philip Graye,
Savas Konur f , Alice Millerg, Eike Ritterh, Mark Ryani, Sven Schewe j, Chris

Unsworthk, Rehana Yasminl ,

a m.d.arapinis@cs.bham.ac.uk h e.ritter@cs.bham.ac.uk
i m.d.ryan@cs.bham.ac.uk l r.yasmin@cs.bham.ac.uk
School of Computer Science, University of Birmingham

c l.a.denis@liverpool.ac.uk d mfisher@liverpool.ac.uk
f s.konur@liverpool.ac.uk j sven.schewe@liverpool.ac.uk
Department of Computer Science, University of Liverpool

b muffy@dcs.gla.ac.uk e pdg@dcs.gla.ac.uk
g alice@dcs.gla.ac.uk k chrisu@dcs.gla.ac.uk

Departent of Computer Science, University of Glasgow

Abstract: Pervasive systems, that is roughly speaking systems that can interact
with their environment, are increasingly common. In such systems, there are many
dimensions to assess: security and reliability, safety and liveness, real-time re-
sponse, etc. So far modelling and formalizing attempts have been very piecemeal
approaches. This paper describes our analysis of a pervasive case study (MATCH,
a homecare application) and our proposal for formal (particularly verification) ap-
proaches. Our goal is to see to what extent current state of the art formal methods
are capable of coping with the verification demand introduced by pervasive systems,
and to point out their limitations.

Keywords: pervasive systems, modelling, formalizing, verification

1 Introduction

Pervasive systems (often also termed ubiquitous systems) are increasingly common. But what
are they? One of the many definitions is that

Pervasive Computing refers to a general class of mobile systems that can sense their
physical environment, i.e., their context of use, and adapt their behaviour accord-
ingly [PSHC08].

While there are very many forms of pervasive system, they are often:

• mobile and autonomous;

• distributed and concurrent;

• interacting and interactive;

Volume (FMIS09 Preliminary Proceedings)

31

mailto:m.d.arapinis@cs.bham.ac.uk
mailto:e.ritter@cs.bham.ac.uk
mailto:m.d.ryan@cs.bham.ac.uk
mailto:r.yasmin@cs.bham.ac.uk
mailto:l.a.denis@liverpool.ac.uk
mailto:mfisher@liverpool.ac.uk
mailto:s.konur@liverpool.ac.uk
mailto:sven.schewe@liverpool.ac.uk
mailto:muffy@dcs.gla.ac.uk
mailto:pdg@dcs.gla.ac.uk
mailto:alice@dcs.gla.ac.uk
mailto:chrisu@dcs.gla.ac.uk

Towards the Verification of Pervasive Systems

• reactive and potentially non-terminating; and

• composed of humans, agents and artifacts interacting together.

Existing pervasive systems provide services to the inhabitants of a home, the workers of an office
or the drivers in a car park. We know that requirements for current and future pervasive systems
involve great diversity in terms of their types of services, such as multimedia, communication or
automation services.

Typical Example. As we walk into a shopping area, our intelligent clothing interacts wire-
lessly with shops in the area and then with our mobile phone to let us know that our shoes are
wearing out and that the best deals nearby are at shops ‘X’, ‘Y’ and ‘Z’.

Our PDA, which holds our shopping list, also interacts with our phone to suggest the optimum
route to include shoes in our shopping.

At the same time, our PDA interacts with the shopping area’s network and finds that one of
our friends is also shopping − a text message is sent to the friend’s mobile/PDA to coordinate
shopping plans and schedule a meeting for coffee at a close location in 15 minutes.

Even in this simple example the components at least need capabilities to carry out:

• plan synchronisation;

• spatial reasoning and context-awareness;

• planning and scheduling;

• mobility and communication, etc.

The above is an example but there are many more, often more complex examples1. What is of
concern to us is that pervasive computing is increasingly used in (safety, business, or mission)
critical areas. This, of course, leads us to the potential use of formal methods in this area. Again,
even considering the simple example above there are many dimensions to assess: security and
reliability; safety and liveness; real-time response, etc.

Although there have been some attempts at modelling, e.g. [CFJ03, WZGP04, HI04, SB05,
Sim07], formalising and even verifying aspects of pervasive and ubiquitous systems, e.g. [DKNP06],
these have been very piecemeal approaches. We wish to be able to analyse the varied behaviours
of a pervasive system from a number of viewpoints.

But how might this be achieved? This paper describes our analysis of a pervasive case study,
MATCH [CM07], and our proposals for formal (particularly verification) approaches.

As we have seen, pervasive systems have some quite complex specification aspects. This
explains, in part, why the verification of such systems is difficult. Essentially, most pervasive
systems involve many dimensions that we must address (formalise and verify) simultaneously:
1 See Personal and Ubiquitous Computing journal (Springer); Pervasive and Mobile Computing journal (Elsevier);
Journal of Ubiquitous Computing and Intelligence (American Scientific Publishers); International Journal of Ad Hoc
and Ubiquitous Computing (Inderscience Publishers); and Journal of Ubiquitous Computing and Communication
(UBICC publishers).

Prel. Proc. FMIS 2009

32

ECEASST

• autonomous behaviour of agents;

• uncertainty in communications;

• teamwork, collaboration and coordination;

• organisations, norms, societal interactions;

• uncertainty in sensing;

• real-time aspects;

• etc...

In addition, such systems often involve humans within the system which directly affect the sys-
tem’s behaviour.

Current state of the art formal methods appear incapable of coping with the verification de-
mand introduced by pervasive systems, primarily because reasoning about such systems requires
considering quantitative, continuous and stochastic behaviour. We also require to prove interac-
tion properties which are quite subtle to express.

2 MATCH overview

MATCH (Mobilising Advanced Technology for Care at Home) is a collaborative research project
focused on technologies for care at home. The overall aim of MATCH is to develop a research
base for advanced technologies in support of social and health care at home. The client users for
MATCH will include older people and people with disabilities of all ages. The goal is to enable
people to manage their health and way of life so that they can continue to live independently in
their own homes for longer.

The main aim of the research in the MATCH project is to integrate a number of home-care
technologies into one system that can be installed into a user’s home. This system will provide
support and assistance where needed by realising a number of goals. Goals may include “Warn
the user if they are doing something dangerous”, “ Call for help if the user has an accident and
needs assistance”, “Inform a medical professional if the user’s health deteriorates”.

This could be implemented as a rule based, event driven pervasive system in which a set of
input components such as: motion detectors, RFID readers, temperature sensors, heart monitors,
and microphones, enable the detection of significant events. A set of output components such
as: speakers, GUIs, mobile devices, TVs, lights, and tactile devices, allow the system to interact
with the environment. A set of rules will determine under what circumstances the system should
take action and what action should be taken.

A significant factor in whether such a system would be adopted within a home would be the
issue of trust. Therefore, it would be advantageous if properties of the MATCH system could
be verified. This would then provide support to the claims made by the system developers.
Properties of interest can be categorised as (but not limited to) Security, Safety and/or Usability.

Volume (FMIS09 Preliminary Proceedings)

33

Towards the Verification of Pervasive Systems

2.1 Security

Security properties relate to the integrity of the system and its ability to withstand the efforts
of malicious agents. As an example the property “Food delivery staff cannot see mental health
records” is concerned with the user’s confidentiality. It would be advantageous if the food deliv-
ery staff could have limited access to the homecare system. This could be used to find relevant
information about the user, such as dietary requirements. However, it would not be reasonable
for all of the user’s confidential medical records to be divulged to anyone who interacts with the
system. Another example, “Medical records are consistent across the system” relates to system
integrity. Because of the distributed nature of a pervasive system, there maybe several different
devices used to monitor and record the medical condition of the user. A number of these devices
may hold similar or overlapping data. It should be the case that all such data is consistent. “Cor-
respondence between the system view of events and the events taking place on portable devices”
is another integrity property. It is unlikely that portable devices will have complete knowledge
of the state of the system. However, they should act in a manner that corresponds to the current
state of the system as a whole. “No unauthorised tracking” is a property which is concerned with
confidentiality. It should not be possible for a malicious agent to use system outputs to allow
them to track the user.

2.2 Safety

Safety properties relate to situations in which the system may cause harm, either by action or
inaction. For example, “Sensors are never offline when a patient is in danger”. The system
should always have sufficient sensor coverage to detect all potentially dangerous situations that
it can be reasonably expected to recognise. If the system does detect that a patient is in danger
then appropriate action should be taken. The action taken should have an expected response
time that is appropriate for the situation. For example, if the patient is having a heart attack
then an ambulance should be called. Other forms of notification such as e-mail are unlikely
to be received in time. This could be represented by the property “If a patient is in danger,
assistance should arrive within a given time”. Properties such as “No component will perform
an action that it believes will endanger the patient” can relate the hardware devices used within
the system. A more traditional property, “Urgent actions related to the patient’s safety will
always take precedence over all other actions” ensures that important actions are prioritised. It
is also important to consider potentially damaging actions a user may attempt, “Users have no
reasonable strategy for cooperating to falsify records or events”. This property aims to prevent
users from being able to manipulate the system so as to deceive a health professional.

2.3 Usability

Usability properties refer to aspects that directly effect the user’s experience and interaction with
the system. Example properties include, “Notifications occur only at appropriate intervals and
in appropriate circumstances”. If a user is bombarded with too many insignificant messages or
is interrupted while busy, they are likely to find the system obtrusive and will probably reject it.
Similarly “Requests to the users must be relevant to them” and “There should not be to many
pending requests on a user/patient” also relate to the users’ acceptance of the system.

Prel. Proc. FMIS 2009

34

ECEASST

3 Some sample properties

In this section we will recall the earlier sample properties of the MATCH system, and formulate
them using formal languages. In particular, we ideally consider formal languages for which a
model checking or verification tool is available.

Below we consider an informal and formal account of the relevant properties.

3.1 Security

3.1.1 Formalisation

Food delivery staff cannot see mental health records. In order to formalise this property we
could use the access control language RW of [GRS04]. In that system, we assume predicates
such as

f d(X) : X is a member of food delivery staff
mhr(X ,Y) : X is the mental health record of Y
td(X ,Y) : X is a treating doctor for Y
ha(X) : X is a health administrator

Predicates read and write indicate read and write permissions respectively. The following for-
mulae show how such permissions are granted:

read(mhr(X ,Y),Z) ⇔ Y = Z ∨ td(Z,Y)
write(td(X ,Y),Z) ⇔ Z = Y ∨ ha(Z)

...

RW can calculate whether a user can manipulate the access control system in order to give
himself the necessary permissions to achieve a goal. In this example, a member of food delivery
staff might be able to read mental health records if he can promote himself to treating doctor. We
can verify that this is not possible by evaluating the query

∀a,b,∈ Agent. r ∈ Record. f d(a) → ¬[a : mhr(r,b)]

This query evaluates whether there is a (perhaps roundabout) sequence of reads and writes re-
sulting in a food delivery staff member a being able to read the health records of some patient
b.

Correspondence between the system view of events and the events taking place on portable
devices. This property is known as injective agreement in Lowe’s hierarchy of authentica-
tion [Low97]. Intuitively, this property states that each time the MATCH system stores some
value v in the record of a patient p, then p’s doctor d has submitted this value v. In the same way,
each time doctor d submits some value v for p’s record to the system, then the MATCH system
should update its state accordingly. This can be expressed in ProVerif’s query language [Bla01]
as follows:

query evin j : evsyst(d, p,v) ==> evin j : evpatient(d, p,v)
query evin j : evpatient(d, p,v) ==> evin j : evsyst(d, p,v)

Volume (FMIS09 Preliminary Proceedings)

35

Towards the Verification of Pervasive Systems

The first (resp. second) query is true when, for each executed event evsyst(d, p,v) (resp. evpatient(d, p,v)),
there exists a distinct executed event evpatient(d, p,v) (resp. evsyst(d, p,v)); and evsyst(d, p,v) is
executed before evpatient(d, p,v) (resp. evpatient(d, p,v) is executed before evsyst(d, p,v)).

Non-authorised tracking (e.g. by strangers outside the house). MATCH’s implementation
will rely on Radio Frequency IDentification (RFID) tags attached to patients, in order for the
system to be able to detect if a particular patient is in the house. However, one wouldn’t want
someone outside the house with an RF reader to be able to determine patient’s position. In the
RFID literature [GJP05, Jue06, WSRE03], this security requirement is known as untraceability.
Intuitively, this property states that an attacker cannot link two different identifications to the
system of the same tag (and thus of the same patient). In other words, all tags that identify
themselves to the system look different to an outsider.

This property can be specified in the applied pi calculus formalism. The applied pi-calculus [AF01]
is a language for describing concurrent processes and their interactions. It is based on the pi-
calculus, but adds equations which make it possible to model a range of cryptographic primitives.

We consider RFID protocols that can be expressed in the applied pi calculus as a closed plain
process P

P ≡ ν ñ. (DB | !R | !T)

where
T ≡ νm̃. init. !main

for some processes init and main2. Intuitively, T is the process modelling one tag, and having T
under a replication in P corresponds to considering a system with an unbounded number of tags.
Each tag initialises itself (this includes registering at the database DB and is modelled by init in
T) and then may execute itself an unbounded number of times. Thus main models one session of
the tag’s protocol. R corresponds to one session of the reader’s protocol, and DB to the database.
We consider an unbounded number of readers, thus R is under a replication in P.

Many properties of security protocols (including untraceability) are formalised in terms of
observational equivalence (≈) between two processes. Intuitively, processes which are observa-
tionally equivalent cannot be distinguished by an outside observer, no matter what sort of test he
makes. This is formalised by saying that the processes are indistinguishable under any context,
i.e. no matter in what environment they are executed.

Let P be an RFID protocol as defined above, P is said to satisfy untraceability if P≈ P′ where

P′ ≡ ν ñ. (DB | !R | !T ′)

and
T ′ ≡ νm̃. init. main

The intuitive idea behind this definition is as follows: each session of P should look to the
intruder as initiated by a different tag. In other words, an ideal version of the protocol, w.r.t.
untraceability, would allow tags to execute themselves at most once. The intruder should then
not be able to tell the difference between the protocol P and the ideal version of P.
2 ν ñ models a sequence of names n1, . . . ,nk restricted to (Db | !R | !T). In the same way νm̃ denotes a sequence of
names m1, . . . ,m` restricted to (init. !main).

Prel. Proc. FMIS 2009

36

ECEASST

3.1.2 Verification - at present

Several tools are available for verifying the properties defined above. Considering the first prop-
erty, RW is supported by the AcPeg tool [Zha06] which accepts descriptions of access control
models and evaluates queries. It treats the case that the sets of agents and other resources are
finite (this case is decidable). It is currently not able to deal with non-bounded sets of resources,
a problem known to be undecidable [HRU76].

DynPAL [Bec09] also analyses access control systems of a dynamic nature, similar to RW, and
is more able to treat unbounded systems, but does not handle queries about “read” capabilities.

We expressed the second property in ProVerif’s query language and the third using observa-
tional equivalence. This, in some cases, allows a user to automatically check that a protocol
satisfies these requirements using the tool ProVerif [Bla01]. However, the verification of these
properties is an undecidable problem [DLMS99], and ProVerif isn’t always able to give an an-
swer. It may even introduce false attacks.

For the second property, which is a correspondence property one could use other tools like
Avispa [ABB+05] or Casper [Low98]. In order for these tools to be able to give some results,
only bounded systems are considered. Indeed, when the number of executions of a protocol is
bounded, the verification of many correspondence properties becomes decidable. To the best of
our knowledge, ProVerif is the only tool able in some cases to prove that processes are observa-
tionally equivalent.

3.2 Safety

3.2.1 Formalisation

Sensors are never offline when a patient is in danger. We can, for example, formulate such
a statement using standard linear-time temporal logic (LTL) [Eme90, MP92, Fis07]. We first
capture the notions of sensors being “offline” and patients being “in danger”.

Assume si is a sensor (i∈{1, ..,m}). We define propositions3 fail(si), switch off (si) and offline(si)
as follows: fail(si) denotes that the sensor si fails; switch off (si) denotes that si is switched off;
and offline(si) denotes that si is offline. Now, we assume that if either the sensor fails or it has
been switched off, then it is offline

2[(fail(si)∨ switch off (si))⇒ offline(si)], ∀i ∈ {1, ..,m}

(Recall that, in LTL, ‘2’ means “at all present and future time points”, ‘♦’ means “at some
present or future time point”, and ‘©’ means “at the next time point”.) We now consider the
cases where patients are in danger. Assume p j is a patient (j ∈ {1, ..,n}). We define the fol-
lowing propositions: in danger(p j) denotes that the patient p j is in danger; high heart rate(p j)
denotes that the heart rate monitor of p j has detected p j’s heart rate to be higher than normal;
low activity(pj) denotes that the activity monitors of the patient p j have detected that p j has
moved very little for a period of time; motionless(p j) denotes that sensors have detected that p j

has not moved at all for a period of time. If we assume that a patient is in danger only if either

3 While we use a fragment of first-order language, the finiteness of the domain in question ensures that this is
essentially propositional temporal logic.

Volume (FMIS09 Preliminary Proceedings)

37

Towards the Verification of Pervasive Systems

his/her heart rate is higher than normal, he/she has moved very little with a period of time, or
he/she has been inactive (but not in bed) for a while, then

2[(high heart rate(p j)∨ low activity(p j)∨motionless(p j))⇒ in danger(p j)]

The truth of predicates such as ‘low activity’ can also be defined in terms of the values of sensors,
together with some real-time and probabilistic constraints.

We can now specify the property “if a patient is in danger sensors never go offline until the
patient is no longer in danger” as follows:

2[in danger(p j)⇒ (¬
∨

i∈{1,..,m}
offline(si))U (¬in danger(p j))], ∀ j ∈ {1, ..,n}

Of course, this simple version assumes that the dangerous situation will eventually be resolved.

Let us now consider the second property.

Urgent actions related to the patients’ safety will always take place before other actions As-
sume A is a set of urgent actions, and B is a set of non-urgent actions such that A∩B = /0 (again,
this notion of urgency might well be defined in terms of some priority measure.) We use the
proposition action(a) to denote that the action ‘a’ takes place. Property (ii) states that if a patient
is in danger, a non-urgent action should not take place before an urgent action. This can again be
expressed in LTL as follows:

2[in danger(p j)⇒ (¬(
∨
b∈B

action(b) U
∨
a∈A

action(a))U ¬in danger(p j)], ∀ j ∈ {1, ..,n}

This, of course, can be made more detailed and complex, for example if we delve into the prop-
erties of actions.

