
1

Reading sensor data for 4-digit
PINs using JavaScript

Author: Maryam Mehrnezhad (m.mehrnezhad@ncl.ac.uk), Apr 2017

In this help file, we describe the details of our JavaScript code used for reading sensor data

(motion and orientation) for 4-digit PINs in a project conducted in Newcastle University,

UK. The outcome of this project is published in [1-4]. Our JavaScript code is publicly

available on Github via this link: https://github.com/maryammjd/Reading-sensor-data-for-

fifty-4digit-PINs. This code asks the user to enter fifty 4-digit PINs, each 5 times, and

saves the PINs along with their sensor measurements (motion and orientation) in an m-lab

database. A sample dataset for 10 users is also publicly available via the project’s Github

page. In case of any further questions, please contact the authors.

JavaScript code (client, server, and db)

We setup an account in mlab.com and created a deployment (database) named sensordata.

In this deployment, we created a collection named sensor. This collection is in charge of

saving json (JavaScript Object Notation) data received by the server as documents. We

defined our json structure in our JavaScript code in Node.js to include three elements: type

(status, or sensor type, or time), data (value), ts (time value). Note that the time in the type

element is when the data is read on the mobile device, versus the ts element is when each

record is inserted in the database.

In our JavaScript code (app.js), we connect to mongoDB and handle the sensor data via the

socket.io API. All user interactions (beginning PIN entry, entering PINs, and finishing),

alongside with the sensor measurements (motion and orientation), are sent to the database

by the server. We run the server on a local computer through node.js cmd. Once the index

page is opened on the phone, the data collection starts.

In our index.html file in the client side, we call the numPad.js script which presents the

users with a GUI where fifty 4-digit PINs are shown (each repeated 5 times). The user

needs to enter them in a textbox as shown in Fig. 1. As it can be seen, the number of PINs

entered (out of 50) and the number of counts (out of 5) are also shown to users. On each

digit entry, our JavaScript code sends a new record (Key Down Key Up) to our database

using the onkeydown event. Our numPad.js file includes two event listeners on the window

object which fire on device motion and device orientation DOM events (called

devicemotion and deviceorientation). We have hard-coded the fifty 4-digit PINs in this

file. These semi-random PINs are created by using a Matlab code.

mailto:m.mehrnezhad@ncl.ac.uk
https://github.com/maryammjd/Reading-sensor-data-for-fifty-4digit-PINs
https://github.com/maryammjd/Reading-sensor-data-for-fifty-4digit-PINs

2

Figure 1: GUI for PIN entry

This data is arrived and inserted to our MongoDB database as shown in Fig 2.

Figure 2: M-lab database

As it can be seen, the type element can include either the status of the data, the type of the

data, or the time that it has been collected from the mobile device. The order of the values

3

for a sample data collection for fifty 4-digit PINs (each PIN 5 times) from a user is saved

as presented in the bellow set:

{User Starts,

{{Typing Begins,

5113 (First shown PIN),

a series of Orientation and Motion Data,

Key Down, Key Up (when the first digit is clicked),

a series of Orientation and Motion Data for the first digit,

Key Down, Key Up (when the second digit is clicked),

a series of Orientation and Motion Data for the second digit,

… (the same for the third and fourth digits),

Key Down, Key Up (to show the end of the 4-digit PIN entry),

5113 (First typed PIN which could be different from the shown PIN due to user error),

Typing Ends},

… (the previous process for the first PIN for another 4 times)},

… (the previous process for another 49 PINs),

User Finishes}.

Data Exportation

After we collected data for each user, we exported the data to an Excel file on a local

computer for further processing in Matlab. Next, we deleted all the documents in the

related collection in mlab.com for the next user data collection. We used the following

command through MongoDb cmd for exportation (the username and password are set on

the time of creating the sensordata development):

mongoexport -h ds033818.mlab.com:33818 -d sensordata -c sensor -u <username> -p

<password> -o sensor.csv --csv -f "type","data","ts"

Since the browser leverage a wrapper API to provide the motion and orientation sensor

readings through JavaScript, similar to the Android sensor manager API, the same reading

to native apps is provided here (except for the sampling rate). This means that these sensor

readings are provided onSensorChanged event (with lower frequency). While analysing

our measurements, we noticed that the resolutions of the orientation data and the motion

data are different. Due to this technical issue and for simplicity while working with this

data in Matlab, when converting data from Excel files to text files, we created two

different text files (User<no.>Motion and User<no.>Orientation) for motion and

orientation separately. We repeated the same process for each user using the Sort & Filter

feature in Excel as shown in the Fig. 3. As can be seen, we only include the records that we

need and we exclude the unnecessary ones (e.g. interval and times).

When the text files were created for all users, we imported them to Matlab and performed

further analysis on them as explained in our papers [1-4].

4

Figure 3: Converting excel files to text files

References

[1] M. Mehrnezhad, E. Toreini, S. Shahandashti, and F. Hao, “TouchSignatures: Identification of User Touch

Actions based on Mobile Sensors via JavaScript”, In the Proceedings of the 10th ACM Symposium on

Information, Computer and Communications Security, ASIA CCS 2015, Singapore, Apr 14-17, 2015, ACM,

P 673-673.

[2] M. Mehrnezhad, E. Toreini, S. Shahandashti, and F. Hao, “TouchSignatures: Identification of User Touch

Actions and PINs based on Mobile Sensors via JavaScript”, Journal of Information Security and

Applications, Elsevier, V 26, Feb 2016, P 23-38.

[3] M. Mehrnezhad, E. Toreini, S. Shahandashti, F Hao, “Stealing PINs via Mobile Sensors: Actual Risk

versus User Perception”, The 1st European Workshop on Usable Security, EuroUSEC 2016, Workshop at

the Privacy Enhancing Technologies Symposium (PETS 2016), Jul 18, 2016, Germany.

[4] M. Mehrnezhad, E. Toreini, S. Shahandashti, F Hao, “Stealing PINs via Mobile Sensors: Actual Risk

versus User Perception”, International Journal of Information Security, Springer, April 2017, Pages 1-23.

http://dl.acm.org/citation.cfm?id=2714650
http://dl.acm.org/citation.cfm?id=2714650
http://www.sciencedirect.com/science/article/pii/S2214212615000678
http://www.sciencedirect.com/science/article/pii/S2214212615000678
https://arxiv.org/abs/1605.05549
https://arxiv.org/abs/1605.05549
http://link.springer.com/article/10.1007/s10207-017-0369-x?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst
http://link.springer.com/article/10.1007/s10207-017-0369-x?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst

