
Advanced Review

Large-scale data mining using
genetics-based machine learning
Jaume Bacardit1∗ and Xavier Llorà2

In the last decade, genetics-based machine learning methods have shown their
competence in large-scale data mining tasks because of the scalability capacity
that these techniques have demonstrated. This capacity goes beyond the innate
massive parallelism of evolutionary computation methods by the proposal of a
variety of mechanisms specifically tailored for machine learning tasks, includ-
ing knowledge representations that exploit regularities in the datasets, hardware
accelerations or data-intensive computing methods, among others. This paper
reviews different classes of methods that alone or (in many cases) combined ac-
celerate genetics-based machine learning methods. C© 2013 Wiley Periodicals, Inc.

How to cite this article:
WIREs Data Mining Knowl Discov 2013, 3: 37–61 doi: 10.1002/widm.1078

INTRODUCTION

W e are living in the petabyte era. We have
larger and larger data to analyze, process, and

transform into useful answers for the domain ex-
perts. Robust data mining tools, able to cope with
petascale volumes and/or high dimensionality pro-
ducing human-understandable solutions are crucial
to numerous aspects of science and society. Genetics-
based machine learning (GBML) techniques1,2 are
perfect candidates for this task. Recent advances in
representations,3–7 learning mechanisms,7–13 and the-
oretical modeling14–18 along with experimental com-
parisons against other machine learning techniques
realized across benchmark datasets2,19–21 have shown
the potential of evolutionary computation (EC) tech-
niques in herding large-scale data analysis.

If GBML techniques aspire to be a relevant
player in this context, they need to have the ca-
pacity of processing vast amounts of data. They
need to process these data within reasonable time.
Moreover, massive computation cycles are getting
cheaper, allowing researchers to have access to un-
precedented computational resources on the edge of

∗Correspondence to: jaume.bacardit@nottingham.ac.uk
1Interdisciplinary Computing and Complex Systems (ICOS)
Research Group, School of Computer Science, University of
Nottingham, Nottingham, UK
2Google Inc., 1600 Amphitheatre Pkwy Mountain View, CA 94043

DOI: 10.1002/widm.1078

petascale computing. Several topics are interlaced
in these two requirements: (1) having the proper
learning paradigms and knowledge representations,
(2) understanding them and knowing when they are
suitable for the problem at hand, (3) using effi-
ciency enhancement techniques, and (4) transform-
ing and visualizing the produced solutions to give
back as much insight as possible to the domain
experts.

This review paper aims at shedding light on the
above-mentioned questions, following a road map
that starts by describing what large scale means, and
why large is a challenge and opportunity for GBML
methods. Afterwards, we show how to tackle this
opportunity through the use/combination of multi-
ple facets: parallel models, representations able to
cope with large dimensionality spaces, advanced ex-
ploration mechanism or hardware implementations,
among others. Each class of components that con-
tributes to large-scale data mining tasks is described in
detail. Furthermore, we show a few examples of how
we can visualize the results of GBML systems. Then,
we describe how we can model the scalability of the
components of GBML systems via a better engineer-
ing that will make embracing large datasets routine.
Next, we illustrate how all these ideas fit by review-
ing a case study of GBML applied to a large-scale
problem. Finally, we summarize the broad variety of
mechanisms described throughout the manuscript, in-
dicating how each of them contributes to the function-
ing of the GBML methods and discussing potential
risks/benefits of combining them.

Volume 3, January /February 2013 37c© 2013 John Wi ley & Sons , Inc .



Advanced Review wires.wiley.com/widm

WHAT IS LARGE SCALE?

This section aims at describing the broad spectrum
of problems that can potentially be included in the
spectrum of ‘large scale’, not in terms of their respec-
tive domains, but in terms of the characteristics of the
problem. The most relevant of these dimensions of
large scale is, of course, the number of records. For
instance, GenBank22 (the genetic sequences database
of the US National Institute of Health) as of October
2010 contains more than 125 million gene sequences
(82 million in 2008) and more than 118 billion nu-
cleotides (85 billion in 2008). The Large Hadron
Collider is forecasted to generate up to 700 megabytes
of data per second.23 Next-generation sequencing
technologies can sequence up to 1 billion base pairs
in a single day.24

Moreover, large records not only come from
the natural sciences. The Netflix prize25 has probably
been one of the most famous data mining challenges
in the latest years (and a predecessor of what later
in time has been known as Crowdsourcing). Netflix
is a video rental company which in 2006 released an
anonymized version of their movie ratings database of
over an 100 million ratings from 480,000 customers
and 18,000 movies. They challenged the public to
provide a recommendation algorithm that was 10%
better than their own proprietary method. In 2007,
the best participant method was 8.43% better, 9.44%
in 2008 and, finally, in 2009 a team managed to break
the 10% barrier.26

However, large sets of records are not the only
facet of the term of large scale. Another challenging
aspect is the number of variables of the prob-
lem. As an example, the data resulting from mi-
croarray analysis27 (one of the most widespread
technologies of molecular biology research) usually
generates records with tens of thousands of variables.
Microarrays generally have an added difficulty: Gen-
erating each record is very expensive, thus datasets
tend to have very few samples which creates a very
high imbalance between records and variables. In this
scenario, many machine learning methods tend to
overfit the data. Thus, very sophisticated statistical
validations mechanisms are employed to assure that
the results of the data analysis process are statistically
sound.28 Other natural sciences domains, such as pro-
tein structure prediction (PSP),29 routinely generate
datasets with hundreds (if not more) of variables, in
this case coupled with a number of records at least in
the hundred thousand range.

The (large) number of classes is another source
of difficulty for machine learning methods. There
are well-known information retrieval/text mining

datasets with an extremely high number of classes,30

datasets where the classes are not just a set of labels,
but they have a hierarchical structure31 or datasets
where the frequency of certain classes is very low, that
is, that present class imbalance. This phenomenon has
been studied for long in the data mining community,32

and probably on its own cannot be considered as one
of the facets of difficulty in large-scale data mining.
However, as datasets grow and tend to become more
heterogeneous, the class imbalance problem becomes
a recurrent issue, and it cannot be ignored. The GBML
field has also seen some specific and principled work
toward tackling the class imbalance problem.16

Given the different facets that large-scale
datasets can take, it is necessary to study their char-
acteristics in a principled and quantitative way. Com-
plexity metrics33 have been proposed that assess the
datasets in many different ways such as their sparse-
ness, shape of its decision frontier, dimensionality,
and so on. Furthermore, these metrics have been ap-
plied to study the domains of competence of GBML
methods.34,35 However, their widespread application
to large-scale domains is still limited, given that the
calculation of most of these metrics does not scale
well for large numbers of instances or attributes.

When does a dataset becomes large scale? This is
a very difficult question to address, because it depends
on the type of learning and the resources available at
each organization for performing data analysis. The
simplest definition, albeit vague, is that a dataset be-
comes large scale when its size starts becoming an
issue to take into account explicitly in the data min-
ing process.36 If an algorithm just needs to perform a
single pass through a training set it may easily process
hundreds of millions of records, but if the training set
needs to be used again and again the algorithm may
start struggling with just a few tens of thousands of in-
stances. The same situation happens with the number
of attributes. Depending on the number of param-
eters involved in the knowledge representation, the
tractability frontier can be moved around.

THE ADVANTAGES AND
CHALLENGES OF GBML FOR
LARGE-SCALE DATA MINING

As said in Introduction, GBML methods are per-
fect candidates for large-scale data mining for many
reasons, but the main of them comes from their
main working principle: evolution. Evolutionary al-
gorithms are innately parallel because they are pop-
ulation based, and this parallelization capacity has
been exploited for many years to improve their

38 Volume 3, January /February 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Large-scale Data Mining using GBML

efficiency, in what is known as parallel genetic
algorithms37 or, in a more general perspective, paral-
lel metaheuristics.38 The different stages of an evolu-
tionary algorithm require more of less amount of syn-
chronization points, going from no synchronization
and hence maximum potential parallelism (the eval-
uation of the population) to some other stages that
are highly sequential (e.g., the selection algorithm).
Considering these constraints, several paradigms of
parallelism exist with different strategies for the dis-
tribution of the computation effort of the evolution-
ary algorithm that attempt to boost the efficiency of
the algorithm in different ways, such as the master–
slave paradigm (just parallelizing the evaluation of the
individuals), the island model (with distributed popu-
lations and carefully defined policies for the migration
of individuals between them) or cellular evolutionary
algorithms, where the population has a specific topol-
ogy that defines the neighbors of each individual and
hence, the potential channels of communication. The
choice of paradigm depends on many different fac-
tors, and theoretical models exist37 to inform this de-
cision. The section of the paper on parallel models will
describe several specific examples of the application
of these paradigms to GBML.

However, as the focus of this paper is not
just large-scale problems, but large-scale data mining
problems, we have to be aware of some challenges as
well, and the main one of them is dealing with large
volumes of data. Generally, EC methods are purely
computational, that is, a very expensive fitness func-
tion needs to be run millions (or more) of times, but
this function does not need to access large volumes
of information. Our context is totally different, and
without dealing carefully with data management, all
the potential parallelism of EC can be in jeopardy.

The choices and strategies for data management
totally depend on the chosen hardware platform. The
strategy used for experiments run in a single-CPU
or a traditional (small) cluster (e.g., HDF539) prob-
ably will not scale to data-intensive computing envi-
ronments with hundreds or thousands of computing
nodes and other alternative methods (for instance,
Hadoop Distributed File System40 or MongoDB41)
would be needed, and neither of them would be suit-
able for general-purpose graphics processing units
(GPGPUs). The aim of this paper is to focus on the
data mining methods and not on the data manage-
ment itself, thus we will not discuss these options in
detail with the exception of the GPGPU case, as han-
dling the data and mining it are so intimately bound
that they cannot be described in separate. What we
will discuss in depth in several sections is what to do
once the data has been parsed and loaded.

KALEIDOSCOPIC LARGE-SCALE DATA
MINING

The aim of this section is to present the four differ-
ent types of techniques that have been used to adapt
GBML systems for large-scale data mining tasks. As
any taxonomy probably we are not going to be able to
cover every possible scenario but we believe that this
classification covers most published works of GBML
for large-scale datasets. Moreover, these four cate-
gories are not mutually exclusive. There are many
case where the actual method is a mix of a few of
these types of scaling up techniques, as we will show
later in the manuscript. We would also like to clar-
ify that the techniques included in this classification
are (mostly) specifically tailored for GBML methods.
There are many efficiency enhancement techniques
for EC methods reported in the literature,42 which
we will not cover in this paper.

The four types of methods are

1. Software solutions. In this category, we in-
clude methods that modify the data mining
methods to improve their efficiency without
special/parallel hardware.

2. Hardware acceleration techniques. This cat-
egory includes methods that employ cus-
tomized hardware such as vectorial instruc-
tions of modern standard processors [Multi-
Media eXtension (MMX), Streaming SIMD
Extensions (SSE), etc.] or specialized com-
puting hardware such as GPGPUs.

3. Parallelization models. This category in-
cludes all classic methods (in opposition
to the next one) to use multiple comput-
ing nodes to perform a single data mining
experiment.

4. Data-intensive computing. This category
includes parallel scenarios that go beyond
traditional high-performance computing
clusters, where the number of computing
cores go beyond tens of thousands, they are
heterogeneous, distributed, and sometimes
fail. This scenario has become very popular
in the last few years thanks to the appear-
ance of actors such as Google with their
MapReduce data analysis methodology43

and its open-source implementation,
Hadoop.44

The following sections describe each of these
four categories of scaling up methods.

Volume 3, January /February 2013 39c© 2013 John Wi ley & Sons , Inc .



Advanced Review wires.wiley.com/widm

SOFTWARE SOLUTIONS

This section covers methods that modify its in-
ner workings to improve their efficiency without
relying on parallel implementations nor special hard-
ware. Because of the broad diversity of such mecha-
nisms, this section will be split in four different cate-
gories of methods:

1. Windowing mechanisms, where a subset of
examples from the training set is used for fit-
ness computations, and how the subset/s are
created and how often are they changed varies
across methods.

2. Exploiting regularities in the data, to precom-
pute classifications, or avoid irrelevant com-
putational effort

3. Hybrid methods that substitute or extend the
traditional exploration operators of EC meth-
ods with smarter alternatives.

4. Fitness surrogates that generate a cheaper es-
timation of the fitness function

Windowing Mechanisms
By windowing algorithms we understand methods
that instead of evaluating candidate solutions on the
whole training set they use only a subset of examples.
This type of mechanisms has been used for many years
across the whole machine learning community45–48 as
well as in the specific context of GBML. Alex Freitas49

proposed a taxonomy for this kind of methods de-
pending on how often the system changes the chosen
subset of examples:

• Individual-wise, changing the subset of the
training examples used for each fitness com-
putation.

• Run-wise, selecting a static subset of examples
for the whole evolutionary process.

• Generation-wise, changing the subset of the
training examples used at each generation of
the evolutionary process.

For a genetic algorithm (GA) using a flat pop-
ulation is quite unfair to change the fitness function
among individuals in the same generation. When the
population has specific neighborhood relations (e.g.,
a cellular GA) this policy has shown some successful
results.50 Selecting a static subset of examples before
the learning process is what is known as prototype
selection, and there are many successful GBML meth-
ods to perform such process.51,52 In the rest of this
subsection, we will focus on the third option, namely
the generationwise methods.

How can this generation-wise training exam-
ples subset be selected? Most systems reported in the
literature perform a pure random sampling process
to select the subset. One example of this approach,
applied to attribute selection (but able to be extrapo-
lated to rule induction), is Ref 53. Other approaches
refine the random sampling in several ways. Diffi-
cult instances (missclassified) can be used more fre-
quently than correctly classified instances,54 or ‘aged’
instances (instances not used for some time) can have
more probability of being selected.54

Also, Ref 53 discusses the issue of choosing the
final solution of the learning process from all the in-
dividuals in the final population. If the sample used is
small, maybe the best individual of the last iteration
is not representative enough of the whole training set.
The authors propose two approaches: the first one is
to use the whole set in the last iteration. The other ap-
proach is to perform a kind of voting process among
all individuals in the population.

ILAS (Incremental Learning with Alternating
Strata)55 is a windowing method that was originally
proposed for the GAssist Pittsburgh GBML method56

but that later in time has been also adapted to other
learning systems.3 This mechanism first divides the
training set into a set of strata. Each strata has the
same class distribution as the overall training set in
an effort of making it a good representative of all the
overall dataset. Afterward, each iteration of the GA
will use each of these strata in a round-robin fashion.
When using such a mechanism the practitioner would
expect to have speedups equivalent to the number of
strata, but the reality is that many times, in the spe-
cific case of GAssist (with variable-length individuals),
the obtained speedups were better than the number
of strata. The reason was that with moderate num-
ber of strata the windowing mechanisms managed to
introduce generalization pressure that created more
compact (i.e., short) individuals which were faster
to evaluate56 and also obtained in most cases bet-
ter test accuracy. ILAS has been successfully applied
in many real world problems, both small20,56 and
large.3,8,57–59

RSS-DSS (random subset selection–dynamic
subset selection)60 is a much more complex window-
ing method applied on top of a steady-state genetic
programming classifier. The windowing process is
split into two hierarchically organized stages. The
first stage, RSS is similar to ILAS, it partitions the
whole training set into a series of B blocks. The
authors determine the number of blocks so each of
them can fit in memory. Within each block, a second
windowing process called DSS is performed. DSS dy-
namically samples with replacement examples from

40 Volume 3, January /February 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Large-scale Data Mining using GBML

FIGURE 1 | Rule generated from a Bioinformatics dataset with 300 attributes.

its corresponding RSS block given two constraints:
the age of an examples (the last time it was used) and
its difficulty (based on training error). The examples
within a DSS sample are used for a fix number of GP
iterations which is set in proportion to the popula-
tion size, and the number of DSS samples generated
per block is variable (but with an upper limit). Blocks
that are easier to learn (based on the fitness of the best
individual) use less number of DSS samples. Finally,
the blocks are picked at random with uniform prob-
ability, instead of the round-robin method of ILAS.
This method was evaluated on a half a million ex-
amples dataset, the popular KDDCUP’99 intrusion
detection dataset held at the UCI repository.61

Windowing mechanisms in GBML have not
been applied only to classification tasks, but also for
other types of problem such as prototype selection51

or subgroup discovery.62

A crucial issue about most windowing mech-
anism is how much we can increase the number of
strata without constraining the success of the learn-
ing process. Intuitively, we can think that the number
of strata can be increased while each of the stratum is
still a good representative of the overall training set.
Initial steps toward answering this question have been
done in the particular context of ILAS. In Ref 55, a
simple theoretical model for the success of ILAS was
proposed, based on the assumption that the number
of rules in the solution is known and that each rule
covers a similar number of examples. Under those as-
sumptions, a closed form equation can be estimated
for the probability of success of the stratification, de-
fined as the probability that each strata had at least
one instance covered by each rule in the solution.

P(success/s) = e−rs·e− pD
s (1)

Where s is the number of strata, r the number of rules,
D is the training set size, and p is the probability that
a random problem instance represents a particular
rule.

Exploiting Regularities in the Data
This subsection covers methods that manage to alle-
viate a portion of the run-time of the system by pre-
computing some parts of the evaluation process or by
skipping computations in part of the data that is iden-

tified to be irrelevant. These methods exploit the fact
that in most problems the data does not uniformly
cover the whole search space or that the individual
subparts of a solution (e.g., rule set, decision tree,
and so on) do not consider all the variables of the
problem at the same time.

Some methods63 are able to precompute the
instances that match a rule for problems with dis-
crete/discretized attributes by aggregating together
examples that present the same value for the attributes
of the problem. The result of this process is a tree
structure that is able to retrieve very efficiently all the
instances of the training set that belong to a specific
value of a specific attribute. Afterward, the match
process of a given rule is just the intersection of the
sets generated for each attribute of the problem. The
retrieval process will be fast because the tree is rather
sparse as the search space is not uniformly distributed.
Other methods64 use a very similar approach but for
the dual problem: given an instance, identify the set of
rules that match it. The latter approach is more chal-
lenging, as a population of rules changes more fre-
quently than a training set (unless we are in a stream
data mining context), thus it is not only to efficiently
construct the tree, but also to update it.

A second family of methods exploits another
regularity in the data, which is that not all attributes
are equally important. To exemplify this issue,
Figure 1 shows a rule has been generated from a
Bioinformatics dataset3 with 300 attributes. Only 9
attributes out of the 300 were present in this rule,
hence the rest were irrelevant. In most systems, the
match process for such a rule would look like shown
in Figure 2. This algorithm would essentially waste
291 out of the 300 iterations of the ForEach loop be-
cause the attributes are not relevant. Thus, what can
be done to alleviate this difficulty.

Different alternatives have been proposed in the
literature. Some methods65 opt for reordering the at-
tributes in the problem from specific to general based
on statistics extracted from the current population of
rules. The rationale for this decision is that the most
specific attributes are the most likely of stopping the
match function to return false. Hence, if these at-
tributes are evaluated first it is quite probable that
the match algorithm performs just a few iterations of
the ForEach loop in most situations. Still, in the cases

Volume 3, January /February 2013 41c© 2013 John Wi ley & Sons , Inc .



Advanced Review wires.wiley.com/widm

FIGURE 2 | Pseudocode of the match algorithm for an hyperrectangle rule representation.

Class

#Expr. Atts. 

1 3 7

4

4Expr. Atts.

Intervals 1 U 7L1 U L 33 4L U4 L7 U

C1

FIGURE 3 | Example of a rule in the attribute list knowledge
representation with four expressed attributes: 1, 3, 4, and 7. ln =
lower bound of attribute n, un= upper bound of attribute n, c1 =
Class 1 of the domain. c© Memetic Computing by Springer-Verlag
Berlin/Heidelberg. Reproduced with permission of Springer-Verlag
Berlin/Heidelberg in the format Journal via Copyright Clearance Center.

where a whole rule matches, the irrelevant attributes
need to be evaluated.

Therefore, could we simply get rid of these ir-
relevant attributes? This is the aim of the attribute
list knowledge representation (ALKR).3 In this repre-
sentation, each rule only holds information for the at-
tributes of the problem that it considers to be relevant.
The way of achieving this consists in (1) updating the
representation and (2) adding two new exploration
operators. The representation for a rule is exempli-
fied in Figure 3. The most important element of the
representation (and the one that gives its name) is the
vector that contains the attributes considered to be
relevant for this rule. The rule will only hold intervals
for these attributes and the crossover and mutation
and match function will only use them and no other
attribute. A key question remains, which is how to
identify which are the correct attributes for that rule.
This is the job of two extra operators, called gener-
alize and specialize, which are in charge of updating
the list by either removing or adding randomly cho-
sen attributes, respectively. As the list of attributes is
variable-length, it may be subject to the bloat effect.66

To control the bloat, it is necessary to use the repre-
sentation within a system that employs a fitness func-
tion that rewards compact (i.e., using few attributes)
rules, such as the BioHEL system,3 which will be de-

scribed in a bit more detail in Real Examples. ALKR
uses a ‘virtual one-point crossover operator’ that has
been adapted to cope with individuals that may con-
tain different sets of attributes. This is done by simply
considering that the missing attributes were there mo-
mentarily and applying a simple one-point crossover
to the virtual complete rules. The match function re-
mains unchanged, but it iterates over the list of at-
tributes of the rule, not over all the attributes of the
domain, thus the number of wasted iterations of the
match function should be kept to a minimum.

The representation was evaluate in both small
and large datasets3 showing not only that it was more
efficient than traditional representations but that it
was also learning better, obtaining higher test accu-
racy in most datasets. The reason for this is that given
that each rule only contains relevant attributes, the
exploration operators are more focused and hence
the learning process becomes more efficient.