If a patient is in danger, assistance should arrive within a given time We define the propo-
sition assistance(p j) as denoting that assistance arrives for p j. If the specification were “if a
patient is in danger, assistance should arrive eventually”, then we could formulate this in LTL as
follows:

2[in danger(p j)⇒ ♦assistance(p j)], ∀ j ∈ {1, ..,n} .

assistance must be available. Since this is a real-time property, we must extend the logic to
capture this specification. Alternatively, we might use a logic such as TCTL [ACD90]. TCTL
is a branching-time temporal logic, specifically a real-time extension of the logic CTL [CE82],
which can express real-time properties. Thus, (ii) can be expressed in TCTL as follows:

∀2[in danger(p j)⇒∀♦≤tassistance(p j)], ∀ j ∈ {1, ..,n}

This formula states that if a patient is in danger, it is guaranteed that some assistance will arrive
within time t. (Note that ‘∀’ here refers to all possible paths through the branching futures.)

Prel. Proc. FMIS 2009

38

ECEASST

If a patient is in danger, assistance should arrive within a given time with a probability of 95%
This property has both real-time and probabilistic aspects. Therefore, TCTL can no longer be
used. In order to express this specification we can use the logic PCTL [HJ94], which can express
quantitative bounds on the probability of system evolutions. Thus, (iv) can be specified in PCTL
as follows:

P≥0.95[in danger(p j) U ≤t assistance(p j)], ∀ j ∈ {1, ..,n}

No component will take an action that it believes will endanger the patient The property (v)
now includes a situation where each component’s beliefs must be taken into account. This sug-
gests the use of a modal logic which uses possible worlds to capture the beliefs (or knowledge)
that the component/agent has. Temporal Logics of Knowledge or Belief[FHMV96, HMV04]
can be used to express the property (v) as they combine the temporal aspects with a modal logic
of knowledge (or belief). Assume ci (i ∈ {1, ..,C}) is a component agent, and A is the set of all
urgent and non-urgent actions. (v) might be expressed in a temporal logic of belief as:

2Kci [¬(
∨
a∈A

action(a)⇒ ♦
∨

j∈{1,..,n}
in danger(p j))], ∀i ∈ {1, ..,C}

3.2.2 Verification Approaches

There are various verification and model checking tools for the logics we introduced in the previ-
ous section. The properties (i)-(v) can be verified using a suitable model checker or verification
tool described below.

For the logic LTL some well-known tools are NuSMV [CCGR99], SPIN [Hol03], VIS [Gro96],
TRP++ [HK03]. NuSMV is an extension of the model checking tool SMV [McM93], which is a
software tool for the formal verification of finite state systems. Unlike SMV, NuSMV provides
facility for LTL model checking. Spin is an LTL model checking system, supporting all correct-
ness requirements expressible in LTL, but it can also be used as an efficient on-the-fly verifier
for more basic safety and liveness properties. VIS is a symbolic model checker supporting LTL.
VIS is able to synthesise finite state systems and/or verify properties of such systems, which have
been specified hierarchically as a collection of interacting finite state machines. TRP++ is a res-
olution based theorem prover for LTL. TRP++ is based on resolution method for LTL [FDP01].

The best-known tools for the logic TCTL are UPPAAL [BLL+95] and KRONOS [BDM+98].
UPPAAL is an integrated tool environment for modelling, validation and verification of real-
time systems modelled as networks of timed automata, extended with data types. The tool can
be used for the automatic verification of safety and bounded liveness properties of real-time
systems. KRONOS is a tool developed with the aim to verify complex real-time systems. In
KRONOS, components of real-time systems are modelled by timed automata and the correctness
requirements are expressed in the real-time temporal logic TCTL.

PRISM [HKNP06] and APMC [HLMP04] are tools which can be used to model check PCTL
formulae. PRISM is a probabilistic model checker, a tool for formal modelling and analysis of
systems which exhibit random or probabilistic behaviour. It supports three types of probabilistic
models: discrete-time Markov chains (DTMCs), continuous-time Markov chains (CTMCs) and
Markov decision processes (MDPs), plus extensions of these models with costs and rewards. The

Volume (FMIS09 Preliminary Proceedings)

39

Towards the Verification of Pervasive Systems

property specification language is mainly PCTL; however, the tool also supports the temporal
logics CSL and LTL. The “Approximate Probabilistic Model Checker” (APMC) [HLMP04] is an
approximate distributed model checker for fully probabilistic systems. APMC uses a randomised
algorithm to approximate the probability that a temporal formula is true, by using sampling of
execution paths of the system.

Finally, there are tools for tackling the verification of specifications in combined modal and
temporal logics, such as temporal logics of belief or temporal logics of knowledge. Although less
well developed that some of the tools above, these range from deductive approaches [JHS+96,
DFB02] to model checking for such logics [KLP04, GM04, BDFF08].

4 Discussion

4.1 Limitations

In Section 3, we give some example properties of different dimensions, e.g. security and safety,
and describe various tools that can be used in the verification and model checking of these prop-
erties. There are several limitations of these tools and techniques.

As discussed in Section 3.2.1 and Section 3.2.2, different formal frameworks and tools are
used to specify and verify different safety properties. For example, we should consider different
temporal logics and model checking tools for real-time aspects, probabilistic aspects, belief as-
pects, etc. Unfortunately, there is no standard methods which can be used for all aspects we are
interested in. This makes it difficult to use a certain formal framework for all safety properties.
Another limitation is that each tool requires a different presentation of the model of the system.

As we discussed in Section 3.1.2, there exist several tools that allow us to verify systems w.r.t.
security. However, some security properties of interest in pervasive systems are not supported
well or even at all by these tools. Indeed, while ProVerif (to name only one) is very efficient
for verifying correspondence and reachability properties like injective agreement, it seems to
reach its limits when used for verifying observational equivalence, and thus properties like un-
traceability. This is due to the fact that ProVerif considers a stronger relation than observational
equivalence introducing in practise many false attacks.

All the existing tools for verifying systems w.r.t. security abstract away from real time, fo-
cusing only on the sequencing of events. Although this has many advantages, it is a serious
limitation for reasoning about protocols such as distance bounding protocols, which rely on real
time considerations. These protocols are often implemented in RFID-based systems, and thus
in many pervasive applications, in order to prevent relay attacks. Modelling time will thus be
necessary for reasoning about pervasive systems.

In the same way, some features of many protocols designed to achieve the above mentioned
requirements are not efficiently handled by existing tools. In particular, ProVerif is also ineffi-
cient for systems with local non-monotonic mutable states. But, protocols which aim to enforce
untraceability often rely on such states. More precisely, ProVerif handles all states as monotonic
introducing again false attacks.

As far as tools for verifying access control systems are concerned, the biggest limitation would
be, as we already mentioned in section 3.1.2 that they usually cannot deal with unbounded access
control models. Moreover, it is difficult to express and model integrity constraints in these tools.

Prel. Proc. FMIS 2009

40

ECEASST

Finally, we have introduced three existing theories for formally specifying security properties,
namely RW, ProVerif’s query language, and observational equivalence. It is important to note
that they involve different levels of abstraction. Indeed, one can reason at the access control
policy level, or at some symbolic model for protocols level, or even at the implementation level.
It will be very important, to link these levels in order to transfer results from more abstract levels
to more concrete ones.

4.2 Our Approach

As mentioned, a pervasive system might have quite complex specification aspects. Most per-
vasive systems involve many dimensions that must be formalised and verified simultaneously.
Some of the dimensions that are common in pervasive systems are real-time aspects, uncertainty
in sensing and communication, teamwork, collaboration and coordination, organizations, norms
and social interactions, autonomous behaviour of agents, etc.

Current state of the art of formal methods appears incapable of coping with the verification
demand introduced by pervasive systems, because reasoning about such systems requires com-
binations of multiple dimensions such as quantitative, continuous and stochastic behaviour to
be considered, and requires proving properties which are quite subtle to express. For example,
[Zah09, KZF09] show that some simple properties of a typical pervasive system can be verified
using a single verification tool; but a single verification approach cannot be used in verification
of more complex properties involving different dimensions.

Generally speaking, while the formal description of pervasive systems is essentially multi-
dimensional, we generally do not have verification tools for all the appropriate combinations. It
is very clear that developing a framework covering all these dimensions is almost impossible, or
verification over very complex frameworks is very challenging.

In order to tackle the challenge of pervasive system verification, we aim to combine the power
of established verification techniques, notably model checking, deduction, abstraction, etc. In
particular, we are currently working on a generic framework for the model-checking of com-
bined logics, including logics of knowledge, logics of context, real-time temporal logics, prob-
abilistic temporal logics, etc. This work is based on the work of [FMD04], where a framework
is given for the model-checking of combined modal temporal logics. This framework does not
capture complex logics, which are quite essential in specifying different dimensions of pervasive
systems. We therefore will extend this approach to provide a coherent framework for the for-
mal analysis of pervasive systems. We will then apply the new technique to the verification of
combined properties of a sample pervasive system, e.g. MATCH.

5 Conclusion

This paper describes our analysis of a pervasive case study, MATCH. As an initial step, we
formally specify some safety and security properties of the MATCH system. We discuss to what
extent current state of the art formal methods are capable of coping with the verification demand
introduced by pervasive systems, and we point out their limitations. We also give an account of
our proposal for formal verification of pervasive systems.

Volume (FMIS09 Preliminary Proceedings)

41

Towards the Verification of Pervasive Systems

Bibliography

[ABB+05] A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cullar, P. H.
Drielsma, P.-C. Ham, O. Kouchnarenko, J. Mantovani, S. Mdersheim, D. von Ohe-
imb, M. Rusinowitch, J. Santiago, M. Turuani, L. Vigan, L. Vigneron. The AVISPA
Tool for the Automated Validation of Internet Security Protocols and Applications.
In Etessami and Rajamani (eds.), CAV. Lecture Notes in Computer Science 3576,
pp. 281–285. Springer, 2005.

[ACD90] R. Alur, C. Courcoubetis, D. Dill. Model-Checking for Real-Time Systems. In Proc.
Logic in Computer Science (LICS). Pp. 414–425. 1990.

[AF01] M. Abadi, C. Fournet. Mobile values, new names, and secure communication. SIG-
PLAN Not. 36(3):104–115, 2001.
doi:http://doi.acm.org/10.1145/373243.360213

[BDFF08] R. H. Bordini, L. A. Dennis, B. Farwer, M. Fisher. Automated Verification of Multi-
Agent Programs. In Proc. 23rd IEEE/ACM International Conference on Automated
Software Engineering (ASE). Pp. 69–78. 2008.

[BDM+98] M. Bozga, C. Daws, O. Maler, A. Olivero, StavrosTripakis, S. Yovine. Kronos: A
Model-Checking Tool for Real-Time Systems. In CAV ’98: Proceedings of the 10th
International Conference on Computer Aided Verification. Pp. 546–550. Springer
Verlag, 1998.

[Bec09] M. Y. Becker. Specification and Analysis of Dynamic Authorisation Policies. In Pro-
ceedings of the 22nd IEEE Computer Security Foundations Symposium (CSF’09).
IEEE Computer Society Press, Port Jefferson, NY, USA, jul 2009.
doi:10.1109/CSF.2009.9

[Bla01] B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In CSFW ’01: Proceedings of the 14th IEEE workshop on Computer Security Foun-
dations. P. 82. IEEE Computer Society, Washington, DC, USA, 2001.

[BLL+95] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, W. Yi. UPPAAL — a Tool
Suite for Automatic Verification of Real–Time Systems. In Proceedings of Work-
shop on Verification and Control of Hybrid Systems III. Lecture Notes in Computer
Science 1066, pp. 232–243. Springer Verlag, 1995.

[CCGR99] A. Cimatti, E. Clarke, F. Giunchiglia, M. Roveri. NuSMV: A New Symbolic Model
Verifier. In Proceedings of International Conference on Computer-Aided Verifica-
tion (CAV’99). Pp. 495–499. 1999.

[CE82] E. M. Clarke, E. A. Emerson. Using Branching Time Temporal Logic to Synthesise
Synchronisation Skeletons. Science of Computer Programming 2:241–266, 1982.

Prel. Proc. FMIS 2009

42

http://dx.doi.org/http://doi.acm.org/10.1145/373243.360213
http://dx.doi.org/10.1109/CSF.2009.9

ECEASST

[CFJ03] H. Chen, T. Finin, A. Joshi. An Ontology for Context-aware Pervasive Comput-
ing Environments. Special Issue on Ontologies for Distributed Systems, Knowledge
Engineering Review, 2003.

[CM07] J. S. Clark, M. R. McGee-Lennon. MATCH: Mobilising Advanced Technologies for
Care at Home. 2007. Poster at Delivering Healthcare for the 21st Century, Glasgow.

[DFB02] C. Dixon, M. Fisher, A. Bolotov. Resolution in a Logic of Rational Agency. Artifi-
cial Intelligence 139(1):47–89, July 2002.

[DKNP06] M. Duflot, M. Z. Kwiatkowska, G. Norman, D. Parker. A Formal Analysis of Blue-
tooth Device Discovery. STTT 8(6):621–632, 2006.

[DLMS99] N. A. Durgin, P. D. Lincoln, J. C. Mitchell, A. Scedrov. Undecidability of bounded
security protocols. In proceedings of the Workshop on Formal Methods and Security
Protocols-FMSP. 1999.

[Eme90] E. A. Emerson. Temporal and Modal Logic. In Leeuwen (ed.), Handbook of Theo-
retical Computer Science. Pp. 996–1072. Elsevier, 1990.

[FDP01] M. Fisher, C. Dixon, M. Peim. Clausal Temporal Resolution. ACM Transactions on
Computational Logic 2(1):12–56, Jan. 2001.

[FHMV96] R. Fagin, J. Halpern, Y. Moses, M. Vardi. Reasoning About Knowledge. MIT Press,
1996.

[Fis07] M. Fisher. Temporal Representation and Reasoning. In van Harmelen et al. (eds.),
Handbook of Knowledge Representation. Elsevier Press, 2007.

[FMD04] M. Franceschet, A. Montanari, M. De Rijke. Model Checking for Combined Logics
with an Application to Mobile Systems. Automated Software Engg. 11(3):289–321,
2004.

[GJP05] S. L. Garfinkel, A. Juels, R. Pappu. RFID Privacy: An Overview of Problems and
Proposed Solutions. IEEE Security and Privacy 3(3):34–43, 2005.
doi:http://doi.ieeecomputersociety.org/10.1109/MSP.2005.78

[GM04] P. Gammie, R. van der Meyden. MCK: Model Checking the Logic of Knowledge. In
Proc. 16th International Conference on Computer Aided Verification (CAV). Lecture
Notes in Computer Science 3114, pp. 479–483. Springer, 2004.

[Gro96] T. V. Group. VIS: A System for Verification and Synthesis. In Proceedings of the
8th International Conference on Computer Aided Verification. Pp. 428–432. 1996.

[GRS04] D. P. Guelev, M. Ryan, P. Y. Schobbens. Model-checking Access Control Policies.
3225:16 pages., 2004.

[HI04] K. Henricksen, J. Indulska. A Software Engineering Framework for Context-aware
Pervasive Computing. In Proceedings 2nd IEEE Conf. on Pervasive Computing and
Communications. Pp. 77–86. 2004.

Volume (FMIS09 Preliminary Proceedings)

43

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MSP.2005.78

Towards the Verification of Pervasive Systems

[HJ94] H. Hansson, B. Jonsson. A Logic for Reasoning about Time and Reliability. Formal
Aspects of Computing 6:102–111, 1994.

[HK03] U. Hustadt, B. Konev. TRP++ 2.0: A Temporal Resolution Prover. In Proceedings
of Conference on Automated Deduction (CADE-19). Pp. 274–278. 2003.

[HKNP06] A. Hinton, M. Kwiatkowska, G. Norman, D. Parker. PRISM: A Tool for Automatic
Verification of Probabilistic Systems. In Proc. 12th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’06).
Lecture Notes in Computer Science 3920, pp. 441–444. Springer, 2006.

[HLMP04] T. Hérault, R. Lassaigne, F. Magniette, S. Peyronnet. Approximate Probabilistic
Model Checking. In Proc. 5th International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI’04). Lecture Notes in Computer Sci-
ence 2937. Springer, 2004.

[HMV04] J. Y. Halpern, R. van der Meyden, M. Y. Vardi. Complete Axiomatizations for Rea-
soning about Knowledge and Time. SIAM J. Comput. 33(3):674–703, 2004.

[Hol03] G. J. Holzmann. The Spin Model Checker. Addison-Wesley, 2003.

[HRU76] M. A. Harrison, W. L. Ruzzo, J. D. Ullman. Protection in Operating Systems. Com-
mun. ACM 19(8):461–471, 1976.

[JHS+96] G. Jaeger, A. Heuerding, S. Schwendimann, F. Achermann, P. Balsiger, P. Bram-
billa, H. Zimmermann, M. Bianchi, K. Guggisberg, W. Heinle. LWB–The Logics
Workbench 1.0. http://lwbwww.unibe.ch:8080/LWBinfo.html, 1996. University of
Berne, Switzerland.

[Jue06] A. Juels. RFID security and privacy: a research survey. IEEE Journal on Selected
Areas in Communications 24(2):381–394, 2006.

[KLP04] M. Kacprzak, A. Lomuscio, W. Penczek. From Bounded to Unbounded Model
Checking for Temporal Epistemic Logic. Fundam. Inform. 63(2-3):221–240, 2004.

[KZF09] S. Konur, A. A. Zahrani, M. Fisher. Verification of a Message Forwarding System
using PRISM. In PreProc. of Ninth International Workshop on Automated Verifica-
tion of Critical Systems. Technical Report, University of Swansea, 2009.

[Low97] G. Lowe. A Hierarchy of Authentication Specifications. In CSFW ’97: Proceed-
ings of the 10th IEEE workshop on Computer Security Foundations. P. 31. IEEE
Computer Society, Washington, DC, USA, 1997.

[Low98] G. Lowe. Casper: A Compiler for the Analysis of Security Protocols. Journal of
Computer Security 6(1-2):53–84, 1998.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishing, 1993.

Prel. Proc. FMIS 2009

44

ECEASST

[MP92] Z. Manna, A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1992.

[PSHC08] E. K. Paik, M.-K. Shin, J. Hwang, J. Choi. Design Goals and General Requirements
for Future Network. N13490, Korea Technology Center, 2008.

[SB05] Q. Z. Sheng, B. Benatallah. ContextUML: A UML-based Modeling Language for
Model-driven Development of Context-aware Web Services. In Proceedings of the
International Conference on Mobile Business (ICMB’05). 2005.

[Sim07] C. Simons. CMP: A UML Context Modeling Profile for Mobile Distributed Sys-
tems. In Proceedings of the 40th Hawaii International Conference on System Sci-
ences. 2007.

[WSRE03] S. A. Weis, S. E. Sarma, R. L. Rivest, D. W. Engels. Security and Privacy Aspects
of Low-Cost Radio. In Hutter, D., Müller, G., Stephan, W., Ullman, M., eds.: Inter-
national Conference on Security in Pervasive Computing - SPC 2003, volume 2802
of LNCS, Boppard, Germany. Pp. 454–469. Springer-Verlag, march 2003.

[WZGP04] X. H. Wang, D. Q. Zhang, T. Gu, H. K. Pung. Ontology-based Context Modeling
and Reasoning Using Owl. In Context Modeling and Reasoning Workshop at Per-
Com 04. Pp. 18–22. 2004.

[Zah09] A. A. Zahrani. Formal Analysis of a Message Forwarding System using PRISM.
2009.

[Zha06] N. Zhang. AcPeg, the access control policy evaluator and generator.
July 2006. The tool can be obtained from www.cs.bham.ac.uk/ nxz or
www.cs.bham.ac.uk/ mdr/research/projects/05-AccessControl.

Volume (FMIS09 Preliminary Proceedings)

45

ECEASST

Volume (FMIS09 Preliminary Proceedings)

46

ECEASST

Tightly coupled verification of pervasive systems

Muffy Calder, Phil Gray and Chris Unsworth

Department of Computing Science
University of Glasgow Glasgow G12 8RZ, UK

Abstract: We consider the problem of verifying context-aware, pervasive, inter-
active systems when the interaction involves both system configuration and system
use. Verification of configurable systems is more tightly coupled to design when the
verification process involves reasoning about configurable formal models. The ap-
proach is illustrated with a case study: using the model checker SPIN [Hol03] and a
SAT solver [ES03] to reason about a configurable model of an activity monitor from
the MATCH homecare infrastructure [MG09]. Parts of the models are generated
automatically from actual log files.

Keywords: formal models, pervasive systems, model checking

1 Introduction

Effective verification of interactive systems has been a significant challenge for both the verifi-
cation and user interface communities for at least the last two decades [CH97, CRB07]. More
recently, the advent of context-aware, pervasive, interactive systems raises the stakes: can we
formulate effective verification techniques and strategies to bring reasoning into the design pro-
cesses of these volatile systems? In particular, we are concerned with systems where the interac-
tion involves both system configuration and system use.

Pervasive systems are characterised by their ability to sense their physical environment and a
use of data so gathered both as part of the core application functionality and as a way of mod-
ifying system behaviour to reflect changes in the context of use. Amongst the challenges of
designing, building and operating such systems is the volatility that this sensor-based context
dependency introduces. The set of sensors may themselves come and go and change their be-
haviour depending upon environmental conditions. Context changes may be difficult to model
and predict. In addition, pervasive applications often operate in situations that require practi-
cally unpredictable changes to the application functionality itself. For example, a home care
system, providing sensor-based monitoring of the cared person’s activities and state, may have
to be reconfigured to take into account changes in the person’s medical condition and their home
situation, and consequent changes to the services and sensors needed. For these reasons, system
configuration must be treated as an ongoing process throughout the lifetime of a system. It must
be modelled and reasoned about in the same way that one would model and reason about normal
user interaction with the system.

At a high level of abstraction these context-aware, interactive systems may be regarded as a
number of concurrent processes:

Agents||Sensors||Out puts||Monitors||Con f iguration||System

Volume (FMIS09 Preliminary Proceedings)

47

Tightly coupled verification of pervasive systems

where

• Agents are (usually, but not exclusively human) users, there may be several types and
(possibly overlappping) instances of user, e.g. patient, carer, social worker, etc.

• Sensors and Out puts quantify physical world data (e.g. thermometer, pressure pad, web-
cam), or are outputs devices (e.g. speaker, television screen),

• Monitors are high level abstractions of a physical state (e.g. encapsulating predicates about
who is in a room, whether or not is it cold),

• Con f igurations are sets of rules, or actual parameters, determining how the system varies
according to user preferences and needs,

• the System is the underlying computational infrastructure.

While we might traditionally consider the composition (Agents||Sensors||Out puts||Monitors) as
the context, i.e. together they reflect a temporal physical context, the Con f iguration is also a
context, in that it is also temporal and affects system behaviour.

In this paper we consider the modelling and verification process for configurable, interactive,
context-aware systems in general, and a case study of an event driven system. We begin with
a general purpose model of functional behaviour and for this we propose that a (concurrent)
process based specification language, temporal logics and reasoning by model checking is a
good paradigm, especially when context changes are non-deterministic. In the case study here
we develop a general purpose model in Promela, for checking with the SPIN model checker
[Hol03]. We then refine the verification problem and develop a specialised model for checking
redundacies, using a SAT solver [ES03]. A distinctive feature of this work is parts of the models
are generated automatically from actual log files.

In the next section we outline our overall vision for the modelling and verification process.
The remainder of the paper is an exploration of one iteration of that process, for a case study.
Section 3 introduces the MATCH case study and in section 4 we give an outline of our Promela
model. Properties for verification are given in Section 5, where we give an overview of checking
for redundant rules in the Promela model. In Section 6 we give an outline of the SAT model
for redundancy checking and results of online verification. In Section 7 we consider the more
general problem of overlapping left and/or right hand sides of rules, and when these should be
interpreted as undesirable. Discussion follows in Section 8 and an overview of related work
follows. Conclusions and future work are in Section 10.

2 Modelling and verification process

Traditionally, modelling is a manual process with the starting point of a system specification, or
a set of requirements, or, when the system is operational, observations and data. One notable
exception is [HS99], where the Promela model is extracted mechanically from call processing
software code: a control-flow skeleton is created using a simple parser, and this skeleton is
then populated with all message-passing operations from the original code. Our vision for the
modelling and verification process is similar in that we aim to more tightly couple the model

Prel. Proc. FMIS 2009

48

ECEASST

and the system, and indeed the results of the verification. Crucial to the process is the notion
of configuration and the extraction from the system of configuration details, often stored as log
files.

Our vision is illustrated in Figure 1, where ellipses denote agents and rectangles objects. The
key feature of our vision is that modelling is tightly coupled with system development and con-
figuration. This is not a waterfall model: activities are concurrent and moreover, while four agent
roles are indicated, they may be overlapping or conflated. Briefly, activities are as follows. The
end users configure the system, and when configured, (possibly different) users interact with the
system, as system and users require, according to the context. The configuration is not static, but
may be changed repeatedly. Log files are a representation of the configuration process and are
generated by a live system. The formal model depends upon what kind of analysis is required
(e.g. functional behaviour, security, performance, etc.) and it is also configured, according to the
log files. The model is analysed; the verification results may inform understandings of the end
user, the configurer, the designer, and the modeller, though in different ways. For example, the
user develops a better cognitive model, the configurer understands how to improve his/her rules,
the designer develops a better interface, and the modeller gains insight in to how to modify the
model so that verification is more efficient. Note, this is just an example. There may be multiple
models and a single agent may have multiple roles as configurer/modeller/user/designer. Verifi-
cation may be performed off-line or on-line, each of which has its merits. On-line verification
can inform users in real-time. On the other hand, off-line verification allows more general results
e.g. for all configurations with a certain property, a system proprety holds. This kind of veri-
fication can then be used by the designer to constrain allowable interactions or configurations.
Finally, recall that agents may not be human at all, for example, the system might autonomously
configure itself, or the modeller may be another software process.

Properties may support, for example,

• end user configurations, e.g. what will happen if I add this rule? or how can I notify/detect
x in the event of y?

• modalities, e.g. are there multiple speech outputs? or are there multiple speech inputs only
when there are multiple users?

• hypotheses about resources, e.g. what happens if a webcam doesn’t work?

In this paper we report on one iteration of the modelling and verification cycle, starting with
log files extracted from actual system trials of a prototype system (deployed in the UK and in
France).

3 MATCH System

Activity awareness systems constitute an increasingly popular category of pervasive application
[MRM09]. Such systems allow groups of users to share information about their current status or
recent activities. They have a variety of purposes, ranging from supporting collaborative work
through informal social relationships. We have chosen to investigate our approach to verification
using one such activity awareness system, the MATCH Activity Monitor (hereafter, MAM), an

Volume (FMIS09 Preliminary Proceedings)

49

Tightly coupled verification of pervasive systems

Figure 1: Tightly coupled verification: configurable systems and configurable models

Figure 2: MAM System Architecture

experimental platform designed to explore the challenges of the configuration of activity aware-
ness use to support of home-care [MG09].

A MAM system consists of one or more hubs (UMPC-based subsystems supporting a rich set
of inputs and message types) each of which is connected to a set of satellites (web-based clients
offering a limited set of inputs and message types) and other hubs, illustrated via the architecture
diagram in Figure 2. Typically, a hub will reside in the home of a person requiring care while the
satellites are used by carers, clinicians, family and friends.

Each hub, placed in the home of a cared person, can communicate with a set of web-based
clients and with other hubs. A MAM hub supports a set of up to eight monitoring tasks, each
of which involves the generation of messages based on user-generated or sensor-generated input
indicating an event or activity. Monitoring tasks are defined by rules that specify an event or
activity to be reported plus the destination and form of the reporting message. For example, a
rule might state that use of Tony’s coffee cup (captured via an appropriate sensor1.) should
be reported to me (i.e., the hub in my home) via a speech message. Currently, MAM supports
a variety of data sources, message destinations and message modalities (e.g., speech, graphics,

1 MAM uses a JAKE sensor pack for simple movement sensing, while the JAKEs more powerful sibling, the
SHAKE, provides richer sensing capabilities and tactile feedback [JAK, SHA]

Prel. Proc. FMIS 2009

50

ECEASST

touch, etc.). A full list is given in Figure 3.
Each MAM hub can support up to eight monitoring tasks, each of which is specified explicitly

as a monitoring rule2. In addition to simple <input source> <destination, modality> rules,
it is also possible to specify combinations of inputs (e.g., a button press or an appointment) or
message modalities (e.g., speech and graphics). Rules may also have a guard condition; currently
MAM only supports a location condition such that the message is sent if someone is sensed near
a specified location.

A user may also choose a system-generated recommendation of the input, destination or
modality. The recommendation can be used in an automatic or semi-automatic mode. In the
former case, the system will choose the input, destination or modality most commonly associ-
ated with the other parameters, based on a history of logged configurations. In the latter case, the
system will offer a ranked list of choices, based again on frequency of association, from which
the user must select one.

A user interface is supplied for specifying monitoring task rules. If a user is not interacting
with the MAM Hub, it operates a digital photo frame application that displays the user’s photos
in order to make it a non-intrusive part of the user’s home. To configure the hub, a user touches
the screen and the photo application fades away, replaced by the MAM application, from which
the configuration screen is accessible. Figure 4 shows a typical rule configuration. Note the eight
tabs to the left, one for each rule; rule 1 is selected. The rule configuration view is divided into a
left-hand panel for specifying input and a right-hand panel for destination and modality. In this
case the blue and red buttons on my hub (left-hand panel) have been selected to create messages
to be sent to Lucy’s machine(s) (right-hand panel). The large vertical green button on the right
of the panel is the on-off toggle switch for the rule; when green, the rule is active and when red
the rule is inactive.

Even with the rather limited set of inputs, destinations and message types, the configuration
space (i.e., number of different possible rules) is rather large (1.07E+301). In addition, not all
configurations are desirable. It is possible to create redundant rules, which can be a problem
given the restriction on the number of rules allowed. Also, some configurations may cause
difficulties for the user: two speech messages delivered at the same time will be impossible to
understand. These configuration challenges provide a motivation for verification that can be
used both to guide a designer (in exploring the design of the configuration options offered to
a user) and to help an end user (in creating a set of rules that both meet their needs and are
understandable and maintainable).

4 General model

From a modelling perspective, the MAM system is an event driven rule-based pervasive system.
Events include (but are not restricted to) direct user interaction with the hub, such as pushing
buttons, and indirect user interaction such as movement captured by a webcam or external actions
such as messages received from other users. Rules dictate how the system will react to events.
We note that from a modelling perspective, there is no distinction between a user interaction and

2 This limitation, amongst others, is intentional and based on empirical evidence, to limit the complexity of the
application.

Volume (FMIS09 Preliminary Proceedings)

51

Tightly coupled verification of pervasive systems

Input Sources
Calendar An online calendar scheduling system reports upcoming appointments
Accelerometer Small custom-built Bluetooth accelerometers can be placed around the

home (e.g., on a phone, teacup, or door) or on a person, in order to
detect movement-signalled activity of the instrumented thing/person.
This is performed using JAKE and SHAKE devices [WMH07].

Webcam movement Fixed and wireless webcams can be used to provide motion detection.
events This allows for room occupancy to be detected and reported.
User-generated text Users can key in their current activity, mood or needs explicitly using

an on-screen keyboard.
Abstract Buttons A user may select an abstract button to which no particular meaning

has been assigned in advance by the developers of the system (i.e. the
red square) The user may negotiate with other people to assign a
particular meaning to these buttons. This concept is derived from
MarkerClock [RM07] that uses a similar abstract marker feature.

Message Destinations
Local Hub Messages are directed to one of the output devices associated with the

local machine.
Registered Users Messages are directed to specified users; the message will be sent to

their hub, if they have one, or to their registered web-based client(s).
Modalities
Graphical Notice of an activity is briefly overlaid on top of the hub photoframe;

an icon indicates that there is an unread message waiting. Additionally,
the message will be added to a scrollable list of messages that is
permanently available.

Speech The content of the message is rendered into VoiceXML and played
through any of the devices speakers.

Non-speech audio A selection of auditory alerts is provided, such as nature sounds as
well as more familiar alert noises. Each set of sounds contains multiple
.wav files, each of which is mapped to a particular type of alert.
As with speech, this can be directed to any distinct speaker.

Tactile The SHAKE device (but not the JAKE) is equipped with an inbuilt
vibrotactile actuator that can be activated. Vibration profiles (i.e.
vibrate fast-slow-fast. slow-fast-slow) can be used to distinguish
between different types of activity.

Email Activity messages can be delivered to one or more email addresses
that the user can specify.

Figure 3: MAM Activity Monitoring Task Parameters

Prel. Proc. FMIS 2009

52

ECEASST

Figure 4: Sample task configuration screen

change of context. While there is intent associated with the former, from a modelling point of
view both are simply aspects of state that may be captured by propositions (whose validity may
be temporal).

Promela [Hol03] is a high-level, state-based, language for modelling communicating, concur-
rent processes. It is an imperative, C-like language with additional constructs for non-determinism,
asynchronous and rendezvous (synchronizing) communication, dynamic process creation, and
mobile connections, i.e. communication channels can be passed along other communication
channels. The language is very expressive, and has intuitive Kripke structure semantics.

Our model is centred around a single hub that can take nput from one or more satellites or
additional hubs. As a result we have a single rule set, which in this case is static. However, it
would be a simple matter to extend the model to include multiple hubs and rule sets and dynamic
rule sets.

As we are considering a configurable system, the model is designed to reflect this. The system
behaviour is separated from the system configuration. System behaviour refers to the actions of
the available input and output devices. System configuration refers to the current active rule set.

4.1 System

Each input device is represented by a global variable and a process. For example, a button press
is represented by a single bit variable and a process that can arbitrarily assign the values 0 or 1.

Movement sensors such as a jake, shake or webcam, are represented as an integer variable.
The movement process will arbitrarily assign a values 0-3, where 0 represents no movement and
1,2 and 3 represent low, medium and high levels of movement respectively. Text based inputs,
such as messages from other hubs, are represented as an mtype variable. The associated process
will arbitrarily assign values representing one of the users in the system or a null value. These

Volume (FMIS09 Preliminary Proceedings)

53

Tightly coupled verification of pervasive systems

processes act as sources of events for the system.
Output devices act as sinks within the system. In the model they are represented as global

variables or channels, upon which messages are placed. The associated process for an output
device is called when a value is assigned to the variable/posted in the channel. The process then
resets the variable or reads the message off the channel.

In future versions of the model it may be useful to include users and/or multiple hubs and rule
sets in the system. In this case, the input variables will be directly modified by output processes
from other hubs and/or as a direct result of a user action.

4.2 Rules

Rules are taken directly from a MAM system via the log. An excerpt from a log file can be seen
in Figure 5, included as an illustration of the content of a log file (and not to be read in detail!).

uk.org.match_proj.osgi.EvalFunc.ManualEachComponentInputSelectionEvaluationFunction(selected=["Personal Messages"]){}
uk.org.match_proj.osgi.EvalFunc.UnionOutputApprovalEvaluationFunction()
{uk.org.match_proj.osgi.EvalFunc.ManualEachComponentOutputSelectionEvaluationFunction(selected=["GUI","Twitter"])
{}uk.org.match_proj.osgi.EvalFunc.ManualEachPersonSelectionEvaluationFunction(selected=["Doms","Lionel","Anne"]){}}
uk.org.match_proj.osgi.EvalFunc.ManualGroupedPersonSelectionEvaluationFunction(selected=["Everyone"]){}
uk.org.match_proj.osgi.EvalFunc.ManualEachComponentOutputSelectionEvaluationFunction(selected=["GUI"]){}
uk.org.match_proj.osgi.EvalFunc.ManualEachPersonSelectionEvaluationFunction(selected=["Caroline","Lionel","Anne"]){}
uk.org.match_proj.osgi.EvalFunc.ManualEachComponentOutputSelectionEvaluationFunction(selected=["Speech"]){}
uk.org.match_proj.osgi.EvalFunc.ManualEachComponentInputSelectionEvaluationFunction(selected=["Jake Movement"]){}
uk.org.match_proj.osgi.EvalFunc.UnionOutputApprovalEvaluationFunction()
{uk.org.match_proj.osgi.EvalFunc.ManualEachPersonSelectionEvaluationFunction(selected=["Caroline","Lionel","Anne"])
{}uk.org.match_proj.osgi.EvalFunc.ManualEachComponentOutputSelectionEvaluationFunction(selected=["GUI","Twitter"]){}}
uk.org.match_proj.osgi.EvalFunc.ManualEachComponentInputSelectionEvaluationFunction(selected=["Work Messages"]){}
uk.org.match_proj.osgi.EvalFunc.ManualEachPersonSelectionEvaluationFunction(selected=["Caroline","Anne"]){}

Figure 5: Excerpt from a MAM log file.

In the MAM system, rules are defined as evaluation functions that return input or output de-
vices. Each rule consists of an input and an output evaluation function. The combination of
function name and the list of parameters determine how they are to act. Both input and output
functions can be composed. The input composition operator acts as a disjunction, meaning that
an event will be triggered if either evaluation function is true. However, the output composition
function acts as a conjunction, meaning that if the union output function is triggered then the
result of both evaluation functions will be used.

The evaluation function rule set is then expressed as an informal natural language rule set. An
example is shown in Figure 6. While this step is not strictly necessary, it can be helpful to have
the rules expressed in a more readable format.

The rules are then expressed as Promela statements. Each rule is expressed as a conditional
statement, consisting of a guard and a compound statement. Therefore, in Promela we represent
a rule as a single statement C→ A, where C is a guard statement made up of a disjunction of
statements representing the condition of the rule and A is compound statement consisting of a
sequence of statements representing the action. For example, the rule “when the red console
button is pressed play the doorbell earcon3 on the hub speaker” maps to the Promela statement
“(this.red > 0)→ this.speaker!earcon doorbell”. Rules can also be context sensitive. For ex-
ample, “If the red button is pressed then, if the webcam has recently detected movement inform

3 An earcon is a short meaningful audio segment.

Prel. Proc. FMIS 2009

54

ECEASST

If the red or blue buttons are pressed then play the rocket earcon
If my webcam detects movement then display a pop-up message on my screen

and display a message on the screen list
If I receive a message from Bill or then inform me using synthesised speech
Bill presses his red button
If I receive a message from Bill then send a vibration message via the shake
If the red button is pressed then send a message to Bill

and inform me using synthesised speech
If the shake senses movement then send a vibration message via the shake
If Bill presses his red button then inform me using synthesised speech
If the yellow button is pressed then send a vibration message via the shake

Figure 6: Example rule set.

me with synthesised speech else send me an e-mail”. In this case the definition of recent is a
system parameter.

An example of a Promela representation of a rule set can be seen in Figure 7. In this example
there are 2 hubs, one that belongs to the user and one that belongs to Bill. In the rule set the
user’s hub is referred to as this and Bill’s hub is Billh. This is because in the model a hub is
represented by a bespoke variable type.

proctype rules()
{
do

:: (this.red == 1) || (this.blue == 1) -> this.audio_out!ec_rocket;
:: (this.webcam > 2) -> this.screen_popup = me; this.screen_list = me;
:: (this.text_in == Bill || Billh.red == 1) -> this.audio_out!speech;
:: (this.text_in == Bill) -> this.shake_out = 1;
:: (this.red > 0) -> Billh.text_in = me; this.audio_out!speech;
:: (this.shake_in_m > 1) -> this.shake_out = 1;
:: (Billh.red > 0) -> this.audio_out = speech;
:: (this.yellow > 0) -> this.shake_out = 1;

od
}

Figure 7: Promela representation of example rule set.

5 Properties

We now explore a number of issues in the MAM system that may benefit from formal verifica-
tion.

5.1 Redundant rule detection

As the rules may be added by non-expert users, some may have overlapping or repeated def-
initions. It would be advantageous if the system could detect such redundant rules to be able

Volume (FMIS09 Preliminary Proceedings)

55

Tightly coupled verification of pervasive systems

to streamline the system. This could provide feedback to the user and/or allow the system to
remove redundant rules from the active rule set.

5.2 Modalities

The input and output devices can be classified by their modalities. For example, earcons and
speech are sound, screen pop-ups and text messages are visual and vibration alerts are tactile.
The acceptability of a system for a user may depend on the correct use of the different modalities.
For example, multiple simultaneous audio outputs may confuse a user and result in the loss of
messages. Visual output devices should be avoided for severely visually impaired users, however,
it may still be appropriate to use them to notify carers. Overuse of tactile devices may result in
the user being unable to differentiate between different types of messages.

5.3 Priorities

Currently MAM does not hold information on the relative priorities of rules/messages. However,
a user is likely to be more concerned with certain messages than others. It would therefore be
useful to check that the output from a given rule has a greater chance of being received by the
appropriate target. For example, high priority messages should be distinct from lower priority
messages. If a high priority message uses an earcon, then no other message should use a similar
sounding earcon.

5.4 Verification results

We now expand on the redundant rule detection problem using the model checker SPIN, which
verifies (or not) properties expressed in the logic LTL (linear temporal logic).

An LTL property can be derived easily from the Promela representation of a rule. In the
general form, for a rule r of form C→ A, where C is a guard and A is a sequence of statements,
the associated property is informally described by: the action will always eventually occur after
the condition becomes true (recall, conditions are disjunctions and actions are conjunctions.
More formally, we define the mapping as f (r) = 2(f (C)→ 3 f (A)), where f () maps guards
and assignments to propositions in the obvious way.

For example, the rule (this.yellow > 0)−> this.shake out = 1 would map to the LTL property
2((this.yellow > 0)→3(this.shake out = 1)).

We define f (r) as the property that the action associated with rule r will always eventually
occur after the condition of r becomes true. A rule r in the rule set R is redundant if for model
M (R|r), which represents R without r, f (r) |= M (R|r). A rule set R contains no redundant rules
if ∀r f (r) 6|= M (R|r).

Redundancy checking was implemented with a realistic rule set (shown in Figure 8) taken from
an actual log file from the MAM system. Each rule was tested in-turn for redundancy. Rule r7
was found to be redundant. Verification times varied from around 12 minutes to 34 minutes. The
search depth was between 4 and 6 million, and the number of states explored was between 65 and
100 million. Clearly if this is to be used for real-time verification then significant improvements
need to be made in the model efficiency and/or the verification techniques employed. However,

Prel. Proc. FMIS 2009

56

ECEASST

these results do serve as a proof of concept.

r1 ((this.red == 1)||(this.blue == 1) → this.audio out = ec rocket
||(this.yellow == 1))

r2 (this.webcam > 2) → this.screen popup = me;
this.screen list = me

r3 (this.text in == Bill)||(Billh.red == 1) → this.audio out = speech;
||(Billh.blue == 1)||(Billh.yellow == 1) this.screen list = me

r4 (this.text in == Bill) → this.shake out = 1
r5 (this.red > 0) → Billh.text in = me
r6 (this.shake in m > 1) → this.shake out = 1
r7 (Billh.red > 0) → this.audio out = speech
r8 (this.yellow > 0) → this.shake out = 1

Figure 8: Rule set used in experiments.

6 Specialised model

From Section 5.4 it can be seen that our current general Promela model of the MAM system is not
sufficiently efficient to detect redundancy fast enough to provide feedback to a system configurer
in real-time. In this section we show how redundancy can be modelled and solved efficiently
with a specialised SAT solver [ES03]. SAT solvers check satisfiability of propositional formulae
(usually written in disjunctive normal form). Though in general NP-complete, SAT solvers are
highly efficient for many practical applications. The SAT model developed here uses literals to
represent input devices, output devices and the rules.

6.1 Literals - inputs and outputs

Each simple input type is represented by a single literal. For example, a literal represents a
button press or receiving a message from someone. Similarly, simple output types are also
represented as literals. More complex input functions such as movement, which has low, medium
and high inputs, can be represented as one literal per input value. A clause then needs to be
added to ensure the input values are consistent. For example, if the literal for a movement
level high is true, then both medium and low should also be true. To ensure this, the clauses
low∨¬medium and medium∨¬high are added, which will need to be done for each movement
detection device. However, if only one rule takes input from a movement detection device,
then the input can be treated as a simple input device and the clause can be omitted. Classes
of output, such as the MAM auditory icon class “nature”, which consists of the auditory icons
{wave, forest, wind}, can be modelled in one of two ways. If none of the individual auditory
icons from this group are used as output for other rules, then the group can be represented as a
single literal. Otherwise, each of the class members will be represented as a single literal and
there is an additional literal for the class. For example, the class “nature” will be represented by
wave∨ f orest ∨wind∨¬nature

Volume (FMIS09 Preliminary Proceedings)

57

Tightly coupled verification of pervasive systems

1. ∀r ∈ R ∀c ∈ r ri∨¬c
2. ∀r ∈ R 1 c1∨ c2∨·· ·∨ cn∨¬ri

3. ∀r ∈ R ∀a ∈ r ¬ri∨a
4. ∀a ∈ R 1 r1∨ r2∨·· ·∨ rn∨¬ai

Figure 9: Clauses required to represent a given rule set R

6.2 Clauses - rules

Each rule is represented by a literal ri and a set of clauses as described in Figure 9. There are
four types of clauses associated with a rule, as follows. The literal ri being assigned the value
true indicates that rule i has been triggered. A clause ri ∨¬c is added for each condition c that
triggers rule i. To ensure ri is not true if none of its conditions are met, the following clause is
added c1∨c2∨·· ·∨cn∨¬ri. If rule i is triggered then the appropriate outputs must be set to true,
thus the clause ¬ri ∨ a is added for each action a associated with rule i. Finally, to ensure that
actions are only taken if triggered by a rule, the clause r1∨ r2∨ ·· ·∨ rn∨¬ai is added, where r1
to rn are all the rules that can trigger action ai.

6.3 Rule redundancy

To use the above model to detect redundant rules, we need to solve the model once for each
atomic condition in the rule, to check if atomic condition c from rule ri is redundant. We add
a clause for each input literal, setting the literal related to c to true and all the rest to false.
All literals that represent the actions from rule ri are set to true. All clauses related to the rule
being checked are removed. If the resultant model is satisfiable then condition c from rule ri is
redundant, if all conditions associated with rule ri are redundant, then ri is redundant.

6.4 Implementation and complexity

The above model was implemented and solved with the same rule set used in Section 5.4. A
Java program was written to read the rules from a file in the MAM evaluation function format
and generate the SAT model. The SAT model was then solved using the open-source SAT solver
miniSAT [ES03]. The problem had 23 literals and around 45 clauses4, each instance of the
problem required less than a thousandth of a second to solve. All instances were solved with
propagation alone, no search was required.

This model was then used in conjunction with a Java program, which reads a rule set directly
from a MAM system log file, generates the models and checks the rule set for redundancy. Using
the actual hardware that MAM runs on, reading in and checking a rule set required approximately
5 seconds. The majority of this time was taken to read and parse the log file. Each individual SAT
model required approximately 15 thousandths of a second to solve. It is clear that the specialised
SAT model offers improvement of 5−6 orders of magnitude for redundancy checking over the
general Promela model.

4 The number of clauses is dependant on the rule being checked.

Prel. Proc. FMIS 2009

58

ECEASST

7 Overlapping rules

We have defined a rule to be redundant if it can be removed from a system without affecting how
the system operates. However, a rule may also be redundant if it serves no useful purpose. For
example, a rule set may include the two rules “If I receive a message from Bill then play a bird
noise earcon” and “If I receive a message from Bill then play a doorbell earcon”. At a system
level these rules are different. However, they both play a sound when a message is received from
Bill.

One could interpret this as a lack of confluence, i.e. we have overlapping left hand sides of
rules and divergent right hand sides. Rules can also overlap in more subtle ways (e.g. a form of
superposition). For example, a rule set may include the two rules “If the red or yellow buttons are
pressed play the doorbell earcon and send a text message to Bill” and “If the red or blue buttons
are pressed play the doorbell earcon and inform me using synthesised speech”. Both rules cause
the doorbell earcon to be played, when one condition is satisfied.

While these are only simple examples, they raise the question of what exactly we should be
looking for when detecting redundant rules and what is the underlying theory of modalities?
Moreover, to answer these question we need to know why we are interested in this problem. For
example, is it a significant issue in practice?

The answer to the latter appears to be positive. While conducting user evaluation studies, the
developers of the MAM system have found that many test subjects indicated they have trouble
understanding complex rules and only want to define simple rules. This means there is significant
scope for overlapping conditions and actions. Therefore, it would be advantageous for the system
to offer assistance. This could be in the form of a message informing the user that a rule they
entered is redundant, or makes some other rule redundant, or is overlapping with another rule.
Alternately, the system may simply detect such rules and only partially implement them. In
any case, further study is need to understand user intentions and their relation to modalities and
context, and also how best to feedback information from any analysis.

8 Discussion

A distinctive feature of this work is we are trying to more tightly couple design with modelling,
closing the loop between design, use, configuration, modelling and verification. Further, we deal
with systems as actually deployed, rather than an ideal yet to be implemented.

A long term goal is to automate many of these processes and so in this case study, where
possible, we have developed scripts to process inputs automatically e.g. log files.

The general model is based around the central concept of event – the MAM system is after
all event-driven. It captures a wide range of functional, temporal behaviour. However, in the
context of checking for redundancy within rules, complexity of the model became a concern,
especially if we aim for real-time model-checking in a live MAM. Furthermore, it is not clear
that given the form of rules in this application, analysis of the rules requires a temporal logic. To
a great extent, in this application, one could argue that the state of a sensor encapsulates a set of
computational paths (or at least what is required to know them) and so we do not need to study
the paths themselves. So, a SAT model is appropriate for this type of verification. Furthermore,

Volume (FMIS09 Preliminary Proceedings)

59

Tightly coupled verification of pervasive systems

the verification then became so efficient it could be applied directly within the MAM, running in
real time on the same computational hardware.

While we have only investigated one of the properties we mentioned Section 5, redundancy,
how we detect and resolve redundancy depends also on our understanding of modalities, prior-
ities, and more generally, context. For example, a user may not care about overlapping earcons
unless one of them has been generated by a certain condition. For example, delivering messages
via the television and the beeper simultaneously may be acceptable, unless one of the messages
is considered significantly more urgent than the other, or has arisen because of an unsafe context.
The area of semantics and ontologies for modalities/context requires further investigation. Ac-
ceptability and usability of modalities may be regarded as an example of crossing the “semantic
rubicon”5 [KA02]. A contribution of our formal modelling and analysis to MAM design has
been to expose this crossing.

9 Related Work

Much formal analysis of pervasive systems is focussed on techniques for requirements involv-
ing location and resources, within a waterfall framework. For example, [CD09] employs the
Ambient calculus for requirements and [CE07] employs a constraint-based modelling style and
temporal logic properties. Some work has been done on better integration of formal analysis
techniques within the context of interactive system interfaces (e.g. [CH08]), but there is little
work on more tightly coupled models and analysis. One exception is [RBCB08], where a model
of salience and cognitive load is developed and a usability property is considered. The model is
expressed in a higher order logic, and the property is expressed in LTL. While our paradigm is
different, the authors recognise they are engaged in a cyclic process. In some cases, their veri-
fication revealed inconsistencies between experimental behaviour and the formal model, which
led them to suggest refinements to the rules and also new studies of behaviour. Finally, there
is ongoing work to use policy conflict handling mechanisms embedded in telecommunications
systems in homecare applications [WT08]. We believe our approach can provide a more generic
framework for such a conflict management service.

10 Conclusions and future work

We have considered the problem of verifying context-aware, pervasive, interactive systems.
These kinds of systems present numerous challenges for verification: context-changes may be
difficult to model and predict and in addition, such systems often operate in situations that re-
quire practically unpredictable changes to the application functionality itself. We have outlined
an approach to verification that makes explicit two different types of interaction: system configu-
ration and system use. Our long term goal is to more tightly couple reasoning about configurable
systems by configuring models, and closing the loop between design, use, configuration, mod-
elling and verification. In particular, we are concerned with feeding back results of verification
to users, designers, configurers, and modellers.

5 the division between system and user for high level decision-making or physical-world semantics processing.

Prel. Proc. FMIS 2009

60

ECEASST

This paper reports on preliminary results from an example concerning an activity monitor from
the MATCH homecare system. We have developed an event based general model in Promela,
formulated and checked a number of properties in the model checker SPIN. We have concen-
trated on supporting end user configuration by checking for rule redundancy. Results from the
general model led us to develop a specialised model for use with a SAT solver, and using that
model we were able to verify an example set (taken from an actual log file), on the actual MAM,
in real time.

The case study illustrates a number of engineering and foundational challenges for our ap-
proach: we have not modelled an idealised system, but one that has been designed and engi-
neered in the context of specific practices and personal conventions. This presents non-trivial
challenges for any modelling process. The work is still preliminary, but our results demonstrate
proof of concept. A distinctive feature of the work is we generate automatically parts of the
model from actual log files.

Longer term, our plans for further future work include generating more parts of models au-
tomatically from log files, for a class of context aware systems, and incorporating aspects of
stochastic behaviour, performance, and real-time in the model and properties. We also plan to
further investigate semantic models of modalities and context and the best way to present and
use verification results, expecially in the context of human and non-human agents.

Acknowledgements:
This research is supported by the VPS project (Verifying interoperability in pervasive sys-

tems), funded by the Engineering and Science Research Council (EPSRC) under grant number
EP/F033206/1. We also acknowledge support from the MATCH Project, funded by the Scottish
Funding Council under grant HR04016.

Bibliography

[CD09] A. Coronato, G. De Pietro. Formal specification of a safety critical pervasive ap-
plication for a nuclear medicine department. International Conference on Advanced
Information Networking and Applications Workshops, pp. 1043–1048, 2009.
doi:10.1109.WAINA.2009.198

[CE07] A. Cerone, N. Elbegbayan. Model-checking Driven Design of Interactive Systems.
Electron. Notes Theor. Comput. Sci. 183:3–20, 2007.
doi:dx.doi.org/10.1016/j.entcs.2007.01.058

[CH97] J. Campos, M. D. Harrison. Formally verifying interactive systems: a review. In De-
sign, Specification and Verification of Interactive Systems 97. Pp. 109–124. Springer,
1997.

