Graphical passwords: some recent results

Jeff Yan
School of Computing Science
Newcastle University, UK
(Joint work with Paul Dunphy)

Context

- Textual passwords
 - Cheap, convenient, ubiquitous
 - Have long suffered usability problems
 - Due to limitations of human memory
- Graphical passwords
 - A picture is worth a thousand words
 - Hot topic in both security and HCI communities
 - Bonder ('96), Passfaces, Inkblot, Passpoints, etc.
 - Collective understanding: still in its infancy

PassFaces study [usenix'04]

- A sequence of k faces \Rightarrow password
- Permitting user choice
 - Password entropy far below theoretical optimum
 - Highly correlated with the race or gender of the user

PassPoints studies

- A ordered list of clicks \Rightarrow password
 - Inherent weakness: a random combination of spots \Rightarrow brute force attack
 - "Hot spots" \Rightarrow (≈) dictionary attacks [Usenix'07, SOUPS'07]
“Draw a Secret” [Usenix’99]

- One representative scheme; one of the few supporting both
 - **Authentication**: to verify the claimed identity of a user, and
 - **Key generation**: to use a password to generate a long crypto key
- Theoretical password space: DAS >> textual

Problems with DAS

- Users tend to pick weak passwords that are vulnerable to *graphical dictionary attack* (Thorpe and van Oorschot [Usenix’04])
 - Small stroke count,
 - Small password length,
 - Mirror symmetry
- Implication: this theoretically sound scheme is less secure in practice
 - 1-week recall (pilot): avg strength of memorable passwords < 41.9 bits (vs. 8-character text pwd: 53 bits)

Grid selection as a solution

- Thorpe and van Oorschot [acsac04]
- How it works:
 - Adds up to 16 bits to the password space
 - Unclear it works well as expected (no empirical study yet)
Intuition behind our solution

- In DAS, difficult to reconstruct a complex secret
 - E.g. people were able to remember what their drawings looked like, but failed to replicate them in the correct location (Goldberg et al [CHI'02])
- The cells in the grid all look alike!
 - What if recreation of a secret can be aided by something that reduces the confusion, e.g. a background image?

Our novel proposal

- Background Draw a Secret (BDAS):
 - Instead of creating a secret on an empty grid, a user choose a background image to be overlaid by the grid, and then create a secret as in DAS

Empirical evaluations

- Design
 - Paper/transparency prototype
 - Drawing grid
 - 5x5
 - Same size as a popular PDA
 - Comparative study
 - DAS: grid printed on transparency
 - BDAS: choose one out of 5 images to be overlaid with grid

- Procedure
 - 46 participants
 - 26: non-technical
 - 32 M, 14 F
 - Age: 18-25 (one 50+)
 - Briefing & randomly assigned a group
 - Practice
 - Password creation
 - 5-minute recall
 - 1-week recall

What background image to choose?

- Little guideline in literature at the time
- Have meaningful content and rich details (Wiedenbeck et al SOUPS'05)
- Easy to select spots
- Intuition
 - Not introduce obvious bias
 - Everyday images
Background images used

- Stars
- Map
- Plant
- Crowds
- Playing card
 - Low-detail

Results: background image choice

- Images dense with content (map and crowd) anticipated to be the most popular
 - This was clearly contradicted
 - Playing card: 33% of selections, plant: 30%

Results: password quality

- Complexity of secrets in each group (23 valid secrets/group)
 - BDAS: larger stroke count (significantly different) and password length
 - BDAS: stronger by more than 10 bits

<table>
<thead>
<tr>
<th>Group</th>
<th>Strokes</th>
<th>Password length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg.</td>
<td>S.d.</td>
</tr>
<tr>
<td>BDAS</td>
<td>7.22</td>
<td>2.21</td>
</tr>
<tr>
<td>DAS</td>
<td>5.30</td>
<td>2.44</td>
</tr>
</tbody>
</table>

- Symmetry: 43% (BDAS) vs 57% (DAS)
- Centering within the grid: 43% (BDAS) vs. 87% (DAS)

Results: 5-minute recall

- Recall rate
 - DAS: 100% (23/23); BDAS: 96% (22/23) [Fig10(a)]

- Complexity of successfully recalled secrets:

<table>
<thead>
<tr>
<th>Group</th>
<th>Strokes</th>
<th>Password length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg.</td>
<td>S.d.</td>
</tr>
<tr>
<td>BDAS</td>
<td>7.45</td>
<td>2.26</td>
</tr>
<tr>
<td>DAS</td>
<td>5.30</td>
<td>2.44</td>
</tr>
</tbody>
</table>

- BDAS: larger stroke count (significantly different) and password length; avg strength: larger by more than 10 bits
- BDAS: less symmetry and centering
Results: 1-week recall

- **Recall rate**
 - DAS = BDAS = 95% (20/21)

- **Complexity of successfully recalled secrets:**

<table>
<thead>
<tr>
<th>Group</th>
<th>Strokes</th>
<th>Password length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg.</td>
<td>S.d.</td>
</tr>
<tr>
<td>BDAS</td>
<td>7.1</td>
<td>2.16</td>
</tr>
<tr>
<td>DAS</td>
<td>5.5</td>
<td>2.44</td>
</tr>
</tbody>
</table>

 - BDAS: larger stroke count (significantly different) and password length
 - Avg strength: <60 bits (DAS); >70.2 bits (BDAS)
 - BDAS: less symmetry and centering

On estimating BDAS passwords

- We used the method designed for DAS
 - Would the observed increase in BDAS pwd complexity not in fact indicate increased password security?
 - E.g. bias introduced by background images could reduce password security
 - Our answer: not only real increased security, but arguably also an underestimate

On estimating BDAS passwords

- No significant bias relevant to security, other than reduced symmetry and centering, was observed

- Strength figures were minimum estimates directly quoted, while off-scale estimate was not calculated.

- Didn’t consider either symmetry or centering reduced by BDAS.
 - If considered, both could further increase estimate figures

Summary

- A simple idea: introducing background images into DAS
 - Nice results
 - Much stronger passwords; just as memorable as their much simpler DAS counterparts.
 - The most exciting bit: A simple idea significantly enhances both usability and security simultaneously

- Numerous possibilities for future study
Ongoing and future work

- Larger scale of experiments with an actual implementation, participants of more diversified background
 - DAS vs. BDAS
 - BDAS vs. textual passwords
- What will make good background images?
 - Effect of individual background image choices
- Shoulder surfing resistance
- Interference between multiple passwords
- Many more ...

Full paper: *Do background images improve "draw a secret" graphical passwords?* (CCS’07)

BDAS website:
http://homepages.cs.ncl.ac.uk/jeff.yan/bdas.htm

Thank You!

Jeff.Yan@ncl.ac.uk