Hybrid Methods
Large-scale datasets very often present an extremely
vast search space. In these cases, the main challenge
becomes to explore this vast space efficiently us-
ing smart/directed exploration mechanisms, either in
combination or replacing the traditional operators of
EC methods. This trend is not specific to GBML, it has
affected the overall EC field. The two most popular
classes of these methods probably are estimation of
distribution algorithms (EDAs)67 and memetic algo-
rithms (MA).68 The former methods estimate a model
of the structure of the problem and then generate off-
spring according to this model, whereas the latter per-
form a combination of local search (LS) and global
search.

There are many examples of the application
of both classes of advance exploration mechanisms
to GBML methods. Several flavors of EDA have
been employed hybridized within both Pittsburgh
and Michigan learning classifier system (LCS) meth-
ods. For instance, the eXtended Classifier System
(XCS) Michigan LCS was integrated9 with two

42 Volume 3, January /February 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Large-scale Data Mining using GBML

different types of EDA: the extended compact genetic
algorithm (eCGA)69 and the Bayesian Optimization
Algorithm.70 These two methods derive global struc-
tural information from the best rules in the popula-
tion, which later is used to inform the crossover op-
erator when generating new offspring by preventing
crossover from breaking good building blocks (BBs)
in the individuals it is crossing.

The compact classifier system (CCS)71 is a re-
cent integration of EDAs within the framework of a
Pittsburgh LCS, using the compact genetic algorithm
(CGA)72 CGA is run iteratively to generate different
rules. Different perturbations of the initial solution of
CGA are needed to generate different rules, and the in-
dividuals in CCS store a set of such perturbations. The
objective of CCS is to determine the minimum set of
rules that creates a maximally general solution. Later
in time, Llorà et al.73 proposed χeCCS, an extension
of CCS. χeCCS evolves a population of rules using
the model building and recombination mechanisms
of eCGA. A niching method using restricted tourna-
ment selection74 was employed to guarantee that the
population learns (all at once) all the rules needed
to solve the domain. Experiments showed that this
method scales quadratically in relation to the prob-
lem size for the Multiplexer family of problems. EDAs
have also been used for other machine learning tasks
such as feature or prototype selection.75,76

Memetic-like exploration methods have also
been employed in GBML systems. One such exam-
ple was the Memetic Pittsburgh Learning Classifier
System (MPLCS).8 This method extracted statistics
from the evaluation process of the GAssist56 Pitts-
burgh GBML system such as which parts of which
rules were performing well or not, or what part of
the input space was covered by each rule. Then GAs-
sist was extended with different types of LS operators
that were performing directed search based on these
statistics. Two kinds of LS operators were proposed:
(1) rulewise operators that were editing individ-
ual rules to either specialize them to remove mis-
classifications or generalize them to add more positive
matches, and (2) a rule setwise operator that given a
set of N parents (where generally N > 2), it con-
structed a single offspring by taking the rules of all
the parents and choosing the best subset of them and
their correct order (as GAssist generates ordered rule
sets) with the objective of generating a rule set with
the highest possible training accuracy and as few rules
as possible. This type of rule setwise exploration op-
erators has also been used in other contexts such as
multistep problems77 or genetic fuzzy systems78 but
always using a traditional crossover framework of
two parents–two offsprings. Moreover, memetic op-

erators have also been employed in Michigan LCS to
explore not just the predicate of a rule but also its
performance parameters.11,79 Also, memetic search
has been used for machine learning tasks other than
classification, such as in prototype selection.51

Fitness Surrogates
Fitness surrogates have been extensively used in the
EC context for efficiency enhancement purposes.
These methods construct a cheap estimation of the
fitness function, and use it instead of the original,
exact, fitness formula whenever possible. Generally,
the success of these methods comes when the proper
regime of combination between the surrogate and the
original fitness formula is identified. Theory exists to
determine the optimal regime of combination of both
fitness functions based on the bias, variance, and cost
of the original fitness and the surrogate.42,80

Recent works have applied the principle of fit-
ness surrogates to GBML.81,82 Both works use a
methodology recently proposed83 for the construc-
tion of fitness surrogates based on the model-building
process of EDAs.67 EDAs, as mentioned above, gen-
erate models of the structure of the problem to bias
the exploration process. Some EDAs estimate the BBs
of the problem. Each block consisting in a set of
problem’s attributes that interact between them. Af-
terward, the fitness contribution of each BB is esti-
mated from the individuals in the population using
regression, and the surrogate function for a given in-
dividual is constructed as the addition of the estimated
fitness contributions of the BBs it contains. In Ref 81,
two different model building methods were evaluated
for GBML purposes: eCGA,69 which generates set of
non-overlapped BBs; and DSMGA,84 which generates
a list of (possibly) overlapped BBs. The latter method
was able to generate more reliable fitness surrogates
than the former for problems where the same variable
was involved in more than one BB, which is a very
usual situation in the context of machine learning.18

The scalability of this methodology in relation to the
size of the BBs was the focus of Ref 82, where fitness
surrogates for various classes of hierarchical decom-
posable problems with varying sizes were evaluated.

HARDWARE ACCELERATION
TECHNIQUES

In this section, we will include GBML methods that
use specialized hardware and will include two parts:
techniques using vectorial instructions and techniques
using GPGPUs.

Volume 3, January /February 2013 43c© 2013 John Wi ley & Sons , Inc .



Advanced Review wires.wiley.com/widm

Usage of Vectorial Instructions to Boost
the Matching Process
One of the main characteristics of the early supercom-
puters such as the Cray-1 was the use of vectorial pro-
cessing units, where the same operation was applied in
parallel and in high efficiency to a whole array of vari-
ables, in what is known as single-instruction multiple-
data (SIMD) paradigm. Despite its efficiency, this
paradigm was also complex to implement, and its use
faded in time in favor of simpler architectures that
could run at faster clock speeds. SIMD reappeared in
the mid 1990s, not in the high-performance comput-
ing market but rather in the consumer market, when
Intel introduced the MMX instruction set for their
Pentium processors, which allowed to reuse each of
the registers in the Floating Point Unit of the pro-
cessor to pack several integers within (e.g., 2 × 32
bit integers, 4 × 16 bit integers or 8 × 8 bit integers)
and perform SIMD operations on them. Later in time,
this capacity was expanded in types of operations and
sizes of the registers with Intel’s own SSE (Stream-
ing SIMD Extensions) while other hardware vendors
proposed their own alternative instruction sets (e.g.,
PowerPC’s Altivec or AMD’s 3DNow!).

As shown in Software Solutions, the process of
matching a rule with a given instance generally con-
sists in iteratively checking if each attribute in the
problem matches, and stopping the process when any
of such tests fail. Using vectorial instructions this loop
can be unrolled, and several attribute tests can be
performed in parallel. An example of this technique
was presented in Ref 85 for problems with binary
attributes. That approach was based on the use of
vectorial instructions coupled with a specific encod-
ing for rules and instances. Two bits were employed
to represent both the condition associated to a certain
attribute in the rule and the value of the attribute in
the instance as follows:

Predicate Encoding Value Encoding

Att is 0 10 0 10
Att is 1 01 1 01
Att is irrelevant 00/11 – –

Given this encoding, checking (for a given at-
tribute) if a condition matches an instance is as sim-
ple as computing the logical and operation between
the encodings for condition and value and then com-
paring the result with the original instance attribute
value. If both values are equal, then the condition
has been matched. However, a rule contains multiple

FIGURE 4 | Parallel match algorithm using binary encoding (top)
and Streaming SIMD Extensions (SSE) vectorial operations (bottom).
Reprinted with permission from Ref 85. Copyright 2006 Association for
Computing Machinery, Inc.

conditions that need to be check. Current CPUs pro-
vide logical operations for 32-bit unsigned integers.
This has two advantages: (1) allowing packing up to
16 conditions per integer—not wasting any memory
and (2) performing the matching process described
at the unsigned integer level will provide the paral-
lel matching of 16 conditions at once. The use of the
128-bit vectorial instructions, which can perform the
same operation in parallel to four 32-bit words, al-
lows the extension of the exact same mechanism to
match up to 64 conditions at once. Figure 4 presents
a sample implementation of both the 16 conditions
CPU matching and the 64 conditions SSE matching.
This vectorial instructions-based matching algorithm
was later in time extended to deal with continuous
attributes.86

High-Performance Fitness Computation
Using GPGPUs
GPGPUs are a relatively new technology but one that
has created a huge impact in all fields of scientific

44 Volume 3, January /February 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Large-scale Data Mining using GBML

computation because it has enabled researchers to ac-
cess very large amounts of raw computational power
for a small fraction of the price than an equiva-
lent amount of power costs in a traditional high-
performance computer cluster. This is achieved by
exploiting with a different angle a hardware origi-
nally designed for the video games industry. Within a
GPGPU, a very high number of threads, all executing
the same code, can be run in parallel, each of them op-
erating on different data. Thus, it changes the classic
SIMD paradigm into a single-program multiple data.
However, the communication between threads and
from the threads to the main memory of the GPGPU
is far from trivial and in many cases it requires a sig-
nificant change of the programming model to find the
perfect equilibrium between usage of raw CPU power
and access to memory.

Probably the most popular of the GPG-
PUs platforms is CUDA (computer unified device
architecture),87 a parallel computing architecture de-
veloped by NVIDIA. Threads in CUDA are organized
in geometrical lattices at two different levels. First,
threads are aggregated in blocks, and then blocks
are aggregated to compose the overall data distribu-
tion. Threads within a block can communicate be-
tween themselves at high speed through the usage of
shared memory. Threads can also access other types
of memory. Global memory is the main memory of
the GPU. It can be accessed by all threads, but it is
slow, specially if all threads are trying to read/write
at the same time unless this access is coalesced (con-
secutive threads in a block accessing consecutive po-
sition in memory). Constant memory can hold data
that does not change throughout the whole execution
of the program and can be accessed at high speed,
but it is very limited in size. Local memory is used
to store data specific to each thread. This memory is
not used explicitly by the programmer but rather by
the CUDA compiler. Texture memory is a read-only
(from the thread’s point of view) type of memory that
is optimised for memory access patterns following a
two-dimensional spatial locality. The proper use of
each type of memory is crucial for obtaining good
performance out of CUDA.

GPGPUs have been widely used in recent
years to boost the performance of all kinds of EC
methods88,89 as well as in the specific context of
GBML.90–91 Moreover, GPGPUs have been integrated
into many different machine learning methods.92–95

In this paper, we will describe one specific exam-
ple for illustrative purposes: The CUDA-based fitness
computation96 of the BioHEL3 GBML system.

BioHEL is a rule-based GBML method that ap-
plies the iterative rule learning (IRL) paradigm.97 Its

fitness computations are the result of matching each
rule in its population against a training set. Moreover,
BioHEL also contains other efficiency enhancement
methods such as the ILAS windowing scheme55 or the
ALKR rule representation,3 described in the previous
sections. The design of the GPGPU-based fitness eval-
uation was made so it could be integrated with these
other methods and their respective speedups could
become cumulative.

Specifically, the most costly part of BioHEL fit-
ness formula is computing three metrics:

1. The number of instances in the training set
that match the condition of the rule.

2. The number of instances in the training set
that match the class of the rule.

3. The number of instances in the training set
that match the class and the condition at the
same time.

In most situations, it is not really necessary to
know which specific instances were matched by each
rule (unless memetic operators, such as those de-
scribed earlier in this paper, are used). This is very
important in this situation, as extracting data from a
GPGPU is very costly (much more costly than send-
ing data there). Thus, if the specific matches are not
needed, the GPGPU can count the matches (doing
what is generally known as reducing the data) itself
and return back a data structure proportional to the
number of rules in the population, instead of being
proportional to rules × instances.

The GPGPU-based solution worked in two
stages (called kernels):

1. Kernel 1: Match and initial reduction. Each
thread in the GPGPU is in charge of perform-
ing an individual match operation involving
one rule and one instance. Afterward, it com-
putes three bits corresponding to the three
metrics described above. Then the reduction
(counting) stage starts. This process can be
performed at high speed if the threads are able
to communicate between themselves through
the shared memory.98 The drawback is that
shared memory is limited to the threads that
belong to the same block (up to 1024 threads
in the latest versions of CUDA). Thus, to max-
imize the power of this initial reduction it is
necessary to design the grid (how the blocks
in an experiment are distributed) so all the
threads of a block operate on the same rule.
At the end of the kernel the rule’s perfor-
mance counts are saved to the device’s global

Volume 3, January /February 2013 45c© 2013 John Wi ley & Sons , Inc .



Advanced Review wires.wiley.com/widm

FIGURE 5 | Diagram of the computer unified device architecture based fitness computation pipeline of the BioHEL genetics-based machine
learning system.

memory. This produces a large impact in the
kernel’s performance. However, this impact
has been greatly reduced thanks to the initial
reduction.

2. Kernel 2: Full reduction. For most problems
(those with more than 1024 examples), it is
necessary to perform a second reduction stage
(or, for problems with more than 220 exam-
ples a third stage, and so on) to get the final
values for these three metrics. This is the aim
of the second kernel. This kernel will be ap-
plied iteratively to reduce the data for each of
the three metrics, one at a time, as this is more
efficient than a single kernel reducing all three
metrics at once.

Moreover, the training set had to be flattened
(into simple data structures) and uploaded to the de-
vice’s global memory before the kernels, and the final
result of the reduction downloaded from the device
into the computer’s memory so BioHEL could con-
tinue its normal working cycle. The overall process is
represented in Figure 5.

The speedups that can be obtained in CUDA
greatly depend on being able to maintain occupied at
most times all the computational resources (threads)
in the GPU. This is a challenge as many factors can

contribute to stall the processors in the GPU. We have
already mentioned the most important of these fac-
tors: the memory access. If all threads try to write
to main memory at once there is a bottleneck, hence
the need to use efficiently the shared memory and the
reduction methods to minimize the volume of global
memory writes. Moreover, to efficiently read from the
main memory consecutive threads (in CUDA’s grid)
should be reading consecutive positions of memory
in what is called coalesced memory access. Another
important aspect is the flow of the code being run in
the threads. If an algorithm is essentially serial, it will
be difficult to obtain any kind of speedup. This issue
especially affects LS methods, such as the memetic op-
erators mentioned above in Hybrid Methods. More-
over, even if an algorithm can be parallelized, if the
code has many branches (e.g., ifs, loops), parts of
the GPU will be stalled because blocks are splitted
in warps, and all threads within each warp are syn-
chronized so all run the same instruction at once in a
true SIMD fashion. Hence, if different threads within
a warp take different branches of an algorithm some
of them will be stalled waiting for the rest. Finally, all
threads within a block share a single register bank; so
if a kernel needs to use a large number of registers, it
can create a constraint in the total number of threads
being run at once. In summary, while the potential

46 Volume 3, January /February 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Large-scale Data Mining using GBML

benefits of using CUDA are enormous, not all GBML
methods are suitable to be adapted to this architecture
because of their patterns of memory access or flow of
code.

The consequence of these constrains is that we
should only expect to obtain good performance out
of GPGPUs when the code run in the GPU kernels is
relatively simple. In Ref 96, we showed how we can
successfully combine the ALKR representation with
a GPGPU matching, but the key to that success was
to limit the degree of parallelism of the kernels: Each
kernel was performing the match process of a single
example from the training set (or the current window)
with a single rule in the population. That is, iterat-
ing over the attributes expressed in that rule. Other
methods90 implemented kernels where each thread
was only matching a single attribute of a rule. This
strategy would have not been possible to implement in
combination with ALKR because each rule may have
a different set of expressed attributes, and this would
create a very sparse grid structure where many threads
(those associated to attributes not present in the rule)
would not be used, hence reducing the speedup of the
system.

PARALLELIZATION MODELS

The following section contains a description of par-
allel implementations of GBML methods. It will be
split into two parts: coarse-grained and fine-grained
methods.

Coarse-Grained Parallel Models
By coarse-grained methods, we understand paral-
lel implementations presenting a moderately low
amounts of communication between them, generally
correlated with a quite high computational load per
node. Included in this category are methods with
varying degrees of communication. The most extreme
case are methods that present no communication at
all between nodes. Most GBML (and in general EC)
methods can exploit this option given that they are
stochastic methods and their evaluation requires run-
ning them multiple times with different random seeds.
This can be treated as a, rather obvious, example of
coarse-grained parallelism. However, there are meth-
ods that explicitly exploit the act of running the al-
gorithm multiple times, for instance, for ensemble
learning.99 In Ref 100 it was shown how by sim-
ply running the GAssist Pittsburgh GBML method
multiple times, producing a rule set for each run,
and then aggregating these rule sets using a major-
ity vote, the ensemble managed to obtain higher test

accuracy than the average of the single runs for a set
of 25 real-world classification datasets. Later in time
this same ensemble mechanism has been applied to
a broad variety of large-scale datasets58,59,86,101–104

with equally successful results. More traditional types
of ensemble learning, such as Bagging or Boosting
have also been used in GBML, specifically using Ge-
netic Programming.105,106

Moreover, ensembles created using GBML and
other bio-inspired methods have also been applied
to nonstandard types of classification, such as ordi-
nal classification,100 where the classes of the problem
have an intrinsic order between them and a multiclass
problem can be decomposed in a series of two-class
problems by joining together the instances of classes
that are adjacent in this intrinsic order, and then gen-
erate predictions for the full problem by chaining sev-
eral of these subpredictors. A different class of classi-
fication problem but that can be solved with a quite
similar ensemble architecture are hierarchical classifi-
cation problems,107 where different predictor models
are generated for different layers of the class hierar-
chy, and the final prediction is done, similarly to the
above example, by chaining several of these predictors
from top layer to bottom layer.

If we increase the level of communication, we
find several examples of GBML methods that ap-
ply some of the classic paradigms of parallel GAs37

such as the master–slave model8,86 or the islands
model.108,109

The performance of the master–slave model, in
which the GA cycle is managed by a single (master)
node, and the slave nodes only perform fitness com-
putations for the individuals held at the master, relies
on two assumptions to achieve good performance:
(1) most of the computation time is concentrated in
fitness computations. This has been shown to be the
case for most GBML systems. In large-scale datasets
(hundreds of variables or a few hundred thousand
records), fitness computations easily pass 99% of the
CPU time.85 (2) The communication costs of send-
ing the population to the slaves and receiving back
the fitness values is low. This may not be always the
case in GBML, as these approaches (especially those
following the Michigan110 or the IRL97 approaches)
tend to use rather large populations, forcing us to send
rules to the evaluation slaves and collect the resulting
fitness. This scheme also increments the sequential
parts that cannot be parallelized, posing a thread to
the overall speedup of the parallel implementation as
a result of Ambdhal’s law.111

The NAX system86 presents an interesting vari-
ant of the master–slave model to minimize such com-
munication cost. NAX is a parallel GBML system

Volume 3, January /February 2013 47c© 2013 John Wi ley & Sons , Inc .



Advanced Review wires.wiley.com/widm

FIGURE 6 | Parallel architecture of the NAX system. c© Natural Computing by Kluwer Academic Publishers. Reproduced with permission of
Kluwer Academic Publishers in the format Journal via Copyright Clearance Center.

applying the IRL approach in which each processor
runs an identical copy of the algorithm—all seeded in
the same manner, and, hence performing the same ge-
netic operations. They only differ in the portion of the
population being evaluated. Thus, the population is
treated as collection of chunks where each processor
evaluates its own assigned chunk, sharing the fitness
of the individuals in its chunk with the rest of proces-
sors. In this manner, fitness can be encapsulated and
broadcasted, maximizing the occupation of the un-
derlying packing frames used by the network infras-
tructure. Moreover, this approach also removes the
need for sending the actual rules back and forth be-
tween processors—as a master–slave approach would
require—thus, minimizing the communication to the
bare minimum—namely, the fitness values. Figure 6
presents a conceptual scheme of the parallel architec-
ture of NAX.

Fine-Grained Parallel Models
There are specific examples of GBML systems that
contain fine-grained parallelism at the core of their

design such as GALE (Genetic and Artificial Life
Environment),50 which integrates elements of the
Pittsburgh approach and cellular automata models.
GALE uses a two-dimensional grid board formed by
m × n cells for spreading spatially the evolving pop-
ulation. Each cell of the grid contains either one or
zero individuals. Each individual is a complete solu-
tion to the classification problem, following the Pitts-
burgh approach of GBML. Several knowledge repre-
sentations (even mixed on the same board, but with
restrictions) have been implemented within GALE:
rule sets, decision trees, and sets of synthetic proto-
types. Genetic operators are restricted to the immedi-
ate neighborhood of the cell in the grid. The size of the
neighborhood is r. Given a cell and r = 1, the neigh-
borhood of that cell is defined by the eight adjacent
cells to it. Thus, r is the number of hops that defines
the neighborhood. GALE’s speedup model shows that
when r equals 1, the speedup grows linearly with the
number of processors used.112

The evolutionary model proposed by GALE is
based on the local interactions among cells as de-
scribed above. Each cycle in GALE has three main

48 Volume 3, January /February 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Large-scale Data Mining using GBML

operations: merge, split, and survive. Individuals can
merge (given a certain probability) with one of its
present neighbors, essential performing a crossover
operation to generate a single off-spring with replaces
the individual undergoing the merge. Afterward, the
split operator clones and mutates the individual in
the cell. The new mutated individual is placed in an
empty cell from the neighborhood of the original in-
dividual. The survival stage decides whether the indi-
vidual in an occupied cell will die (vacating the cell) or
remain, depending on the number of existing neigh-
bors and the individual’s fitness. For further details
about GALE model, please see Refs 50, 112, 113.

There are other examples of GBML models that,
while they were never implemented as fine-grained
parallelism, they have the potential to be easy trans-
formed into such type of parallel architecture. One
such example is Ref 114 which proposes a distributed
LCS architecture designed to be used in very simple
agents with limited memory. Each agent only stores
a small part of a rule set, and multiple agents are
chained to provide a complete solution to the classifi-
cation problem. In such model good speedups would
be obtained when all agents are continuously ac-
tive, similarly to the pipeline architecture of modern
CPUs.

DATA-INTENSIVE COMPUTING

When solving large-scale optimization or machine
learning problems using EC techniques, researchers
have realized that the population requirements may
become infeasible if approached with traditional high-
performance computing techniques.115 Most models
required maintaining the entire or at least a sample
of large populations during the evolutionary process.
However, the data abundance provided by such large
populations have enabled data-intensive computing
techniques to become a viable alternative paralleliza-
tion scheme for EC techniques.116–119 Moreover, such
approaches also provide three key advantages when
compared to their traditional high-performance com-
puting counterparts:

(1) They do not require detailed knowledge
of the underlying hardware architecture
and their complex programming techniques,
which are hard to debug.

(2) They do not require intensive check-pointing
to tolerate failures quite common on large
jobs than may run for days.

(3) They scale well on commodity clusters;
usually the efficiency of traditional paral-

lel programming frameworks (e.g., Message
Passing Interface—MPI) relies on expensive
high-quality interconnection networks.

The following section will focus on a specific
case: the Hadoop44 data-intensive framework, widely
used to do large-scale data processing, and its ap-
plication to parallelize the eCGA’s model building
process.120

Hadoop and the MapReduce Model
Hadoop44 is Yahoo!’s open source MapReduce
framework. Modeled after Google’s MapReduce
paper,121 Hadoop builds on the map and reduce prim-
itives present in functional languages. Hadoop relies
on these two abstractions to enable the easily devel-
opment of large-scale distributed applications as long
as your application can be modeled around these two
phases.

In this model, the computation takes a set of
input key/value pairs, and produces a set of output
key/value pairs. The user of the MapReduce library
expresses the computation as two functions: Map
and Reduce. Map, written by the user, takes an in-
put pair and produces a set of intermediate key/value
pairs. The MapReduce framework then groups to-
gether all intermediate values associated with the
same intermediate key I and passes them to the Re-
duce function. The Reduce function, also written by
the user, accepts an intermediate key I and a set of
values for that key. It merges together these values
to form a possibly smaller set of values. The interme-
diate values are supplied to the user’s Reduce func-
tion via an iterator. This allows the model to han-
dle lists of values that are too large to fit in main
memory.

Conceptually, the Map and Reduce functions
supplied by the user have the following types:

map(k1, v1) → list(k2, v2), (2)

reduce(k2, list(v2)) → list(v3), (3)

that is, the input keys and values are drawn from
a different domain than the output keys and val-
ues. Furthermore, the intermediate keys and values
are from the same domain as the output keys and
values.

The Map invocations are distributed across
multiple machines by automatically partitioning the
input data into a set of M splits. The input splits can
be processed in parallel by different machines. Re-
duce invocations are distributed by partitioning the

Volume 3, January /February 2013 49c© 2013 John Wi ley & Sons , Inc .



Advanced Review wires.wiley.com/widm

intermediate key space into R pieces using a partition-
ing function, which is hash(key)%R according to the
default Hadoop configuration. The number of parti-
tions (R) and the partitioning function are specified
by the user. The overall execution is thus orchestrated
in two steps: first all Mappers are executed in paral-
lel, then the Reducers process the generated key value
pairs by the Reducers. A detailed explanation of this
framework is beyond the scope of this paper and can
be found elsewhere.122

MapReducing eCGA
Ref 120 has presented a Hadoop-based implementa-
tion of eCGA’s69 model-building process using data-
intensive computing. As mentioned above, eCGA is
an EDA that models a problem’s structure as a set of
nonoverlapped BBs. The quality of a model is assessed
by a fitness function based on the minimum descrip-
tion length (MDL) principle.122 The model building
process starts with one BB per problem variable that
are iteratively merged (in a greedy fashion, merging
two BBs at a time) while the merged BBs improve
eCGA’s MDL metric. The model building is an impor-
tant step in eCGA and can become the bottleneck if
implemented sequentially. However, it is also difficult
to parallelize this step because of the interdependence
of these steps. The solution is to split the population
among different mappers. Each mapper computes the
BB scores for the individuals it processes as well as the
score of every possible two-way merge of BBs. Then
a single reducer aggregates the scores to compute the
global MDL metric of all candidate BB merges, picks
the best merge and sends the merged partition to the
mappers for the next iteration of model building until
the MDL metric cannot be improved.

Other Data-Intensive Computing
Frameworks
Other data-intensive computing frameworks have
also been applied to parallelize EC methods.118–120

MongoDB (http://www.mongodb.org/) is a scal-
able, high-performance, open source, schema-free,
document-oriented database. Among others, Mon-
goDB provides MapReduce tasks as a primitive of
the query interface. When documents are stored in
sharded collections (collections of documents bro-
ken in to shards distributed across different servers),
MongoDB is able to run MapReduce tasks in par-
allel making it an appealing alternative to Hadoop.
Moreover, Meandre123 is the National Center for
Supercomputing Applications’s data-intensive com-
puting infrastructure for science, engineering, and

humanities. Meandre provides a more flexible pro-
gramming model that allows to create complex data
flows, which could be regarded as complex and pos-
sible iterating MapReduce stages. Dataflow execu-
tion engines provide a scheduler that determines the
firing (execution) sequence of components. Mean-
dre uses a decentralized scheduling policy designed
to maximize the use of multicore architectures. Also
groups of components can be placed across differ-
ent machines and hence also scale by distributed ex-
ecution. Meandre also allows works with processes
that require directed cyclic graphs, thus extending
beyond the traditional MapReduce directed acyclic
graphs.

VISUALIZATION OF GBML RESULTS

Knowledge extraction is a crucial part of the data min-
ing process, because in this context it is not enough
to use GBML systems (and in general, any kind of
machine learning) to generate just predictions. The
end users of these methods expect to discover new
knowledge in the data. Hence, understanding and vi-
sualizing the solutions produced by GBML methods
is a very important topic. GBML is in a very good po-
sition in this context, as a very large majority of their
systems are rule-based and generate solutions that are
directly human-readable as a set of logic predicates.
However, in most case it is not enough to just show
rule sets. To generate a complete picture of the GBML
solutions some kind of visualization is required.

A recent work using Michigan LCS systems124

uses a technique inspired in the concept of heatmaps.
A heatmap is a graphical visualization technique, fre-
quently used to represent biological data, in which
colors are used to represent the values in a matrix
where rows and columns are the samples (instances)
and genes/proteins (attributes), respectively. Rows
and columns are sorted using a hierarchical clustering
technique. The effect of this sorting is that patterns of
colors can be easily identified in the heatmap which
may lead to indicate the most important variables
associated to a specific group of samples. In the ap-
plication of heatmaps to represent rule sets, the rows
and columns are the instances and attributes of the do-
main and the color of the heatmap for a particular cell
indicates if the attribute of that cell is important for
the prediction of that sample based on the rules gen-
erated by the Michigan LCS. By sorting the instances
in the dataset properly, this technique becomes useful
to identify salient interactions between attributes that
are important to predict a large number of samples in
the dataset.

50 Volume 3, January /February 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Large-scale Data Mining using GBML

FIGURE 7 | Visualization of a large number of rule sets as a
network of interactions.104 Nodes = attributes. Edges = attributes
appearing together in a rule. c© The Plant Cell by American Society of
Plant Physiologists Copyright 2013 Reproduced with permission of
American Society of Plant Biologists in the format Republish in a
journal via Copyright Clearance Center.

The previous method was used to visualize a
single rule set, the final population of a Michigan
LCS. Other methods integrate multiple rule sets in a
single visualization. In Ref 104, the BioHEL GBML
system was used to generate rule sets from a microar-
ray dataset about plant seed germination. This dataset
had 119 samples and almost 14,000 attributes, and
each time that BioHEL was run on this data (using dif-
ferent random seeds) it ended up producing a totally
different rule set, although some attributes appeared
in the rules far more frequently than others. This issue
was exploited by running BioHEL 20,000 times (in
this dataset a BioHEL run just takes a few seconds) to
generate 20000 different rule sets. Rankings of impor-
tant attributes and their interactions were generated
by simply counting how many times (1) an attribute
was used in a rule and (2) a pair of attributes appeared
together in a rule. Finally, an interaction network of
the dataset’s attributes was generated by connecting
together with an edge the attributes (nodes) that ap-
peared together in the rules. This network is shown in
Figure 7. The color of the nodes in the network is de-
termined by some preexisting domain knowledge that
had not been used in the training process. The regular
distribution of the colors shows that the network (and
hence the rule sets) have been able to reconstruct this
domain knowledge from the data.

The previous two examples used visualization to
represent the content of the rule sets. Other visualiza-
tions have been proposed to represent the structure
of the rule sets. In Parallelization Models, we have
mentioned an example of a (potentially) fine-grained
LCS architecture where the prediction are performed
by a distributed set of simple agents chained between
them.115 The authors of that work generated a se-
ries of visualizations of the patterns of connections
of their rule set agents for a variety of problems that
was very useful to understand the behavior of their
distributed architecture.

Finally, there are also examples of visualizations
of the solutions of GBML systems that do not evolve
rule sets. In Ref 125, the authors proposed a method
to evolve the topology of a hidden Markov model
(HMM) as the core of a Fisher Kernel used for pro-
tein sequence classification tasks. The HMMs had a
hierarchical structure divided in blocks. A GA was
used to evolve the connections from block to block
(or to itself), while an heuristic algorithm was used
within each block to generate the low-level HMM
subsolutions. In this specific case the visualization of
the evolved solutions is simply the representation of
the solution’s phenotype: the diagram of connected
blocks. Different block shapes were used to indicate
different types of block.

THEORETICAL MODELS OF GBML

The previous sections have shown the enormous va-
riety of GBML mechanisms that we can combine
to improve the efficiency of GBML methods, but a
few questions remain: how to choose the appropri-
ate method? Moreover, what is the best way of us-
ing them? Recent years have seen the development of
many theoretical models about GBML systems, either
about the whole system or from one or more of the
components of the method. Their motivation is not
just for the sake of modeling the system, but as tools
to adjust in principled ways the components/system
they are modeling.

We have already mentioned above the success
model of the ILAS windowing scheme,55 which can
be used, for the specific case of a Pittsburgh LCS,
to estimate the maximum number of strata to use
in ILAS without compromising the learning abilities
of the system. Furthermore, a simple model of the the
GAssist56 system’s initialization stage was proposed14

to adjust automatically the main parameter control-
ling its initialization (p).

Michigan LCS are the systems that have been
modelled in most detail. Butz15 proposed several

Volume 3, January /February 2013 51c© 2013 John Wi ley & Sons , Inc .