[CH08] J. C. Campos, M. D. Harrison. Systematic analysis of control panel interfaces us-
ing formal tools. In XVth International Workshop on the Design, Verification and
Specification of Interactive Systems (DSV-IS 2008). Lecture Notes in Computer Sci-
ence 5136, pp. 72–85. Springer-Verlag, July 2008.

Volume (FMIS09 Preliminary Proceedings)

61

http://dx.doi.org/10.1109.WAINA.2009.198
http://dx.doi.org/dx.doi.org/10.1016/j.entcs.2007.01.058

Tightly coupled verification of pervasive systems

[CRB07] P. Curzon, R. Rŭkėnas, A. Blandford. An approach to formal verification of human-
computer interaction. Formal Aspects of Computing, pp. 513–550, 2007.
doi:10.10.1007/s00165-007-0035-6

[ES03] N. Eén, N. Sörensson. An Extensible SAT-solver. In Giunchiglia and Tacchella
(eds.), SAT. Volume 2919, pp. 502–518. Springer, 2003.

[Hol03] G. J. Holzmann. The SPIN model checker: primer and reference manual. Addison
Wesley, Boston, 2003.

[HS99] G. Holzmann, M. H. Smith. Software model checking - Extracting verification mod-
els from source code. In Proc. FORTE/PSTV ’99. Pp. 481–497. Kluwer, 1999.

[JAK] Jake Project.
http://code.google.com/p/jake-drivers/

[KA02] T. Kindberg, F. A. System software for ubiquituous computing. Pervasive comput-
ing, pp. 70–81, 2002.

[MG09] T. McBryan, P. Gray. User Configuration of Activity Awareness. Lecture Notes In
Computer Science 5518:748–751, 2009.
doi:dx.doi.org/10.1007/978-3-642-02481-8 113

[MRM09] P. Markopoulos, B. de Ruyter, W. E. Mackay. Awareness Systems: Advances in The-
ory, Methology and Design. Springer, 2009.
doi:10.1007/978-1-84882-477-5

[RBCB08] R. Rŭkėnas, J. Back, P. Curzon, A. Blandford. Formal modelling of salience and
cognitive load. ENTCS, pp. 57–75, 2008.
doi:10.10.1016/j.entcs.2008.03.107

[RM07] Y. Riche, W. Mackay. MarkerClock: A Communicating Augmented Clock for the
Elderly. Proc. Interact 07. Part II, Lecture Notes In Computer Science 4663:408–
411, 2007.

[SHA] Shake users group.
http://www.dcs.gla.ac.uk/research/shake/

[WMH07] J. Williamson, R. Murray-Smith, S. Hughes. Shoogle: excitatory multimodal inter-
action on mobile devices. Proc. SIGCHI Conference on Human Factors in Comput-
ing Systems 4663:121–124, 2007.
doi:http://doi.acm.org/10.1145/1240624.1240642

[WT08] F. Wang, K. Turner. Policy Conflicts in Home Care Systems. Proc. 9th Int. Conf. on
Feature Interactions in Software and Communications Systems, pp. 54–65, 2008.

Prel. Proc. FMIS 2009

62

http://dx.doi.org/10.10.1007/s00165-007-0035-6
http://code.google.com/p/jake-drivers/
http://dx.doi.org/dx.doi.org/10.1007/978-3-642-02481-8_113
http://dx.doi.org/10.1007/978-1-84882-477-5
http://dx.doi.org/10.10.1016/j.entcs.2008.03.107
http://www.dcs.gla.ac.uk/research/shake/
http://dx.doi.org/http://doi.acm.org/10.1145/1240624.1240642

ECEASST

Markov Abstractions for Probabilistic π-Calculus

Hugh Anderson1 and Gabriel Ciobanu2

1 hugh@comp.nus.edu.sg
Wellington Institute of Technology,

New Zealand
2 gabriel@iit.tuiasi.ro

Romanian Academy, Institute of Computer Science, Iaşi
and A.I.Cuza University of Iaşi, Romania.

Abstract: This paper presents a range of approaches to the analysis and develop-
ment of program specifications that have been expressed in a probabilistic process
algebra. The approach explores Markovian processes as a high-level abstraction
tool to reason about system specifications. The abstractions include ones to check
the structure of specifications, analyze the long-term stability of the system, and
provide guidance to improve the specifications if they are found to be unstable. The
approach could present interest to the formal methods and critical-systems develop-
ment community, as it leads to an automatic analysis of some subtle properties of
complex systems. We illustrate some aspects by analyzing the Monty Hall game,
and a probabilistic protocol.

Keywords: Abstraction, probabilistic π-calculus, Markov processes.

1 Introduction

The process of effective abstraction underlies most facets of software production and analysis.
When reasoning about software systems, we abstract out areas of interest, and reason only about
those. When writing software, we use class declarations to encapsulate abstract notions. The
benefit is that it could be easier to manipulate abstract notions. We can then make use of apriori
knowledge about the abstraction. In the case of automatic analysis or automatic software pro-
duction, we may also benefit from higher-level abstractions, the automatic tool using pre-proved
transformations.

The approach presented here builds on earlier work in [11], where Markov Decision Processes
(MDPs) are used as an abstraction in the context of the quantitative analysis of program predicate
transformers, and in [12], where automated verification for probabilistic π-calculus is outlined.

We show the development of high-level abstractions based on Markovian processes. In the
context presented here, the abstractions are used to assist in the analysis of specifications given
in the probabilistic process algebra, useful for the analysis and development of probabilistic algo-
rithms, and also the analysis of critical-systems in which we include estimates of the likelihood
of failure. Such systems are commonly found in modern distributed computer systems, and a
feature of this approach is that it supports mechanical formal analysis of the systems.

The approach starts with the generation of a Markov transition matrix for the program spec-
ification. After generating the transition matrix, we can reason directly about the matrix, or

Volume (FMIS09 Preliminary Proceedings)

63

mailto:hugh@comp.nus.edu.sg
mailto:gabriel@iit.tuiasi.ro

Markov Abstractions for Probabilistic π-Calculus

establish the long-term behaviour/equilibrium state of the system, or analyze it directly by using
the eigenvectors of the matrix. In each case, we use known properties of the matrix to pick out
an area of the specification to fix/modify.

In order to follow this technical sequence, we need to provide effective abstractions of the
elements of the approach. Section 2 provides background material on Markovian processes and
transition matrices, as well as the probabilistic π-calculus. Section 3 continues with a discussion
on suitable abstractions. Section 4 shows various worked examples, including the analysis of a
probabilistic protocol. Section 5 concludes the paper.

2 Preliminaries

In this section, the underlying components of the approach, probabilistic process algebras and
Markov chains, are briefly introduced and defined.

A process algebra is a technique for mathematically modeling systems constructed of inter-
acting concurrent processes. The technique deserves the term algebra, as it is concerned with
axioms and algebraic transformations of expressions in the process algebra.

The most well-known process algebras are the Communicating Sequential Processes (CSP),
the Calculus of Communicating Systems (CCS) and the π-calculus. CSP is presented in [1]; CCS
and the π-calculus are presented in [10]. Each of these process algebras is useful in its own right,
concerned mostly with notions of equivalence between expressions in the process algebras, or
with notions of satisfaction between a process algebra expression, and some property expressed
in a modal logic.

Probabilistic process algebras have been used for modelling complex systems. Such systems
may include elements of interaction where the environment introduces uncertainty; for example,
the behaviour of people interacting with the processes, or communication bit error rates, or speed.

The advantage of model description in process algebra is compositionality, i.e., that complex
models can be built from smaller ones. With probabilistic process algebra, it is generally un-
derstood that the underlying quantitative semantics of the concurrent model of computation is a
discrete or continuous-time Markov chain [8]. The analysis of continuous-time Markov chains
with large populations can be computationally quite expensive, and so deterministic models can
be more efficient.

2.1 Probabilistic π-calculus

Probabilistic π-calculus is an extension of the π-calculus introduced in [12] with the aim of
modeling performances of dynamically reconfigurable systems. It inherits all the syntax of π-
calculus, and extends it with the possibility of associating to each action a probability distribu-
tion. This means that it is possible to associate to each prefix a quantitative value, represented
by the value of a random variable, which follows the above mentioned probability distribution.
Distributed systems often have probabilities associated with them that can be represented in the
probabilistic π-calculus.

Many works have pointed out the usefulness of probabilistic and stochastic versions of the
π-calculus in modeling various systems (see, e.g., [13, 2, 3]). Mainly it could be applied to

Prel. Proc. FMIS 2009

64

ECEASST

labeled transition systems representing concurrent systems; this is not possible by using differ-
ential equation models. For instance, the use of process algebras in systems biology is natural
and provides double advantages: on the one hand, the representation is incremental and compo-
sitional; on the other hand, the models support formal verification techniques such as behavioral
equivalences and model checking [4, 5, 12].

Definition 1 (Probabilistic π-calculus) Let N = {a,b, . . . ,x,y, . . .} be an infinite set of
names. A probabilistic π-calculus process is an expression using the following grammar:

P,Q ::= 0 | ∑
i
〈πi,ri〉 .Pi | (νx)P | [x = y]P | P|Q | P(y1, . . . ,yn)

where π is either x(y) or x̄y or τ , and r ∈ R+∪{∞}.

The intuitive meaning of the operators is essentially the same as in π-calculus. x(y) denotes
that we are waiting for a message on the channel x and y acts as a placeholder, which will be
replaced with the received message. x̄y represents the output of the message y on the channel x. τ

is the silent action. Standard considerations about free and bound names hold. In general, inputs
are binding operators on the arguments. This means that in the process x(y).P the name y is
bound in P, and not accessible from outside P. Restriction (νn)P of the name n makes that name
private and unique to P: the name n becomes bound in P. Recursion models infinite behaviour
by assuming the existence of a set of equations of the form A(x) = P such that x ∈ f n(P), where
f n(P) stands for the usual free names of P. The definition of f n(P) is standard taking into
account that the only binding operators are inputs and restriction.

0 represents the inactive process. The probabilistic process 〈π,r〉 .P is used in a probabilistic
choice operation, so the process 〈τ,0.5〉 .P + 〈τ,0.5〉 .Q will either continue with process P or
Q, with equal probability. If a probability r is 1.0, then we may omit it. In this probabilistic
π-calculus, we do not consider nondeterminism.

2.2 Markovian Processes

There are many different kinds of processes, however a particular subset of all processes, the
Markov processes, have been studied in great detail for many years.

Markov processes are viewed as a set of random variables {Xt}, where the time index t runs
through an ordered set. The set of all possible values of the variables is known as the state space
of the process. For one-dimensional state spaces, we classify Markov processes into four distinct
categories:

Time State space
1 discrete discrete
2 continuous discrete
3 discrete continuous
4 continuous continuous

A Markov chain is an abstraction M representing a probabilistic process in terms of a set of
states S , and a probability transition matrix T from one set of states to another. Transitions

Volume (FMIS09 Preliminary Proceedings)

65

Markov Abstractions for Probabilistic π-Calculus

from state to state occur at discrete time intervals. The future behaviour of a Markov chain is not
dependent on the previous path arriving at the current state, although we can specify an initial
state according to some pre-defined probability over S .

In elementary probability theory, given an event B, and an exhaustive set of mutually exclusive
events {Ci}, then prob(B) = ∑i prob(B |Ci)prob(Ci). In a continuous state space, the conditional
probability density function at time n given the state occupied at time m (l < m < n) is:

pXn(x | Xl = z) =
∞∫
−∞

pXm(y | Xl = z)pXn(x | Xm = y,Xl = z)dy (1)

where the Xl are random variables specifying the states of a probabilistic process. A probabilistic
process is a Markov Process if, for arbitrary times l < m < n,

pXn(x | Xm = y,Xl = z, . . .) = pXn(x | Xm = y) (2)

That is, probability density functions are only dependant on the most recent of the time points.
Given equation (2), we can rewrite equation (1) as:

pXn(x | Xl = z) =
∞∫
−∞

pXm(y | Xl = z)pXn(x | Xm = y)dy (3)

This is called the Chapman-Kolmogorov equation, and it indicates that it is possible to build up
probability density functions over a long period of time (l . . .n) from short time periods (l . . .m)
and (m . . .n). We can express this for discrete states as:

pn
jk =

∞

∑
i=0

pn−1
ji pik

and note that in process algebras we are dealing with discrete state spaces and hence Markov
chains, rather than the continuous state space and hence Markov processes.

A Markov Decision Process extends the notion of the Discrete Time Markov chain (DTMC) by
allowing the process to be controlled through actions at each state. MDPs also provide the notion
of reward for each taken action and each pair of present and subsequent states. By contrast, in
the case of DTMCs, the process cannot be controlled. The subsequent states are only chosen
in a probabilistic fashion, with respect to some prescribed transition matrix. Thus DTMCs only
allow probabilistic choice (through the transition matrix), while MDPs allow both probabilistic
choice (through the probability function) and nondeterministic choice (through the set of possible
actions from each state).

If a system eventually settles to a state of statistical equilibrium represented by a state distribu-
tion vector π = (π1, . . . ,πn), where π1 + . . .+πn = 1, then π = πT or alternatively π(I −T) =
0. This gives us a homogeneous set of equations, which will have a solution if I −T vanishes.
There are various standard methods for solving such a set of equations.

Another notion is that of class solidarity: a state of a given type can only intercommunicate
with states of the same type. Furthermore they must have the same recurrence period. A set
of states that communicate only with each other are called a closed set - an absorbing set of

Prel. Proc. FMIS 2009

66

ECEASST

states. The decomposition theorem states that we may divide any Markov chain into two sets
- the recurrent and the transient states. The recurrent set may be decomposed into closed sets.
Within each closed set, all states communicate with same period.

The Perron-Frobenius theorem asserts that if A is of order h×h and if A has t > 1 eigenvalues
equal in modulus to λ1 (the largest one), then A can be reduced to a cyclic form by a permutation
applied to both rows and columns. The import of this is that it allows us to differentiate between
cyclic and stochastic processes.

Hansson and Jonsson have developed PCTL in [7]. It is a probabilistic real-time computation
tree logic for checking discrete time Markov chains. PCTL path and state formulas represent
properties of states and sequences of states. The PCTL formula are applied to discrete time
Markov chains, yielding judgements over them that indicate if the chain satisfies the formula.
This model-checking approach is not considered here.

3 Markov Abstractions

The principal abstraction is just the (perhaps obvious) one that the transition matrix derived from
the specification is an abstraction of the specification. Observations about the matrix apply to the
specification. We begin with some general observations about the analysis of transition matrices:

1. Given a Markov transition matrix T , the solution of the equation pT = p can give p, the
steady-state (or equilibrium) state value matrix1.

2. The least or greatest expected returns from a state pn, can be easily calculated using the
transition matrix T . The calculations are easy to do, but the meaning associated with them
needs to be given an intuition. This intuition is clarified by means of examples: “Given
that we are at pn what is the least expected cost of a decision taken here?”

3. More complex distributions are possible. For example - the t value may itself be a MDP,
making the decision based on (say) a dial on the black box. This suggests a testing process
- given a specification, and a particular MDP suggesting how another process/tester will
interact with it.

We also have the following abstractions over the transition matrix, which can be tied back to the
particular state(s) that give rise to the effect. This gives us a method for specification improve-
ment, involving testing the transition matrix for each effect, and then relating this back to the
causative states.

Given a Markov transition matrix T ,

1. determine which (if any) states are absorbing (i.e. capturing states of the system).

2. determine which (if any) states are ephemeral (i.e. unreachable).

3. determine if the system is cyclic or ergodic. Is it expected to be cyclic? Is it expected to
be a distribution?

1 There are two possible kinds of outcomes - cyclic ones, and steady state ones.

Volume (FMIS09 Preliminary Proceedings)

67

Markov Abstractions for Probabilistic π-Calculus

4. if it is cyclic, determine the states of the cyclic behaviour.

5. determine if the system is a single Markov chain or two (or more) Markov chains.

6. if it describes two (or more) Markov chains, determine the states belonging to each of the
chains.

7. the distribution of eigenvalues of T gives the following insights:

(a) If one is 0, then the transitions are not invertible

(b) If two are close together, then it may take a long time to stabilize

(c) The maximum value gives the long term behaviour

(d) The case when the behaviour is cyclic (i.e. no equilibrium)

For each abstraction, we develop an intuition or interpretation, and show how it can be mechan-
ically calculated using conventional linear programming tricks.

3.1 Markov Classification of States

The states of a Markov chain are classified as follows:

Type of state Definition
Ephemeral Cannot be reached from any other state
Absorbing Cannot ever leave this state
Periodic Return to this state cyclically
Aperiodic Not periodic
Recurrent Eventual return certain
Transient Eventual return uncertain
Positive-recurrent Recurrent, finite mean recurrence time
Null-recurrent Recurrent, infinite mean recurrence time
Ergodic Aperiodic, positive recurrent

Each of these types of states has some relevance to the analysis of probabilistic process alge-
bra. For example an ephemeral state (if it is not the first state in the system), may indicate an
unreachable part of a specification. An absorbing state may indicate a deadlock condition.

4 Direct Analysis of Systems

In this section, some simple examples are used to demonstrate how systems expressed in a proba-
bilistic process algebra may be expressed as transition matrices, which are then examined directly
in terms of the Markov classification of states, in order to discover various properties.

In each example, we also give a motivation or intuition about the applicability of the particular
technique used.

Prel. Proc. FMIS 2009

68

ECEASST

4.1 Periodic versus Ergodic

It is useful to discover if an arbitrary process algebra expression is periodic or ergodic. This may
not be apparent from the process algebra expression, and if it is found to be (say) periodic when
we expect it to be random, then this may indicate a problem with the expression. Let us begin
with a very simple example:

P
de f
= 〈a,0.5〉 .P+ 〈b,0.5〉 .Q

Q
de f
= 〈a,0.5〉 .P+ 〈b,0.5〉 .Q

The prefixes 〈x,r〉 indicate a pair consisting of the prefix, and its probability. This one’s tran-

sition matrix is
[

0.5 0.5
0.5 0.5

]
with an equilibrium state vector of (0.5,0.5). Consider also the

expression:

P = 〈a,0〉 .P+ 〈b,1.0〉 .Q
Q = 〈a,1.0〉 .P+ 〈b,0〉 .Q

with the transition matrix
[

0 1.0
1.0 0

]
and, again, an equilibrium state vector of (0.5,0.5).