Advanced Review wires.wiley.com/widm

models for the XCS126 system covering all of its
functioning: initialization, crossover, mutation and
learning time. Moreover, these models were used to
estimate bounds of the minimal population size re-
quired for the system to function correctly. Later
in time, Orriols16 created versions of these models
specifically adapted to deal with a very important
challenge in large-scale data mining: class imbalance.
These models were able to inform how to modify the
parameters in XCS to make sure that accurate rules
were learnt for all classes of the problem including
the minority ones.

Finally, recently Franco et al.17 have proposed
models for the initialization stage of the BioHEL3

GBML system. These models are inspired in those
developed for XCS but with three major changes: (1)
using the ALKR and GABIL representation, instead
of the ternary representation of XCS and (2) dealing
with χ−ary variables instead of the binary variables
of the original models and (3) explicitly modeling the
concept of rule overlap, which is a known factor of
difficulty for GBML systems.18 These models were
able to inform about how to adjust BioHEL’s initial-
ization parameters to ensure the creation of a good
initial population.

REAL WORLD EXAMPLES

The literature is rich in applications of GBML
methods (e.g., see Refs 127–130). In the specific case
of large-scale datasets there are several examples
of GBML methods applied to the well-known
KDDCUP-99 large-scale benchmark60,132–134

as well as applications to specific prob-
lems, mostly in the bioinformatics/biomedicine
domains.58,86,91,101–104,107,124

In the following section, we are going to de-
scribe in detail a specific example as a case study: the
application of the BioHEL3 rule-based GBML system
to protein contact map (CM) prediction.

Case Study: Contact Map Prediction Using
GBML
PSP134–135 is one of the most challenging problems in
the field of computational biology. Proteins are cru-
cial molecules for the functioning of all processes in
living organisms. A protein is constructed as a chain
of amino acids (AAs). As it is being constructed, this
chain folds to create very complex three-dimensional
shapes. The function of a protein if a consequence
of its structure. Thus, knowing the structure of a
protein is a crucial step for understanding its func-

tion. However, it is extremely difficult and costly to
experimentally determine the structure of a protein.
Given that proteins fold on their own as they are be-
ing constructed, the general consensus of the commu-
nity is that the sequence of a protein should contain
enough information to predict its structure. This as-
sumption gave place to the PSP field. The impact of
having better PSP methods would be enormous, not
just for understanding life better, but also to design
new/modified proteins for a variety of applications
such as the production of better crops or more ef-
ficient drugs. This case study focuses on a specific
subproblem of PSP: CM prediction. A CM is a bi-
nary matrix with as many rows and columns as AA
in the protein, where each cell indicates whether a
certain pair of AAs in a protein is in contact (their eu-
clidean distance in the structure is less than a certain
threshold). Reconstructing a CM is generally treated
as a machine learning problem, and a very challenging
one because of three reasons: very large training sets,
high-dimensionality representations, and huge class
imbalance.

For a protein of N AAs, we can have roughly
N2 possible contacts. A typical protein dataset tend
to have around 2000 sequences of an average size
around 200 AAs. This roughly means 80 millions con-
tacts. Moreover, a CM is a very sparse matrix, and
the number of real contacts generally is around 2%
of the total number of possible pairs of AAs. Hence,
this is a prediction problem presenting an extremely
high class imbalance. Finally, the state-of-the-art rep-
resentations for this problem tend to have hundreds
of attributes (if not thousands). Most methods do not
tend to use datasets as difficult as described above.
Preprocessing techniques including thinning out the
set of employed proteins,136 rebalancing the positive
and negative examples137 or reducing the size of the
alphabet101 are sometimes employed to alleviate these
challenges.

The system employed for this problem,
BioHEL3 is a GBML system applying the IRL98

paradigm. In this paradigm of rule learning, the rule
set presented as final solution of the learning pro-
cess is learnt one rule at a time in a iterative way.
Once a rule is learnt, the examples covered by it
are discarded from the training set and the process
is started again to learn the next rule. This itera-
tive process ends when there all training examples
have been covered. The fitness function of such sys-
tems has two goals: generate rules that are not only
accurate but also general (covering as many exam-
ples as possible). It is not easy to find the correct
balance between these two goals. In BioHEL this is
achieved by redefining the concept of coverage as a

52 Volume 3, January /February 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Large-scale Data Mining using GBML

piecewise function that rewards rules that cover at
least a certain, user-specified, percentage of exam-
ples. In this way, the system avoid learning accurate
but overspecific rules, although its performance com-
pletely depends on setting up this parameter correctly
citeFranco2012. Moreover, BioHEL was designed ex-
plicitly to cope from large-scale datasets, incorporat-
ing several of the efficiency enhancement mechanisms
that we have described throughout this paper: the
ILAS windowing scheme, the ALKR knowledge rep-
resentation, a GPGPU-based fast fitness computation
and ensembles for consensus prediction. For a com-
plete description of BioHEL, please see Ref 3.

For the prediction of CM a training set of 2413
proteins representing a broad range of different struc-
tures was generated. In this dataset (after thinning
out), there were over 32 million potential contacts,
each of them represented using 631 attributes. The
training set occupies 56.7 GB of disk space. In or-
der to alleviate both the training set size and the
class imbalance, 50 samples out of this huge dataset
were selected. Each sample had 660,000 examples
and a ratio of two noncontacts for each contact.
Hence, rebalancing the training sets. Next, BioHEL
was trained on each of the samples 25 times, each time
using a different random seed. This created a total of
1250 different rule sets, one resulting from each of
the 50 × 25 runs. These rule sets were integrated into
an ensemble that was performing a simple majority
voting as represented in Figure 8. The whole training
process took around 25,000 CPU hours using Intel
Xeon E5472 processors at 3.00 GHz. For a complete
description of this CM prediction architecture, please
see Ref 59. This prediction method participated in
the CM category of the eighth and ninth editions of
CASP (critical assessment of techniques for protein
structure prediction), a biannual experiment held to
assess the start of the art in PSP methods. The method
participated in CASP8138 as ID72 and in CASP9139 as
ID51. The results of the assessment showed that this
method ranked very high according to most perfor-
mance metrics. Particularly, in CASP9 this method
had the highest rank among all sequence-based pre-
dictors in five out of the six evaluated metrics.59

CLASSIFICATION AND ANALYSIS OF
LARGE-SCALE GBML MECHANISMS

In this paper, we have described a very broad range
of mechanisms that have been proposed to tackle the
challenges of large-scale data mining, both from the
point of view of efficiency, as it is natural, but also
from the point of view of the quality of the generated

FIGURE 8 | Representation of the training and prediction process
for contact map prediction using the BioHEL genetics-based machine
learning system.

solutions. That is, whether the mechanisms modify
the learning capacity of the GBML systems. To sum-
marize the myriad of mechanisms described in this
paper, we propose a taxonomy based on answering
these five questions:

Pos Does the method have a positive impact on the
quality of the generated solutions?

Neg May the method suffer from a certain (moder-
ate) degree of solution quality loss?

Enh Does the method improve efficiency by changing
the algorithm?

HW Does the method improve efficiency by using
special hardware?

Par Does the method improve efficiency by paral-
lelizing the algorithm?

Table 1 shows the classification of all the
methods described in this paper based on this
taxonomy.

Volume 3, January /February 2013 53c© 2013 John Wi ley & Sons , Inc .



Advanced Review wires.wiley.com/widm

TABLE 1 Classification of GBML Methods for Large-Scale Data Mining

Method Pos Neg Enh HW Par

Windowing mechanisms53–55,60 y y y n n
Rule match precomputing63,64 n n y n n
Reordering attributes by specificity65 n n y n n
Attribute list knowledge representation3,132 y n y n n
Hybrid EDA–GBML methods9,71,73 y n y n n
Hybrid memetic-GBML methods8,11,77–79 y n y n n
Fitness surrogates81,82 n y y n n
Vectorial matching85,86 n n y y n
GPGPU matching90–91,96 n n n y n
Ensemble mechanisms100,105,107 y n n n y
Master–slave parallel models86 n n n n y
Island parallel models108,109 y y n n y
Fine-grained parallel models50,114 y y n n y
Data-intensive computing116–120,123 n n n n y

As we can see in Table 1 there are methods that
produce an impact in more than one of the categories
of the taxonomy while others only affect a single cate-
gory. Particularly interesting are the three cases (win-
dowing mechanisms, island models, and fine-grained
parallel models) that can both affect positively and
negatively the learning process of the GBML systems.
In these cases, adjusting the parameters of the mech-
anisms (e.g., the number of strata in ILAS, or the
number of agents in the island/fine-grained models) is
crucial to avoid constraining the learning process.

Moreover, many of these mechanisms can be
successfully combined among them to accumulate
their individual benefits. We have shown in the case
study on CM prediction how in the BioHEL sys-
tem we combine the ILAS windowing scheme, the
ALKR representation, GPGPU matching and ensem-
ble mechanisms. Some of these mechanisms can be
easily combined with any other, while some cannot.
For instance, the ensemble methods can be used on
top of any other mechanism because they combine
the models extracted from several independent runs
of the system, so there is no explicit coupling between
mechanisms.

The windowing mechanisms are a very delicate
case. Given that they modify how the system learns
(because essentially they create a dynamic optimiza-
tion environment by changing the instances used to
compute the fitness calculations at every GA itera-
tion), the methods that use the content of the in-
stances to perform their work may not be suitable
for combining with it. For instance, it would be al-
most impossible to combine the windowing with the
match precomputing algorithms/fitness surrogates, as

the benefit of these techniques would mostly be lost
if the precomputing needs to happen at each iteration
instead of once for the whole run. The specific case
of MPLCS showed how windowing can be combined
successfully with memetic operators, but only when
the number of strata in ILAS is correctly adjusted.
When the strata stop being good representatives of
the whole training set, the memetic operators may
start to overfit the rules to the current stratum.

As we have discussed above, GPGPUs can be
combined with other efficiency enhancement tech-
niques such as the ALKR knowledge representa-
tion, but only when the right degree of parallelism
is used. That degree of parallelism roughly speak-
ing is that that achieves optimal memory access pat-
terns and an utilization of the GPU computational
resources close to maximal. Moreover, some algo-
rithms, like the memetic operators, are essentially
serial, so it is very difficult to reimplement them
with a parallel approach. Furthermore, the binary/SSE
encoding technique for vectorial matching probably
would not be efficient in combination with the ALKR
representation because of the sparseness of that rep-
resentation. The vectorial matching requires rules to
be tightly packed and have uniform structure in order
to quickly perform the match of multiple attributes in
a single logical operation. When the rules stop having
a uniform structure or the packing needs to be edited
too often, the efficiency of these mechanisms quickly
drops.

Finally, we have to keep in mind the suitability
of these mechanisms to the type of problems being
tackled. For instance, data-intensive computing and
to a lesser extent the GPGPU matching can only be

54 Volume 3, January /February 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Large-scale Data Mining using GBML

applied if the volume of data in the training set is large
enough. The trade-off between the costs of perform-
ing an individual’s evaluation and the communication
required for such evaluation is important to decide
between traditional master–slave models or adapted
versions such as NAX. Most hybrid methods are only
able to significantly outperform traditional genetic
search on problems of high enough dimensionality.

CONCLUSION

This paper has reviewed the broad range of methods
that have been applied to improve/adapt GBML tech-
niques to cope with large-scale datasets. These meth-
ods build upon the natural parallel capacity of EC
methods, but are not limited to only the traditional
efficiency enhancement techniques of EC (e.g., fitness
surrogates, parallel GAs, hybrid exploration, and so
on). GBML methods have specific scaling up mecha-
nisms that span representations, learning paradigms,
inference mechanisms but also parallel/special hard-
ware implementations. Moreover, theoretical models
have been proposed in recent years about a variety of
aspects of a GBML system that can help adjust them
in a principled way, which is crucial in the context of
large-scale data mining because in most cases it is not
possible to afford a full parameter sweep. The paper
has shown how these techniques are prepared to deal
with extremely difficult real-world problems of high
impact for society, and that they have quickly adapted
to embrace the latest advances of high-performance
computing hardware such as GPGPUs.

The appearance in the last one/two years of buzz
words such as ‘big data’ or ‘data science’, especially
in industry, indicates that the road ahead of us can
provide many benefits for the GBML methods and

community, if they solve some of their limitations. We
have seen how in many cases the good performance of
GBML scaling up mechanisms depends on the careful
choice of parameters. This is a drawback for a wide
dissemination of these methods, as practitioners that
are not GBML experts may opt for other, simpler
to set up, techniques. To solve this problem, it is cru-
cial to develop automatic parameter setting heuristics,
and the theoretical models of all aspects of a GBML
system are very important to design principled ad-
justing mechanisms for all these parameters. We have
shown in this paper that many theoretical models al-
ready exist, but many of them are limited to simple
cases (e.g., binary representations), so there is still a
lot of work to do in this direction. Another aspect
that still has a large potential for improvement are
the data-intensive computing implementations. The
example that we have illustrated in this paper is the
core eCGA optimization algorithm, hence not exclu-
sively designed for machine learning tasks. GBML
methods cover a range of problems relevant enough
that it is worth and necessary to propose specific, for
example, Hadoop implementations of GBML mecha-
nisms. Moreover, there are very sophisticated knowl-
edge representations in GBML (e.g., hyperellipsoid
conditions140) that are not ready yet to cope with
high dimensionality domains, so it may be possible to
extend them using some of the strategies that we have
discussed throughout this manuscript. Finally, a very
crucial aspect for the future is dissemination, making
sure that GBML methods are known to a very broad
audience of potential practitioners. A possible strat-
egy to achieve this aim may be to integrate implemen-
tations of GBML methods in popular machine learn-
ing packages such as WEKA,141 KEEL142 (a machine
learning platform for GBML methods), or Mahout143

(the machine learning extension of Hadoop).

REFERENCES

1. Kovacs T. Genetics-based machine learning. In:
Rozenberg G, Bäck T, Kok J, eds. Handbook of Nat-
ural Computing: Theory, Experiments, and Applica-
tions. Berlin: Springer Verlag; 2011.

2. Fernández A, Garciá S, Luengo J, Bernadó-Mansilla
E, Herrera F. Genetics-based machine learning for
rule induction: state of the art, taxonomy, and com-
parative study. IEEE Trans Evolut Comput 2010,
14:913–941.

3. Bacardit J, Burke EK, Krasnogor N. Improving
the scalability of rule-based evolutionary learning.
Memetic Comput 2009, 1:55–67.

4. Lanzi PL, Rocca S, Solari S. An approach to analyze
the evolution of symbolic conditions in learning clas-
sifier systems. In: GECCO ’07: Proceedings of the
9th Annual Conference on Genetic and Evolutionary
Computation. ACM Press, New York; 2007, 2795–
2800.

5. Browne WN, Ioannides C. Investigating scaling of an
abstracted LCS utilising ternary and s-expression al-
phabets. In: GECCO ’07: Proceedings of the 2007
GECCO Conference Companion on Genetic and
Evolutionary Computation. ACM Press, New York;
2007, 2759–2764.

Volume 3, January /February 2013 55c© 2013 John Wi ley & Sons , Inc .



Advanced Review wires.wiley.com/widm

6. Llorà X, Priya A, Bhargava R. Observer-invariant
histopathology using genetics-based machine learn-
ing. Nat Comput 2008, 8:101–120.

7. Butz M, Lanzi P, Wilson S. Function approximation
with XCS: hyperellipsoidal conditions, recursive least
squares, and compaction. IEEE Trans Evolut Com-
put 2008, 12:355–376.

8. Bacardit J, Krasnogor N. Performance and efficiency
of memetic pittsburgh learning classifier systems. Evo-
lut Comput J 2009, 17:307–342.

9. Butz MV, Pelikan M, Llorà X, Goldberg DE. Auto-
mated global structure extraction for effective local
building block processing in XCS. Evolut Comput
2006, 14:345–380.

10. Llorà X, Sastry K, Lima CF, Lobo FG, Goldberg DE.
Linkage learning, rule representation, and the x-ary
extended compact classifier system. In: Bacardit J,
Bernadó-Mansilla E, Butz MV, Kovacs T, Llorà X,
Takadama K, eds. Learning Classifier Systems, Lec-
ture Notes In Artificial Intelligence, Vol. 4998. Berlin,
Heidelberg: Springer-Verlag; 2008, 189–205.

11. Wyatt D, Bull L. A memetic learning classifier sys-
tem for describing continuous-valued problem spaces.
In: Recent Advances in Memetic Algorithms. Berlin:
Springer; 2004, 355–396.

12. Loiacono D, Marelli A, Lanzi PL. Support vector re-
gression for classifier prediction. In: GECCO ’07:
Proceedings of the 9th Conference on Genetic and
Evolutionary Computation. ACM Press, New York;
2007, 1806–1813.

13. Tamee K, Bull L, Pinngern O. Towards clustering
with XCS. In: GECCO ’07: Proceedings of the 9th
Annual Conference on Genetic and Evolutionary
Computation. ACM Press, New York; 2007, 1854–
1860.

14. Bacardit J. Analysis of the initialization stage of a
Pittsburgh approach learning classifier system. In:
GECCO ’05: Proceedings of the 7th Annual Con-
ference on Genetic and Evolutionary Computation.
ACM Press, New York; 2005, 1843–1850.

15. Butz MV. Rule-Based Evolutionary online learning
systems: a principled approach to lcs analysis and
design. In: Studies in Fuzziness and Soft Computing.
Berlin: Springer; 2006.

16. Orriols-Puig A. New Challenges in Learning Clas-
sifier Systems: Mining Rarities and Evolving Fuzzy
Models. PhD Thesis. Barcelona, Spain: Ramon Llull
University; 2008.

17. Franco MA, Krasnogor N, Bacardit J. Modelling
the initialisation stage of the ALKR representa-
tion for discrete domains and GABIL encoding. In:
GECCO ’11: Proceedings of the 13th Annual Con-
ference on Genetic and Evolutionary Computation.
ACM, New York: 2011.

18. Ioannides C, Barrett G, Eder K. XCS cannot learn all
boolean functions. In: GECCO ’11: Proceedings of

the 13th Annual Conference on Genetic and Evolu-
tionary Computation. ACM, New York: 2011, 1283–
1290.

19. Bernadó-Mansilla E, Llorà X, Garrell JM. XCS and
GALE: a comparative study of two learning classifier
systems with six other learning algorithms on classi-
fication tasks. In: IWLCS 2001, LNAI 2321, Berlin:
Springer Verlag; 2002, 115–132.

20. Bacardit J, Butz MV. Data mining in learning classi-
fier systems: comparing XCS with GAssist. In: Kovacs
T, Llorà X, Takadama K, Lanzi PL, Stolzmann W,
Wilson SW, eds. Advances at the Frontier of Learn-
ing Classifier Systems. Berlin: Springer-Verlag; 2007,
282–290.

21. Orriols-Puig A, Casillas J, Bernadó-Mansilla E.
Genetic-based machine learning systems are com-
petitive for pattern recognition. Evolut Intell 2008,
1:209–232.

22. Genbank release notes. Available at: ftp://ftp.ncbi
.nih.gov/genbank/gbrel.txt. (Accessed November 21,
2012).

23. Physicists brace themselves for LHC ‘data avalanche’.
Available at: http://www.nature.com/news/2008/
080722/full/news.2008.967.html. (Accessed Novem-
ber 21, 2012).

24. Pop M, Salzberg SL. Bioinformatics challenges of new
sequencing technology. Trends Genet 2008, 24:142–
149.

25. The netflix prize. Available at: http://www
.netflixprize.com. (Accessed November 21, 2012).

26. The netflix prize leaderboard. Available at: http://
www.netflixprize.com/leaderboard. (Accessed
November 21, 2012).

27. Allison DB, Page GP, Beasley TM, Edwards JW,
eds. DNA Microarrays and Related Genomics Tech-
niques: Design, Analysis, and Interpretation of Ex-
periments. Boca Raton, FL: Chapman & Hall; 2005.

28. Glaab E, Garibaldi J, Krasnogor N. Arraymining:
a modular web-application for microarray anal-
ysis combining ensemble and consensus methods
with cross-study normalization. BMC Bioinformatics
2009, 10:358.

29. The ICOS PSP benchmarks repository. Available at:
http://icos.cs.nott.ac.uk/datasets/psp benchmark.html.
(Accessed November 21, 2012).

30. Reuters-21578 text categorization collection.
Available at: http://kdd.ics.uci.edu/databases/
reuters21578/reuters21578.html. (Accessed Novem-
ber 21, 2012).

31. Otero F, Freitas A, Johnson C. A hierarchical multi-
label classification ant colony algorithm for protein
function prediction. Memetic Comput 2010, 2:165–
181.

32. Japkowicz N, Stephen S. The class imbalance prob-
lem: a systematic study. Intelli Data Anal 2002,
6:429–450.

56 Volume 3, January /February 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Large-scale Data Mining using GBML

33. Ho TK, Basu M. Complexity measures of supervised
classification problems. IEEE Trans Pattern Anal
Mach Intell 2002, 24:289–300.

34. Bernadó-Mansilla E, Ho TK. Domain of compe-
tence of XCS classifier system in complexity measure-
ment space. IEEE Trans Evolut Comput 2005, 9:82–
104.

35. Luengo J, Fernández A, Garcı́a S, Herrera F. Address-
ing data complexity for imbalanced data sets: analysis
of SMOTE-based oversampling and evolutionary un-
dersampling. Soft Comput 2010, 15:1909–1936.