Can we differentiate between these two? They are quite different, the first representing a
probabilistic process, producing strings of a’s and b’s, the second representing a deterministic
process producing an alternating string of a’s and b’s. If we look at the eigenvalues of the
two matrices, we see that the first matrix returns the eigenvalues 1 and 0, whereas the second
produces 1 and −1. From the Perron-Frobenius theorem, we can immediately tell from the two
eigenvalues that this matrix represents a cyclic process. In summary:

The direct analysis of the eigenvalues of a transition matrix allows us to differentiate
between two different types of process - specifically cyclic and stochastic processes.

This analysis may be useful in either case - when we expect a stochastic process and get a cyclic
one, and vice-versa.

4.2 Ephemeral States

The trivial ephemeral state Si in a Markov chain is a state in which the i-th column of the tran-
sition matrix is all-zeroes. This indicates that you can only pass out of this state, and never get
back into it.

The intuition in process algebra terms is that we might consider these states to be correct if
they are initial states, but otherwise they are dead-code. You can never get to an ephemeral state
if you do not start in the ephemeral state. In this example, column 4 is all-zeroes, indicating that

Volume (FMIS09 Preliminary Proceedings)

69

Markov Abstractions for Probabilistic π-Calculus

S4 is ephemeral:

P =

0.3 0.0 0.0 0.0 0.0 0.7
0.0 0.1 0.1 0.0 0.0 0.8
0.0 0.0 0.8 0.0 0.0 0.2
0.2 0.0 0.0 0.0 0.4 0.4
0.0 0.5 0.0 0.0 0.0 0.5
0.1 0.3 0.2 0.0 0.0 0.4

The concept of the ephemeral state may be extended to an ephemeral state-set. This is a set
of states which you can only pass out of. In this case, there can be no periodic structure in the
ephemeral state-set, and one of the states must therefore be a first ephemeral state. If it is removed
from the transition matrix, we are left with a transition matrix with a (possibly null) ephemeral
state-set, and the rest of the matrix. In this way, we can step-wise remove the ephemeral state set
from the transition matrix, identifying all its elements as we go.

P′ =

0.3 0.0 0.0 0.0 0.7
0.0 0.1 0.1 0.0 0.8
0.0 0.0 0.8 0.0 0.2
0.0 0.5 0.0 0.0 0.5
0.1 0.3 0.2 0.0 0.4

 P′′ =

0.3 0.0 0.0 0.7
0.0 0.1 0.1 0.8
0.0 0.0 0.8 0.2
0.1 0.3 0.2 0.4

In this example, by removing S4 we discovered a second ephemeral state S′4. Removing this state
removes the ephemeral state-set entirely. In summary:

The ephemeral states should correspond only to initial states. If there are any
ephemeral states that are not the initial ones, then these indicate that the states
are dead states, i.e. ones that will never be visited.

This analysis is useful in finding parts of a specification that are not required. If so they may as
well be removed.

4.3 Absorbing States and State Sets

An absorbing state Si in a Markov chain is one in which the i-th row is all-zeroes. This indicates
that you can only pass into this state, and never get back out of it. The intuition in process algebra
terms is that we might consider these states to be deadlock ones - our process has arrived at this
state and can never exit it. The concept of the absorbing state may be extended to an absorbing
state-set, which may either be a chain of states ending in an absorbing state, or a set of states
which may be either ergodic or periodic, but in any case do not ever exit.

The first option is easily handled in a manner analogous to that used in the presentation for
ephemeral states; the second is a little more difficult. However, the Markov techniques provide
again a solution. By permuting the rows and columns, we transform the matrix until it is P =[

.
0 [K]

]
. In this matrix, the bottom right hand corner K is a square matrix, with all-zero

entries to the left of it. If the states contributing to the rows of K do not contain an initial state,
we can deduce that this is a set of states that are absorbing. In summary:

Prel. Proc. FMIS 2009

70

ECEASST

The absorbing states should correspond only to final states. If there are any ab-
sorbing states or state sets that are not final, then these indicate that the states are
deadlock states.

This analysis is useful in finding parts of a specification that cause deadlocks. If so, these are
better removed early (at the specification stage) than later.

4.4 Direct Computation

It is relatively easy to manipulate the matrices directly to discover properties of a process. This
is illustrated by examining a process algebra expression intended to capture the elements of the
Monty-Hall game. The rules of the Monty-Hall game are as follows:

A contestant appears in a TV show. The announcer for the show (Monty Hall) hides
a prize in an alcove behind one of three curtains. The contestant is asked to select
one of the curtains, and then announce the selection. Since the announcer for the
show knows where the prize is located, he opens one of the other two curtains,
showing the contestant that the prize is not behind it. The contestant is then asked
if she wants to change her mind - she can either stick to the original curtain, or
change to the other curtain.

The question is: which of these options should the contestant choose? The surprising answer is
that she should change her mind.

4.4.1 Parallel Formulation

We begin with a probabilistic π-calculus expression of the game, played with two interacting
processes representing Monty Hall (monty), a contestant (contestant). Beginning with the Monty
Hall process, we have Monty selecting a random prize curtain, and signalling the contestant on
channel x. The contestant replies with a curtain selection on channel z. Monty then signals the
contestant on channel y with a revealed curtain. Finally the contestant replies with a choice on
channel w. Monty then signals either the win or lose on channel public:

game def= monty | contestant

monty def= ∑i∈{1,2,3}
〈
x̄, 1

3

〉
.z(c).selectic

selectic
def=

{ 〈
ȳ(cl), 1

2

〉
.w(f).signali f +

〈
ȳ(cr), 1

2

〉
.w(f).signali f if i = c

ȳ(co).w(f).signali f if i 6= c

signali f
def=

{
public(win).!monty if i = f (awin!)
public(lose).!monty if i 6= f (a lose)

The process is replicated, and continues forever, or until we switch off the TV. The other pro-
cesses may be defined as follows, where the contestant makes the deliberate decision to choose
the other curtain (that is the contestant changes curtains):

contestant def= x.

(
∑

j∈{1,2,3}

〈
z̄(c j),

1
3

〉
.y(m).w̄(co).!contestant

)

Volume (FMIS09 Preliminary Proceedings)

71

Markov Abstractions for Probabilistic π-Calculus

To model the the case when the contestant decides not to change curtains, our contestant process
would be

contestant def= x.

(
∑

j∈{1,2,3}

〈
z̄(c j),

1
3

〉
.y(m).w̄(c j).!contestant

)

We can model the whole system using a simple (single) process algebra expression, only con-
sisting of choice, and no parallel composition. The following section shows such an expression.

4.4.2 Expansion of Parallel Composition - 1

We can expand the parallel composition of the expression using the modified expansion law as
shown below. We assume that we have actions (a1,a2,a3) representing the selection of Monty
Hall selecting one of the three alcoves. The contestant then can indicate with one of three actions
(b1,b2,b3) which alcove/curtain she wishes to choose by pressing the corresponding button.
Monty can then open one of the two remaining curtains, the left one or the right one if there is a
choice (cl,cr), or the only remaining one if there is not (co). Finally, the contestant can choose
either to change to the other curtain by selecting action (d) or not. In the following expression,
the contestant tries the changing algorithm - that is, she changes her selection. There are also
two extra states, indicating winning and losing which we are interested in:

hide def= ∑
i∈{1,2,3}

〈
ai,

1
3

〉
.selecti

selecti
def= ∑

j∈{1,2,3}

〈
b j,

1
3

〉
.montyi j

montyi j
def=

{
〈cl,0.5〉 .changel + 〈cr,0.5〉 .changer if i = j
c0.changeo if i 6= j∧ k 6= i∧ k 6= j

changei
def=

d.lose if i = l
d.lose if i = r
d.win if i = o

lose def= hide

win def= hide

We can now use this to generate a simple Markov transition matrix, as seen in section 4.4.4.

4.4.3 Expansion of Parallel Composition - 2

Another technique may be used to expand out the parallel composition of probabilistic pro-
cesses. In [9], Hillston et al show how the Kronecker representation of a parallel composition of
Markovian processes is an efficient representation, and allows us to create the generator matrix
as required. The Kronecker representation of a parallel composition of N component processes
is represented by a computation over their transition matrices Ri, and including factors related
to their interaction (Pi,α , which represents a probability transition matrix for each component i

Prel. Proc. FMIS 2009

72

ECEASST

associated with each interaction α), and normalization (Pi,α , which normalizes the interaction
matrices for each component i and each interaction α , where rα is the minimum of the rates of
action α):

Q def=
N⊕

i=1

Ri + ∑
α∈Z

rα

(
N⊗

i=1

Pi,α −
N⊗

i=1

Pi,α

)

In our example, if the matrix for monty was M and the matrix for the contestant was C , then
the Kronecker representation is Q = M ⊕C + f × [Mi⊗Ci−Mn⊗Cn]. Note that this repre-
sentation is compositional, and this is of use in that the sort of sparse matrices generated by our
process algebra expressions are compactly represented by the Kronecker expression. In addi-
tion, the unexpanded expression may itself give insights into the behaviour of the interacting
processes - for example, the interaction matrix may tell you about the degree of binding between
processes.

4.4.4 Markov Transition System

In our example, the first process expansion technique applied to the process expression results in
18 states - i.e. the size of the transition matrix is 18×18. The matrix is:

M =

hide 0 1
3

1
3

1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

select1 0 0 0 0 1
3

1
3

1
3 0 0 0 0 0 0 0 0 0 0 0

select2 0 0 0 0 0 0 0 1
3

1
3

1
3 0 0 0 0 0 0 0 0

select3 0 0 0 0 0 0 0 0 0 0 1
3

1
3

1
3 0 0 0 0 0

monty11 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2 0 0 0

monty12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
monty13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
monty21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
monty22 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
1
2 0 0 0

monty23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
monty31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
monty32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
monty33 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
1
2 0 0 0

changel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
changer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
changeo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

lose 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
win 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Noting that the process cycles after four states, we calculate game = init×M4 where init is the
initial state vector. From this we get a vector representing the probability of being in each state
after four cycles. The vector is game = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1

3 , 2
3). The values

associated with lose and win are 1
3 and 2

3 respectively, indicating that with this strategy, we will

Volume (FMIS09 Preliminary Proceedings)

73

Markov Abstractions for Probabilistic π-Calculus

(in the long term) win! By contrast, if we change the definition of the changei j state to represent
the choice of not changing curtains:

changei j
def=

win if i = l
win if i = r
lose if i = o

By examination of this new matrix, we establish that the values associated with lose and win are
2
3 and 1

3 respectively, indicating that this is not as good a strategy as the previous one.

4.4.5 Comment on Direct Evaluation

The transition laws for Sπ may be directly applied to the original expression of the game, but they
do not result in an efficient reduction of the expression. Initially there are three possible transi-
tions, and each must be separately evaluated - i.e. the expression expands rather than reduces.
The point here is that the matrix representation is simpler to handle, and reduces mechanically
and quickly. In this section various techniques for evaluating the properties of probabilistic pro-
cesses were given. In summary:

The reduction of a parallel composition of probabilistic processes to a single Markov
transition matrix or chain allows a compact representation of the behaviour of the
process. This matrix/chain may then be evaluated using either algebraic or arith-
metic techniques to discover properties of the original processes.

This analysis is useful in directly evaluating the probabilistic behaviour of a process without
having to apply the more complex Sπ rules a step at a time. The evaluation is done in a simple
manner on the transition matrix alone.

4.5 First Passage Probabilities

In a previous example, we were interested in the time taken to get to the absorbing state set. In
Markov terms, this is known as the first passage probability. The first passage probability from
state i to state j at time t is defined by the conditional probability that state j is entered at time t,
and state j is not entered before time t, this being conditional on starting at state i. The mean first
passage probability Mi j from state i to state j in transition matrix T is derived from the mean
first passage matrix, which is given by

M = (I−Z +EZdiag)D

where I is the identity matrix, Z is the fundamental matrix, E is a matrix containing ones every-
where, Zdiag is the matrix containing in its diagonal the components of the fundamental matrix
(and zeros everywhere else) and finally, D contains in its diagonal 1/αi. (1 divided by the com-
ponents of the limit matrix). Z, the fundamental matrix, is computed by Z = (I− (P−T))−1.

This gives us a technique for finding the mean passage time - the expected number of transi-
tions/steps performed to get from state i to state j. We begin by constructing the transition matrix
for our probabilistic expression. We next ensure that it is irreducible and stochastic, and we may

Prel. Proc. FMIS 2009

74

ECEASST

then calculate the mean first passage probability matrix M. This matrix may be used to evaluate
mean first passage times for any transition of interest. Note that once again, this computation is
performed by manipulations of the transition matrix T , which is used to derive the mean first
passage matrix. This matrix may in turn be used to derive specific useful properties as seen in
the next two sections.

4.5.1 Commute Time

A useful property that may be of interest is the commute time of a system. The commute time
between state i and state j is the expected time to return to state i after visiting state j at least
once. This is derived from the mean first passage matrix:

Ci j = Mi j +M ji

An intuition about the usefulness of commute time may be gleaned from the following:

Consider the evaluation of two competing specifications for a probabilistic algo-
rithm. A particular cycle of states in the algorithm is of interest, as it is time critical.
The commute-time analysis will yield the faster specification.

This quantitative evaluation of two competing designs may assist in the correct selection of a
better design for implementation.

4.5.2 Cover Time

The cover time is the expected time to visit all components of a system. Again this has an
interpretation in the software design, specification and analysis field. The calculation of the
cover time is not as simple as the commute time, and involves analysis of the spanning tree for
the transition graph. However tight bounds may be efficiently calculated as seen in [6]. An
intuition about the usefulness of cover time may be gleaned from the following:

Consider the evaluation of two competing specifications for a probabilistic algo-
rithm. Each of the states in the algorithm is of interest, and must be visited at least
once, and this is time critical. The cover-time analysis may yield the better one of
the two competing specifications.

Again, quantitative evaluation of two competing designs helps in the correct selection of a better
design for implementation.

4.6 Equilibrium

Another core concept in the analysis of ergodic Markov processes is that of equilibrium. The
calculation of the equilibrium of a Markov chain gives insight into the long-term behaviour
of the process. As an example of this, we consider an expression of a probabilistic algorithm
for a non-repudiation protocol. The purpose of this protocol is to ensure that two processes
agree that a transaction has taken place. At some time, one of the processes cannot violate the
protocol and later claim that it did not. The protocol probabilistically ensures that neither process

Volume (FMIS09 Preliminary Proceedings)

75

Markov Abstractions for Probabilistic π-Calculus

can repudiate an agreement. We consider two expressions of the protocol, one in which both
processes act honourably, and a second in which the second process attempts to cheat by refusing
to send an acknowledgement. By looking at the long-term behaviour of the two expressions,
using an infinite Markov chain, we see that in the first case the likelihood of agreement is unity.
However in the second case the likelihood of agreement approaches zero.

This protocol is simplified for the purposes of the paper. The sender process randomly chooses
a message n out of M possible message numbers, and elects to transmit the (encrypted) trans-
action during this message. A friendly receiver immediately responds with a acknowledgement
containing the message, and then proceeds to decrypt the message (this process taking much
longer than the round-trip time of the messages). When the message decrypts correctly, the
protocol has ended, and the receiver cannot later attempt to deny the transaction, as it sent the
acknowledgement before it attempted to decrypt. An unfriendly receiver flips a coin to decide if
it wishes to NOT send an acknowledgement. If the process is lucky enough to do this when it
receives the correctly encrypted transaction, then it can deny the transaction ever took place. We
model the system with a sender and a receiver. The x channel is used for the messages from the
sender to the receiver, the y channel contains the acknowledgement. Beginning with the sender
process, and then defining a good and a bad receiver process, we have:

protocol def= sender | receiver

sender def=
〈
x̄(t,d(t)), 1

M

〉
.y.0+

〈
x̄(q,d(r)),1− 1

M

〉
.y.!sender

goodie def=
{
〈x(t,q),1.0〉 .ȳ.public(T).0 ifd(q) = t
〈x(t,q),1.0〉 .ȳ.!goodie ifd(q) 6= t

baddie def=
{ 〈

x(t,q), 1
2

〉
.public(T).0+

〈
x(t,q), 1

2

〉
.ȳ.!baddie ifd(q) = t〈

x(t,q), 1
2

〉
.public(F).0+

〈
x(t,q), 1

2

〉
.ȳ.!baddie ifd(q) 6= t

Choosing an arbitrary (finite) value for M, it is easy to calculate that the probability for the goodie
to succeed will be 1.0, and for the baddie reduces to zero:

P(T) = 1
M ∑

M
i=1 1 ifd(q) = t (= 1) and P(T) = 1

M ∑
M
i=1(

1
2)i ifd(q) = t (→ 0)

In summary:

The equilibrium for a stochastic process is easily derived from the transition matrix,
and allows us to make assertions about the long term behaviour of the process.

The analysis is completely mechanical, and relies on an early use of abstraction, reducing a
relatively complicated process algebra expression to manipulations on a Markov chain.

4.7 Evaluation of System Behaviour: a hard problem

The final approach to the analysis of communicating systems suggested by the Markov abstrac-
tion is the prediction and evaluation of system behaviour even when we cannot complete the
quantification of the transition matrix. The view here is that we may not be able to quantify the
probabilities of certain events, or, because of the interaction with other events, be unable to exter-
nally monitor them. In this situation, we can still generate a Markov transition matrix, although
the matrix will contain variables (unknowns) in certain places.

Prel. Proc. FMIS 2009

76

ECEASST

Consider a tiny example of a transition matrix T : T =
[

p 1− p
q 1−q

]
. To discover the eigen-

values of this, we need to solve det
([

p−λ 1− p
q 1−q−λ

])
= 0 for λ . This is simple for the

given problem: λ 2 + (q− p− 1)λ + (p− q) = 0 ⇒ λ = 1, p− q. Note that the single large
value 1 indicates that this is a stochastic matrix if p,q 6∈ {0,1}. The solutions for λ are then used
to generate the eigenvectors for the matrix T by solving vT = λv for v. However, in a more
general case, this is normally considered a hard problem, particularly if there are a large number
of variables and the matrix is large. Instead, this sort of problem is solved using arithmetic and
algorithmic techniques rather than algebraic ones. Again there are many well-known arithmetic
techniques for quickly finding solutions to large sets of equations. Let us now consider how this
sort of evaluation can assist in a software engineering process:

Consider the evaluation of a specification for a probabilistic algorithm in which
some of the probabilities are unknown. By constructing a transition matrix, and
then solving the eigenvector equations, we derive a compact set of information that
can be used to make assertions about the specification. (For example - in the trivial
example above, if p = 1 and q = 0 we can immediately tell that the process is cyclic
with length 2. If p = q we can immediately tell that the process has an ephemeral
state. For any other values for p and q, the process is stochastic).

In this example, we see how the Markov abstraction can lead to a better understanding of a
process even in the absence of quantitative values.

5 Conclusion

In this paper we have concentrated on the mechanical calculation of properties of probabilistic
process algebra expressions using a matrix P which defines a Markov decision process for the
expression. The key point of the approach is that instead of reasoning about the detailed structure
of the process algebra expression, we reason at a higher level of abstraction using Markovian
abstractions. These abstractions include ones to predict long term behaviour of a system, identify
deadlock states, identify ephemeral states, and calculate system properties by direct manipulation
of P. Note that this approach is different from previous approaches, which do not concentrate on
the element of abstraction suggested by the use of Markovian processes.

This abstraction allows us to compactly represent aspects of the behaviour of processes. For
example, a single vector (the eigenvalues of the matrix) can be used to infer useful properties of a
process. In addition, efficient libraries and procedures for calculating probabilities or rates have
been developed over the long history of Markov processes, and we can obtain results using these
efficient arithmetic techniques. The results can not only give direct quantitative assessments
of the behaviour of a design or software element, but also can lead to comparisons between
competing designs. If two designs/implementations had similar properties in other areas, but
one was better in it’s cover time, then we might choose to pick this one.

In summary, we have outlined ways in which Markovian processes may be used as a high-level
abstraction tool to reason about program specifications expressed in a probabilistic π-calculus.

Volume (FMIS09 Preliminary Proceedings)

77

Markov Abstractions for Probabilistic π-Calculus

The abstractions include ones to check the structure of specifications, analyze the long-term
stability of the system, and provide guidance to improve the specifications.

References

[1] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31(3):560–599, 1984.

[2] L. Cardelli. On process rate semantics. Theor. Comput. Sci., 391(3):190–215, 2008.

[3] K. Chatzikokolakis and C. Palamidessi. A framework for analyzing probabilistic protocols
and its application to the partial secrets exchange. Theor. Comput. Sci., 389(3):512–527,
2007.

[4] G. Ciobanu. Software verification of biomolecular systems. In G. Ciobanu and G. Rozen-
berg, editors, Modelling in Molecular Biology, pages 40–59. Springer-Verlag, 2004.

[5] G. Ciobanu. From gene regulation to stochastic fusion. In UC ’08: Proceedings of the 7th
international conference on Unconventional Computing, pages 51–63, Berlin, Heidelberg,
2008. Springer-Verlag.

[6] U. Feige. A tight lower bound on the cover time for random walks on graphs. RSA: Random
Structures and Algorithms, 6:51–54,433–438, 1995.

[7] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

[8] J. Hillston. A compositional approach to performance modelling. PhD thesis, University
of Edinburgh, 1994.

[9] J. Hillston and L. Kloul. An efficient Kronecker representation for PEPA models. In
L. de Alfaro and S. Gilmore, editors, Proceedings of the first joint PAPM-PROBMIV Work-
shop, volume 2165 of Lecture Notes in Computer Science, pages 120–135, Aachen, Ger-
many, September 2001. Springer-Verlag.

[10] R. Milner. Communicating and mobile systems: the pi-calculus. Cambridge University
Press, 1999.

[11] C. Morgan and A. McIver. Cost analysis of games, using program logic. In 8th Asia-Pacific
Software Engineering Conference (APSEC 2001), page 351 (Abstract only). Dec 2001.

[12] G. Norman, C. Palamidessi, D. Parker, and P. Wu. Model checking the probabilistic
π-calculus. In Proc. 4th International Conference on Quantitative Evaluation of Systems
(QEST’07), pages 169–178. IEEE Computer Society, 2007.

[13] C. Priami, A. Regev, E. Y. Shapiro, and W. Silverman. Application of a stochastic name-
passing calculus to representation and simulation of molecular processes. Information Pro-
cessing Letters, 80(1):25–31, 2001.

Prel. Proc. FMIS 2009

78

ECEASST

Poporo: A Formal Framework for Social Networking

Nestor Catano1, Vassilis Kostakos1, Ian Oakley1

1 (ncatano,vk,ian)@uma.pt
Madeira-ITI, Portugal

Abstract: This position paper presents a novel approach for ensuring privacy in
online social network applications through the combination of formal methods so as
to reason in logic about privacy policies, graph theory and simulation to establish the
potential threats of revealing information to users, and Human Computer Interaction
to ensure that policies are usable and configurable.

Keywords: Social Networking, Security and Privacy Policies, Formal Methods,
Refinement Calculus, Proof Carrying Code

1 Introduction

In recent years, online social network services in the form of websites such as Facebook, MyS-
pace, LinkedIn and Hi5 have become popular tools to allow users to publish content, share
common interests and keep up with their friends, family and business connections. A typical so-
cial network user profile features personal information (e.g. gender, birthday, family situation),
a continuous stream of activity logged from actions taken on the site (such as messages sent,
status updated, games played) and media content (e.g. personal photos and videos). The privacy
and security of this information is a significant concern [GA05]. For example, users may upload
media they wish to share with specific friends, but do not wish to be widely distributed to their
network as a whole. Control of the access to the content on social network profiles is therefore an
important issue. However, numerous tensions exist. For example, users find stipulating detailed
privacy settings to be challenging and often fail to achieve their goals [BAC09]. Furthermore,
social network services have conflicting goals. Although respecting the privacy of their client
base is important, they must also grow and expand the connections between their users in order
to be successful. This is typically achieved by exposing content to users through links such as
“friends-of-friends”, in which content relating to individuals known to a user’s friends (but not
the user) is revealed. Examples of this behaviour include gaining access to a photo album of an
unknown user simply because a friend is tagged in one of the images.

This position paper argues that users need mechanisms to reliably restrict access to content in
online social network services and suggests that formal methods [RV01] can provide a logical
foundation with which to achieve this goal: to express and enforce privacy and security policies
unambiguously. It outlines a vision in which social networking websites are used as a living
test-bed for novel systems which combine formal methods, graph theory and Human-Computer
Interaction (HCI) techniques to develop privacy and security systems which are secure, depend-
able, trustworthy and usable. These areas are discussed in the reminder of this paper.

Volume (FMIS09 Preliminary Proceedings)

79

mailto:(ncatano,vk,ian)@uma.pt

Poporo

2 Proposed Approach

The main components of Poporo are summarised as follows. We first construct Matelas1, a
predicate calculus abstract specification layer definition for social networking, modelling social-
network content, privacy policies, social-networks friendship relations, and how these effect
the policies with regards to content and other users in the network. Using refinement calculus
techniques [HHS86], Matelas is ported into a social network core application that adheres to the
stipulated policies. Using Proof Carrying Code (PCC) [Nec97], the functionality of this core is
then extended by the development of plug-ins that adhere to the policies. These plug-ins are then
automatically categorised in terms of their threat to privacy by analysing the APIs and graph
algorithms utilised by each plug-in. Finally, HCI techniques are used to develop interfaces that
effectively represent the policies of the core application to users, as well as enabling them to
modify and adapt them to suit their preferences.

2.1 Matelas and Predicate Calculus

The basis of our work is Matelas, a specification layer that builds on predicate calculus and
focuses on human centred privacy and security policies. Using refinement calculus techniques
[HHS86], Matelas is used to construct a sound social network core application that adheres to
stipulated policies. That is, from a predicate calculus specification of social networks, a code
level specification model is attained while applying successive refinement steps.

We will deliver a social network core application that verifies and implements social network
privacy policies considered in Matelas. The core application will serve as a common layer to
which social network functionalities will be plugged-in. Matelas will distinguish four rather
independent aspects of social networks, namely, user content and privacy issues, user content
and how it is affected by friendship relations, the user interface, and the user content and its
hierarchy.

2.2 Using Proof Carrying Code to Extend the Core Application

While the social network core application described in Section 2.1 is minimal in functionality,
it will be considerably extended by incorporating plug-ins . This can be achieved by developing
a framework where the plug-ins, written in popular programming languages such as Java or C,
can demonstrate their adherence to the policies stipulated by Matelas. This will be achieved
by using PCC [Nec97], which is a technique in which a code consumer (the social network core
application) establishes a set of rules (privacy and security policies) that guarantee that externally
produced programs (the plug-ins) can safely be run by the consumer. In addition to the code to be
executed, the code producer must provide a proof of adherence to set of rules defined by the code
consumer. This proof is run by the code consumer once, using a proof validator, to check whether
the proof is valid and therefore the external program is safe to execute. It is imperative that the
proof validator is automatic and fast. Hence, Matelas, while expressive enough for modelling
general privacy and policy properties, must allow the (semi-) automatic checking of proofs.

1 Matelas is the French word for the English word mattress.

Prel. Proc. FMIS 2009

80

ECEASST

The policies for Java plug-ins can be written in JML [LBR06] (Java Modeling Language),
which allows different formal methods tools to check program correctness [BCHJ05, BCC+05].
JML specs have the advantage over predicate calculus based models in that they are close to Java,
and thus are closer to average programmers. We therefore envisage to investigate on systematic
ways JML specs can be translated into predicate calculus based models.

In summary, the main output of this work is a PCC based plug-in validator that checks plug-ins
for compliance with Matelas defined policies, and a translation definition from Matelas to JML.

2.3 Formal Analysis of Social Networking Privacy

An important step in understanding the privacy threats of plug-ins is a rigorous assessment of
the privacy threats posed by the various graph theory algorithms commonly used in social net-
working systems and services. For example, consider a plug-in that suggests new friends to a
user, based on the user’s existing friends and the relationships between those friends. One way
to achieve this is to use a local clustering algorithm (e.g. transitivity or clustering coefficient).
If such a plug-in has access to all of a user’s friends, then it can statistically calculate the user’s
age by looking at his/her friends’ age, location (similarly by looking at the locations of the user’s
friends), gender, work, etc. A first step in mapping the privacy threats of various graph algo-
rithms provided by the social network core application is to run extensive simulations. Crucially,
the underlying network structure may be important in determining the severity of the privacy
threat. Therefore, a number of artificial social networks will be generated using a variety of
parameters (such as size, density, degree distribution, average path length). These networks will
be then populated with private and public information, such that they resemble a real-world so-
cial network. Our simulation environment will then use Monte-Carlo simulation of a number of
graph algorithms (such as shortest path, calculation of betweenness, statistic features), to explore
their privacy implications. Our formal specification engine will be used during these simulations
to ensure that the algorithms adhere to privacy policies.

We will deliver a classification of graph theory algorithms based on the threat to privacy.
This classification can be used to automatically assign a simple “Privacy” label (e.g. Green,
Yellow, Red) to 3rd party software or plug-ins that will be used by our formal specification
engine. This label is intended to communicate to users the threat to their privacy, in a simple and
understandable fashion, much in the spirit of Section 2.4.

2.4 Human Considerations

While a social network application or plug-in may provably adhere to policies, these policies are
typically sufficiently abstract to allow for human error. While a plug-in may not access users
date of birth without explicit authorisation, it is still possible for users to inadvertently give such
authorisation. This may happen either by accident or, most likely, due to the complexity of the
settings and preferences interface that the user is asked to interact with. Hence it is imperative
to augment the provably correct social network core and plug-ins with understandable human
interfaces that enable end users to express their privacy policies and preferences, as well as to
review and modify them. This can be achieved by a number of approaches. First, providing clear
and understandable labels and metaphors that effectively present policies. Second, enabling

Volume (FMIS09 Preliminary Proceedings)

81

Poporo

users to interact with their policies, obtaining feed-forward about the potential effects of any
changes they make to their policies. To this end, we will use iterative design and testing of initial
sketches and prototypes. In addition, we will perform heuristic analyses and cognitive walk-
throughs to identify potential problems with our human interfaces. Finally, we will carry out user
observations to measure users’ reaction to our designs as well as their subjective preferences.

We will deliver a set of prototype designs that will be integrated into our social networking
system (possibly developed as a plug-in). These designs will be responsible for acting as a bridge
between end users and our formal specification engine.

3 Conclusion

This position paper has presented a novel vision of maintaining privacy and securing data in
online social network services through the combination of formal methods (to provide provable
behaviours), simulation and graph theory (to provide meaningful generalisations of algorithmic
specified activities) and HCI (to ensure that systems are usable and allow individuals to quickly
and effectively configure them). We believe that this approach will lead to the development of
new back-end systems, front-end prototypes and theoretical understanding relevant to the com-
plex issues underlying the security and privacy of data stored in online social network services.

Bibliography

[BAC09] J. Bonneau, J. Anderson, L. Church. Privacy Suites: Shared Privacy for Social Net-
works. In Symposium on Usable Privacy and Security (SOUPS). July 2009.

[BCC+05] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino,
E. Poll. An Overview of JML Tools and Applications. International Journal on Soft-
ware Tools for Technology Transfer (STTT) 7(3):212–232, June 2005.

[BCHJ05] C. Breunesse, N. Catano, M. Huisman, B. Jacobs. Formal Methods for Smart Cards:
An Experience Report. Science of Computer Programming 55(1-3):53–80, March
2005.

[GA05] R. Gross, A. Acquisti. Information Revelation and Privacy in Online Social Net-
works. In Workshop on Privacy in the Electronic Society (WPES). Pp. 71–80. 2005.

[HHS86] J. He, C. A. R. Hoare, J. W. Sanders. Data Refinement Refined. In European Sympo-
sium on Programming (ESOP). Pp. 187–196. 1986.

[LBR06] G. Leavens, A. Baker, C. Ruby. Preliminary Design of JML: A Behavioral Inter-
face Specification Language for Java. ACM SIGSOFT Software Engineering Notes
31(3):1–38, 2006.

[Nec97] G. C. Necula. Proof-Carrying Code. In Symposium on Principles of Programming
Languages (POPL). P. 106119. Paris, January 1997.

[RV01] A. Robinson, A. Voronkov. Handbook of Automated Reasoning. MIT Press, 2001.

Prel. Proc. FMIS 2009

82

ECEASST

Operational Model: Integrating User Tasks and Environment
Information with System Model

Sébastien Combéfis

Computer Science and Engineering Department
Université catholique de Louvain

Place Sainte Barbe, 2
1348, Louvain-la-Neuve, Belgium
Sebastien.Combefis@uclouvain.be

Abstract: This paper addresses the problem of integrating information about user
tasks and about the operating environment to the model of a system. Following a
modelling based on labelled transition systems, this integration can be done with
elementary operations: models synchronization and graph operations. Integration
of user tasks and information about operating environment allows to get operational
model which represents the knowledge the user should have about the system to
perform a set of tasks, given information provided by the operating environment,
through user interface for example. The paper draws up a formal way to do the
integration to get an operational model which can be used to evaluate and compare
different system’s design, to do verification or to generate training material.

Keywords: Formal methods, Human-Computer Interaction, Task-System Integra-
tion, Parallel synchronization, User tasks, System Design Evaluation and Compari-
son

1 Introduction

When analyzing and verifying the design and the specification of a system, besides the system
itself, the integration of user tasks plays an important role. The user tasks which represents
what the user wants to do with the system — his goals — can change completely the way a
system is conceived and designed. There are a lot of whole community using formal methods to
analyse Human-Computer Interaction (HCI), providing rigorous, systematic and automated ways
of analysis. Information about user tasks is used to help the analysis of specification [Cam03,
PS01] or to analyse the effects of erroneous human behaviour by building deviations in how tasks
are performed by the user [PS02, BB07].

Integration between tasks and system has been studied these years, see for example [NPP+01].
This paper proposes to integrate information about user tasks and operating environment with the
description of the system. This integration provides an operational model of the system which
represents part of the full behaviour of the system that is relevant according to the user tasks and
the operation environment. The main contribution is the definition of a new model, combining
information about the system, the tasks and the operation environment. Once computed, this
model can be used to perform various analysis.

Volume (FMIS09 Preliminary Proceedings)

83

mailto:Sebastien.Combefis@uclouvain.be

Operational Model: Integrating User Tasks and Environment Information

2 Operational Model

The operational model of a system only covers the behaviour part of the system model which is
relevant for the user. Indeed, the user do not need to know the full behaviour of the system to use
it because they only want to perform some tasks with it. Moreover, when operating the system,
the user gets some feedback from it, that is precisely what we call the operating environment.
That feedback may help the user to operate the system. Figure 1 illustrates the components the
operational model depends on: the system model represents the full behaviour of the system, the
tasks model represents the tasks that the user should be able to perform on the system and the
action-based user interface represents part of the user interface, that is information about which
event is occuring in the system.

System Model

Tasks Model

Operational Model

Action-Based UI

Figure 1: Computing operational model from system and tasks models.

The modelling approach follows the one of [CP09]. The system is modelled as a labelled
transition system (LTS) M =

〈
S,L ,s0,→

〉
with S the set of states, L the set of actions, s0 the

initial state and→⊆ S×L × S the transition relation. The τ action denotes an internal action
representing all transitions that are not observable from outside the system. The action-based
user interface consists in a distinction among observable actions: commands are performed by
the user on the system and observations are controlled by the system and occur autonomously
without any user action. The system model is considered as given and is built by the system’s
designers.

2.1 Integrating Tasks

User tasks are modelled using ConcurTaskTrees [PMM97] which is a graphical notation that
allows designers to describe hierarchies of tasks linked with temporal relations following the
semantic of LOTOS [ISO89]. To fit in our framework, all the user and application tasks that
are leaves should come from L , user tasks corresponding to commands and application tasks to
observations. To be able to integrate user tasks with the system model, they are transformed from
CTT descriptions to a set of LTSs {T1, · · · ,Tn} which can be done in an automated way [PS01].

The integration of user tasks with the system is achieved with a synchronous parallel composi-
tion between the system model M and the tasks model T , synchronized on L \{τ}. The tasks
model T is built from the set {T1, · · · ,Tn} of user tasks, adding transitions s0T

τ−−→Ti for each
user task Ti, where s0T is the initial state of T . The model M ‖T can contains internal transi-
tions which are not relevant for the user; they are removed using the edge contraction operation
from graph theory.

Prel. Proc. FMIS 2009

84

ECEASST

2.2 Integrating Environment Information

Information about the operating environment can be integrated by performing two simplifications
on the system model. The first simplification that can be done comes from the idea that the user
is not obliged to know all the paths of the system exactly. Some paths can indeed be ignored by
the user provided that the user knows that the path has been followed, for example through the
user interface. The second simplification comes from the hierarchy in the user tasks; the user
should not be required to know the system at the finer level, some actions can be gathered into
one single action.

Figure 2 illustrates the two simplification. The system modelled is a vending machine accept-
ing credit card or cash. If the user selects creditCard, after encoding his/her PIN number, the
system will enter a procedure to contact the bank. The progress is shown by the user interface
through observations that allow the user to follow the transaction. All the states from the one
preceding the connected action to the one after the dataRecv action can be merged into a single
state, preserving any edges linked to any of the merged states. The second kind of simplification
can be done according to the tasks hierarchy. Here, the actions 5in and 10in refine addMoney. All
these actions can be renamed and states linked with the addMoney action can be merged because
the user does not need to distinguish the 5in and 10in anymore.

· · ·

· · ·

creditCard
selection PIN connected dataSent

dataRecv
ok

ko
error

cash

5in

10in

5in

10in

5in
10in

10out

5in

5out

10in

10out

selection

selection

Figure 2: Example of a user task (left) and of a system model illustrating the integration of
environment information (right). The system is a vending machine accepting payment with
credit card or cash. Plain lines represent commands and dashed lines represent observations.

3 Conclusion and Perspectives

This paper defines the notion of operational model of a system. An operational model captures
the part of the behaviour of a system which is relevant to a user who should be able to perform
some tasks and gets information about the operation environment through the user interface.
Such a model can be used for different purposes: generation of training user manual, evaluation
and comparison of different systems, checking properties, . . . Another possibility is to check
whether existing manual’s content concurs with the knowledge needed for the user. Viewing a
manual as a set of scenarios, it is possible to generate a corresponding model [DLDL05] and
then to compare it with the operational model.

Further work includes implementing a prototype for the computation of an operational model
for a given system. Another direction consists in using operational models to evaluate and com-

Volume (FMIS09 Preliminary Proceedings)

85

Operational Model: Integrating User Tasks and Environment Information

pare system models based on a set of user tasks, assessing the usability of the system using a
metric on the operational model.

Acknowledgements: This work is partly supported by project MoVES under the Interuniver-
sity Attraction Poles Programme — Belgian State — Belgian Science Policy.

Bibliography

[BB07] R. Bastide, S. Basnyat. Error Patterns: Systematic Investigation of Deviations in Task
Models. In Coninx et al. (eds.), Proceedings of the 5th International Workshop on
Task Models Diagrams for UI Design. Lecture Notes in Computer Science 4285,
pp. 109–121. Springer-Verlag, 2007.

[Cam03] J. C. Campos. Using task knowledge to guide interactor specifications analysis. In
Proceedings of the 10th International Workshop on Design, Specification and Verifi-
cation of Interactive Systems. Lecture Notes in Computer Science 2844, pp. 171–186.
Springer-Verlag, 2003.

[CP09] S. Combéfis, C. Pecheur. A Bisimulation-Based Approach to the Analysis of Human-
Computer Interaction. In Calvary et al. (eds.), Proceedings of the ACM SIGCHI Sym-
posium on Engineering Interactive Computing Systems. Pp. 101–110. ACM, New
York, NY, USA, 2009.

[DLDL05] C. Damas, B. Lambeau, P. Dupont, A. van Lamsweerde. Generating Annotated Be-
havior Models from End-User Scenarios. IEEE Transactions on Software Engineer-
ing 31(12):1056–1073, Dec. 2005.

[ISO89] ISO 8807:1989. Information processing systems – Open Systems Interconnection –
LOTOS – A formal description technique based on the temporal ordering of obser-
vational behaviour. International Organization for Standardization, Geneva, Switzer-
land, 1989.

[NPP+01] D. Navarre, P. Palanque, F. Paternò, C. Santoro, R. Bastide. A Tool Suite for Inte-
grating Task and System Models through Scenarios. In Proceedings of the 8th Inter-
national Workshop on Design, Specification and Verification of Interactive Systems.
Lecture Notes in Computer Science 2220, pp. 88–113. Springer-Verlag, 2001.

[PMM97] F. Paternò, C. Mancini, S. Meniconi. ConcurTaskTrees: A Diagrammatic Notation
for Specifying Task Models. In Proceedings of the IFIP TC13 International Confer-
ence on Human-Computer Interaction. Pp. 362–369. Chapman & Hall, Ltd., London,
UK, 1997.

[PS01] F. Paternò, C. Santoro. Integrating Model Checking and HCI Tools to Help Designers
Verify User Interface Properties. In Proceedings of the 7th International Workshop
on Design, Specification and Verification of Interactive Systems. Lecture Notes in
Computer Science 1946, pp. 135–150. Springer-Verlag, 2001.

[PS02] F. Paternò, C. Santoro. Preventing User Errors by Systematic Analysis of Deviations
from the System Task Model. International Journal of Human-Computer Studies
56(2):225–245, Feb. 2002.

Prel. Proc. FMIS 2009

86

ECEASST

Roadmap for a Formal Approach to Reduce Inconsistencies in
Enterprise Architecture Views

Sietse Overbeek1, Antonio Cerone2, Marijn Janssen3

1S.J.Overbeek@tudelft.nl,3M.F.W.H.A.Janssen@tudelft.nl
Faculty of Technology, Policy and Management, Delft University of Technology, Jaffalaan 5,

2600 GA Delft, The Netherlands

2antonio@iist.unu.edu
International Institute for Software Technology, United Nations University, Casa Silva Mendes,

Est. do Engenheiro Trigo No. 4, Macau SAR China

Abstract: Enterprise architecture (EA) refers to a comprehensive description of all
the key elements and structural as well as behavioral relationships that make up an
enterprise. Enterprise architecting is aimed at matching the business processes and
goals of an enterprise, together with software applications and information systems
as well as human processes that are present in the enterprise. Contemporary EA
frameworks incorporate viewpoints that can be utilized to exactly represent that part
of an enterprise from the perspective or ‘view’ that is of special interest for a stake-
holder. Such views are informally described using visual notations, usually with no
associated semantics, or natural language to represent a part of the enterprise. In
fact, a view is interpreted from the perspective of an individual stakeholder. This
may create inconsistency in the interpretation of a view. In this paper the ArchiMate
framework that is currently widely employed is analyzed to determine how views for
distinct stakeholders are presented. This results in a roadmap for creating a future
formal approach to define view presentations.

Keywords: Cognitive characteristics, Enterprise architecture, Formal methods, Stake-
holders, Views

1 Introduction

The notion of enterprise architecture (EA) refers to a comprehensive description of all the key
elements and relationships that make up an enterprise [Gui09]. In this definition, an enterprise
may be a company, an institution, or a department within a company or an institution. The
elements to be described may be data, network equipments, software components, business lo-
cations, human resources, and so on. Enterprise architecting is aimed at matching the business
processes and goals of an enterprise, together with software applications and information sys-
tems as well as human processes that are present in the enterprise. An enterprise architecture
is necessary, but not sufficient for successful implementation. The use of enterprise architecture
requires that there exists strong communication, coordination, and cooperation between ICT and
business personnel. Only in this way can the architecture become a shared architecture. The

Volume (FMIS09 Preliminary Proceedings)

87

mailto:S.J.Overbeek@tudelft.nl,
mailto:M.F.W.H.A.Janssen@tudelft.nl
mailto:antonio@iist.unu.edu

Formal Approach to Reduce Inconsistencies in EA Views

importance of communication in achieving project success has been well documented in tech-
nology adoption literature [CJGM01]. Lack of communication has been linked to numerous
project failures [PP99]. Information about the architecture flows to organizational members by
communicating, requiring unambiguity and a shared meaning.

Contemporary EA frameworks incorporate viewpoints that can be utilized to exactly represent
that part of an enterprise from the perspective or ‘view’ that is of special interest for a stake-
holder. A view can be defined to be a representation of a system from the perspective of a related
set of concerns [IEE00]. A stakeholder can be an individual, team, or organization (or classes
thereof) with interests in, or concerns relative to, a system [IEE00]. A viewpoint is defined as
a specification of the conventions for constructing and using a view; it is therefore a pattern or
template from which to develop individual views by establishing the purposes and audience for a
view and the techniques for its creation and analysis. Views are often informally described using
visual notations, usually with no associated semantics, or natural language to represent a part of
the enterprise. In fact, a view is interpreted from the perspective of an individual stakeholder.
This may create inconsistency in the interpretation of a view. In this paper the ArchiMate frame-
work is analyzed to determine how views for distinct stakeholders are presented. Based on these
findings, a roadmap for a future formal language to define view presentations are introduced.

2 Analysis of view presentations in ArchiMate

Viewpoints and views are defined and classified in ArchiMate [The09] to help an architect in se-
lecting the right conventions for the task at hand. This classification is based on two dimensions:
purpose and content. The following three types of architecture support the purpose dimension:
1) Design viewpoints support architects in the design process from a draft to final design. These
viewpoints consist of diagrams such as UML diagrams. 2) Decision support viewpoints as-
sist managers in decision-making by providing insight into architecture relations. Examples are
cross-reference tables, landscape maps, and lists. 3) Informing viewpoints assist to notify any
stakeholder about the EA to achieve understanding and commitment, and to convince objectors.
Examples are illustrations, animations, flyers, and so on. For characterizing the content of a view
the following levels are defined: 1) Views on the detail level typically consider one layer and one
aspect from the ArchiMate framework. A typical stakeholder is a software engineer responsible
for design and implementation of a software component. An example view is an ER diagram.
2) At the coherence abstraction level, multiple layers or aspects are spanned. Extending the
view to more than one layer or aspect enables the stakeholder to focus on relations like process-
uses-system (multiple layer) or application-uses-object (multiple aspect). Typical stakeholders
are operational managers responsible for a collection of IT services. 3) The overview level ad-
dresses both multiple layers and aspects. Such overviews are addressed to enterprise architects
and decision makers.

3 Roadmap for a formal language to define view presentations

With the help of the viewpoint purpose and content classification provided by ArchiMate, it is
easier to find typical conventions that might be useful in a given situation. However, an orthog-

Prel. Proc. FMIS 2009

88

ECEASST

onal categorization of each viewpoint into one of the purpose categories and content categories
is not provided by ArchiMate. The six mentioned viewpoint categories are not exclusive. In
fact, a viewpoint in one category cannot be applied to achieve another type of support. For in-
stance, some decision support viewpoints may be used to communicate to any other stakeholder
as well. The ArchiMate language uses visual notations for elements that can be found in an en-
terprise. These visual notations are also used to model the viewpoints and the views that are the
result of applying one or more viewpoints. A summary of these visual notations can be found
in [The09]. ArchiMate provides a natural language explanation for each of these symbols. For
example, an actor is explained to be ‘an organizational entity capable of (actively) performing
behavior’ [The09]. Because only a natural language description is offered, inconsistency in the
interpretation of a view may occur when a view is interpreted by a stakeholder.

A formal approach should facilitate detection and elimination of inconsistencies within spe-
cific views of an architecture description and between views corresponding to distinct stake-
holders. This disambiguates communication and enables coordination and cooperation among
stakeholders. The semantics of a view presentation can be given as a collection of interpretations
by different categories of stakeholders. Stakeholder categorization can be achieved in terms of
their cognitive characteristics, resulting in a cognitive setting. This can be modeled as follows:

setting : StkhTypes→℘(CognChars) (1)

The expression setting(t) = C shows that a stakeholder of type t ∈ StkhTypes has the cogni-
tive characteristics in set C ⊆ CognChars. In [Ove09], a formal categorization of actors has
been made based on cognitive characteristics. This categorization has been used to understand
what type of actors supply which cognitive characteristics when performing knowledge-intensive
tasks. Examples of such characteristics can be the ability to fulfill a task on your own (inde-
pendency), the willpower to fulfill a task (volition), the ability to transform knowledge types
(causability), and cognitive improvements (improvability). Once we understand which cognitive
characteristics belong to which stakeholder type, we can also understand which collection of
viewpoints a stakeholder of a certain type uses in understanding a view. This can be formalized
as follows:

interpret : Views→ (StkhTypes→℘(Viewpoints)) (2)

The expression interpretv(t) is the set of viewpoints V ⊆ Viewpoints that a stakeholder type
t ∈ StkhTypes uses in understanding view v∈Views. Here, Views is the set of views, StkhTypes
is the set of stakeholder types, and Viewpoints is the set of viewpoints. If for a stakeholder of
type t, view v is not relevant then interpretv(t) = /0. If stakeholders of types t1 and t2 cooperate
in performing a task using views v1 and v2 then communication between t1 and t2 is not possible
if interpretv1

(t1)∩ interpretv2
(t2) = /0 and this may create an inconsistency. However, cognitive

characteristics of one of the two stakeholders may lead to a dynamic resolution of the inconsis-
tency, i.e. independency and volition characteristics may allow one of the stakeholders to take
the lead or even complete the task on his own. Causability in one stakeholder may cause the
expansion of the set of relevant viewpoints in the other stakeholder. Improvability facilitates the
expansion of the set of relevant viewpoints in one of the stakeholders, and so on. Of course, pos-
sible viewpoints have to be identified and formally defined as well in order to understand their

Volume (FMIS09 Preliminary Proceedings)

89

Formal Approach to Reduce Inconsistencies in EA Views

meaning. These interpretations can be at least partially found by studying existing viewpoints
in contemporary EA frameworks, such as the discussed viewpoints of the ArchiMate frame-
work. Once possible viewpoints are identified and coupled to stakeholder types, it is possible
to formalize the viewpoints for those parts where interpretation ambiguity may occur. For ex-
ample, non-formalized views that are based on non-formalized viewpoints may consist of UML
diagrams, may contain use case descriptions in natural language, or may include ArchiMate vi-
suals. By using the formalized viewpoints that are relevant for a stakeholder type, it is possible to
identify which parts of a view are expressions of formalizations found in the viewpoint. In other
words, viewpoints can be translated to mutually exclusive formal frameworks and the views are
expressions of them for a given situation.

4 Conclusions

Contemporary EA frameworks incorporate viewpoints that can be utilized to exactly represent a
part of an enterprise from the view that is of interest for a stakeholder. Such views are informally
described and interpreted from the perspective of an individual stakeholder. Because this may
create inconsistency in the interpretation of a view, we have presented a roadmap for creating
a future formal language to define view presentations: 1) Identification of stakeholder types; 2)
Categorization of stakeholder types by means of cognitive characteristics; 3) Group viewpoints
to stakeholder types; 4) Formalize those parts of the viewpoints that remain ambiguous, and
finally: 5) Use the viewpoint formalizations to generate expressions that are the resulting views.

Bibliography

[CJGM01] F. Carter, T. Jambulingham, V. Gupta, N. Melone. Technological innovations:
a framework for communicating diffusion effects. Information & Management
38(5):277–287, 2001.

[Gui09] L. Guijarro. Semantic interoperability in eGovernment initiatives. Computer Stan-
dards & Interfaces 31(1):174–180, 2009.

[IEE00] IEEE. IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems. Technical report IEEE Std 1471-2000, IEEE Computer Society,
New York, NY, USA, 2000.

[Ove09] S. Overbeek. Bridging Supply and Demand for Knowledge Intensive Tasks: Based
on Knowledge, Cognition, and Quality. PhD thesis, Radboud University Nijmegen,
The Netherlands, 2009.

[PP99] M. Pinto, J. Pinto. Project team communication and cross-functional cooperation in
new program development. Journal of Product Innovation Management 7(3):200–
212, 1999.

[The09] The Open Group. ArchiMate 1.0 Specification. Technical report C091, The Open
Group, Reading, United Kingdom, 2009.

Prel. Proc. FMIS 2009

90

	FMIS09_BODY.pdf
	Introduction
	Logical Framework
	Formalization of the cognitive structure of emotion
	Formalization of Trust
	Trust-Related Emotions
	Formal Relations
	Behavioral validation

	Conclusion
	BoR09Final.pdf
	Introduction
	Example System
	Deriving the Tests
	Instantiating and Running the Tests
	Conclusions

	fmis.pdf
	Introduction
	MATCH overview
	Security
	Safety
	Usability

	Some sample properties
	Security
	Formalisation
	Verification - at present

	Safety
	Formalisation
	Verification Approaches

	Discussion
	Limitations
	Our Approach

	Conclusion

	CGU.pdf
	Introduction
	Modelling and verification process
	MATCH System
	General model
	System
	Rules

	Properties
	Redundant rule detection
	Modalities
	Priorities
	Verification results

	Specialised model
	Literals - inputs and outputs
	Clauses - rules
	Rule redundancy
	Implementation and complexity

	Overlapping rules
	Discussion
	Related Work
	Conclusions and future work

	PaperFMIS-revision-4.pdf
	Introduction
	Preliminaries
	Probabilistic -calculus
	Markovian Processes

	Markov Abstractions
	Markov Classification of States

	Direct Analysis of Systems
	Periodic versus Ergodic
	Ephemeral States
	Absorbing States and State Sets
	Direct Computation
	Parallel Formulation
	Expansion of Parallel Composition - 1
	Expansion of Parallel Composition - 2
	Markov Transition System
	Comment on Direct Evaluation

	First Passage Probabilities
	Commute Time
	Cover Time

	Equilibrium
	Evaluation of System Behaviour: a hard problem

	Conclusion

	poporo.pdf
	Introduction
	Proposed Approach
	Matelas and Predicate Calculus
	Using Proof Carrying Code to Extend the Core Application
	Formal Analysis of Social Networking Privacy
	Human Considerations

	Conclusion

	combefis-fmis2009.pdf
	Introduction
	Operational Model
	Integrating Tasks
	Integrating Environment Information

	Conclusion and Perspectives

	co.pdf
	Introduction
	Analysis of view presentations in ArchiMate
	Roadmap for a formal language to define view presentations
	Conclusions