36. Dumbill E. What is big data?, 2012. Avail-
able at: http://radar.oreilly.com/2012/01/what-is-big
-data.html.

37. Cantú-Paz E. Efficient and Accurate Parallel Genetic
Algorithms. Norwell, MA: Kluwer Academic; 2000.

38. Alba E. Parallel Metaheuristics: A New Class of Al-
gorithms. Hoboken, New Jersey: Wiley Interscience;
2005.

39. The HDF5 data storage system. Available at:
http://www.hdfgroup.org/HDF5/. (Accessed Novem-
ber 21, 2012).

40. The hadoop distributed file system. Available
at: http://hadoop.apache.org/docs/hdfs/current/hdfs
design.html. (Accessed November 21, 2012).

41. The mongodb document-oriented database. Available
at: http://www.mongodb.org/. (Accessed November
21, 2012).

42. Sastry K. Principled efficiency enhancement tech-
niques. In: GECCO ’05: Proceedings of the 7th
annual conference companion on Genetic and
evolutionary computation; 2005. Available at:
http://www.illigal.uiuc.edu/web/kumara/2005/11/24/
principled-efficiency-enhancement-techniques/. (Acc-
essed November 21, 2012).

43. Dean J, Ghemawat S. MapReduce: simplified data
processing on large clusters. In: Proceedings of the
6th Symposium on Operating Systems Design and
Implementation (OSDI ’04). USENIX, Berkeley, CA;
2004, 137–150.

44. The hadoop distributed computing framework. Avail-
able at: http://hadoop.apache.org/. (Accessed Novem-
ber 21, 2012).

45. Fürnkranz J. Integrative windowing. J Artif Intell Res
1998, 8:129–164.

46. Quinlan JR. C4.5: Programs for Machine Learning.
San Mateo, CA: Morgan Kaufmann; 1993.

47. John GH, Langley P. Static versus dynamic sam-
pling for data mining. In: Simoudis E, Han J, Fayyad
UM, eds. Proceedings of the Second International
Conference on Knowledge Discovery and Data Min-
ing. AAAI Press, Menlo Park, CA; 1996, 367–
370.

48. Maloof MA, Michalski RS. Selecting examples for
partial memory learning. Mach Learn 2000, 41:27–
52.

49. Freitas AA. Data Mining and Knowledge Discov-
ery with Evolutionary Algorithms. Berlin: Springer-
Verlag; 2002.

50. Llorà X. Genetics-Based Machine Learning using
Fine-grained Parallelism for Data Mining. PhD The-
sis. Barcelona, Spain: Enginyeria i Arquitectura La
Salle, Ramon Llull University; 2002.

51. Derrac J, Garcı́a S, Herrera F. Stratified prototype
selection based on a steady-state memetic algorithm:
a study of scalability. Memetic Comput 2010, 2:183–
199.

52. Garcı́a S, Derrac J, Cano J, Herrera F. Prototype se-
lection for nearest neighbor classification: taxonomy
and empirical study. IEEE Trans Pattern Anal Mach
Intell 2012, 34:417–435.

53. Sharpe PK, Glover RP. Efficient GA based techniques
for classification. Appl Intell 1999, 11:277–284.

54. Gathercole C, Ross P. Dynamic training subset se-
lection for supervised learning in genetic program-
ming. In: Davidor Y, Schwefel H-P, Männer R. eds.
Parallel Problem Solving from Nature III. Jerusalem:
Springer-Verlag; 1994, 312–321.

55. Bacardit J, Goldberg D, Butz M, Llorà X, Garrell
JM. Speeding-up pittsburgh learning classifier sys-
tems: modeling time and accuracy. In: Yao X, Burke
EK, Lozano JA, Smith J, Merelo-Guervós JJ, Bulli-
naria JA, Rowe JE, Tiňo P, Kabán A, Schwefel H-P,
eds. Parallel Problem Solving from Nature—PPSN
2004. LNCS. Berlin: Springer-Verlag; 2004, 1021–
1031.

56. Bacardit J. Pittsburgh Genetics-Based Machine
Learning in the Data Mining era: Representa-
tions, Generalization, and Run-Time. PhD Thesis.
Barcelona, Spain: Ramon Llull University; 2004.

57. Bacardit J, Stout M, Krasnogor N, Hirst JD,
Blazewicz J. Coordination number prediction us-
ing learning classifier systems: performance and in-
terpretability. In: GECCO ’06: Proceedings of the
8th Annual Conference on Genetic and Evolutionary
Computation. ACM Press, New York; 2006, 247–
254.

58. Stout M, Bacardit J, Hirst JD, Krasnogor N. Pre-
diction of recursive convex hull class assignments
for protein residues. Bioinformatics 2008, 24:916–
923.

59. Bacardit J, Widera P, Márquez-Chamorro A, Divina
F, Aguilar-Ruiz JS, Krasnogor N. Contact map pre-
diction using a large-scaleensemble of rule sets and
the fusion of multiple predicted structural features.
Bioinformatics. 2012, 28:2441–2448.

60. Song D, Heywood MI, Zincir-Heywood AN. Train-
ing genetic programming on half a million patterns:
an example from anomaly detection. IEEE Trans
Evolut Comput 2005, 9:225–239.

61. Frank A, Asuncion A. UCI Machine Learning Repos-
itory. Irvine, CA: University of California, School of
Information and Computer Science; 2010. Available

Volume 3, January /February 2013 57c© 2013 John Wi ley & Sons , Inc .



Advanced Review wires.wiley.com/widm

at: http://archive.ics.uci.edu/ml. (Accessed November
21, 2012).

62. Cano J-R, Garcı́a S, Herrera F. Subgroup discover
in large size data sets preprocessed using stratified
instance selection for increasing the presence of mi-
nority classes. Pattern Recognit Lett 2008, 29:2156–
2164.

63. Giráldez R, Aguilar-Ruiz JS, Santos JCR. Knowledge-
based fast evaluation for evolutionary learning. IEEE
Trans Syst Man Cybern C 2005, 35:254–261.

64. Mellor D., Nicklin SP. A population-based approach
to finding the matchset of a learning classifier sys-
tem efficiently. In: GECCO ’09: Proceedings of the
11th Annual Conference on Genetic and Evolution-
ary Computation. ACM, New York; 2009, 1267–
1274.

65. Butz MV, Lanzi PL, Llorà X, Loiacono D. An analysis
of matching in learning classifier systems. In: GECCO
’08: Proceedings of the 10th Annual Conference on
Genetic and Evolutionary Computation. ACM, New
York; 2008, 1349–1356.

66. Langdon WB. Fitness causes bloat in variable size rep-
resentations. Technical Report CSRP-97-14. Birming-
ham, UK: School of Computer Science, University
of Birmingham; 1997. (Position paper at the Work-
shop on Evolutionary Computation with Variable
Size Representation at ICGA-97.)

67. Larrañaga P, Lozano J, eds. Estimation of Distri-
bution Algorithms, A New Tool for Evolutionnary
Computation. Genetic Algorithms and Evolutionnary
Computation. Norwell, MA: Kluwer Academic Pub-
lishers; 2002.

68. Krasnogor N, Smith J. A tutorial for competent
memetic algorithms: model, taxonomy and design is-
sues. IEEE Trans Evolut Comput 2005, 9:474–488.

69. Harik G. Linkage learning via probabilistic model-
ing in the ECGA. Technical Report 99010. Urbana
and Champaign, IL: Illinois Genetic Algorithms Lab,
University of Illinois at Urbana-Champaign; 1999.

70. Pelikan M, Goldberg DE, Cantú-Paz E. BOA: the
Bayesian optimization algorithm. In: Proceedings of
the Genetic and Evolutionary Computation Confer-
ence GECCO-99, Morgan Kaufmann, San Mateo,
CA; 1999, 525–532.

71. Llorà X, Sastry K, Goldberg DE. The compact clas-
sifier system: Scalability analysis and first results. In:
Proceedings of the Congress on Evolutionary Com-
putation 2005. New York: IEEE Press, 2005, 1:596–
603.

72. Harik G, Lobo F, Goldberg D. The compact genetic
algorithm. IEEE Trans Evolut Comput 1999, 3:287–
297.

73. Llorà X, Sastry K, Lima C, Lobo F, Goldberg
DE. Linkage learning, rule representation, and
the X-ary extended compact classifier system. In:
Bacardit J, Bernadó-Mansilla E, Butz M, Kovacs

T, Llorà X, Takadama K, eds. Learning Classifier
Systems. Lecture Notes in Computer Science.
Berlin/Heidelberg: Springer; 2008, 189–205.

74. Harik GR. Finding multimodal solutions using re-
stricted tournament selection. In: Eshelman L, ed.
Proceedings of the Sixth International Conference
on Genetic Algorithms. Morgan Kaufmann, San
Francisco, CA; 1995, 24–31.

75. Sierra B, Lazkano E, Inza I, Merino M, Larrañaga
P, Quiroga J. Prototype selection and feature sub-
set selection by estimation of distribution algorithms.
A case study in the survival of cirrhotic patients
treated with TIPS. Lecture Notes in Computer Sci-
ence. Berlin/Heidelberg: Springer; 2001, 20–29.

76. Abegaz T, Dozier G, Bryant K, Adams J, Shelton J, Ri-
canek K, Woodard D. SSGA amp; EDA based feature
selection and weighting for face recognition. In: New
York: IEEE Congress on Evolutionary Computation
(CEC) 2011. IEEE; 2011, 1375 –1381.

77. Grefenstette JJ. Lamarckian learning in multi-agent
environments. In: Belew R, Booker L, eds. Proceed-
ings of the Fourth International Conference on Ge-
netic Algorithms. Morgan Kaufman, San Francisco,
CA; 1991, 303–310.

78. Casillas J, Martı́nez P, Benı́tez AD. Learning consis-
tent, complete and compact sets of fuzzy rules in con-
junctive normal form for regression problems. Soft
Comput 2008, 13:451–465.

79. Butz MV, Goldberg DE, Lanzi PL. Gradient descent
methods in learning classifier systems: Improving XCS
performance in multistep problems. IEEE Trans Evo-
lut Comput 2005, 9:452–473.

80. Miller BL, Goldberg DE. Genetic algorithms, selec-
tion schemes, and the varying effects of noise. Evolut
Comput 1996, 4:113–131.

81. Llorà X, Sastry K, Yu T-L, Goldberg DE. Do not
match, inherit: fitness surrogates for genetics-based
machine learning techniques. In: GECCO ’07: Pro-
ceedings of the 9th Annual Conference on Genetic
and Evolutionary Computation. ACM, New York;
2007, 1798–1805.

82. Orriols-Puig A, Bernadó-Mansilla E, Sastry K, Gold-
berg DE. Substructrual surrogates for learning de-
composable classification problems: implementation
and first results. In: GECCO ’07: Proceedings of the
2007 GECCO Conference Companion on Genetic
and Evolutionary Computation. ACM, New York;
2007, 2875–2882.

83. Sastry K, Lima CF, Goldberg DE. Evaluation relax-
ation using substructural information and linear esti-
mation. In: GECCO ’06: Proceedings of the 8th An-
nual Conference on Genetic and Evolutionary Com-
putation. ACM, New York; 2006, 419–426.

84. Yu T-L, Goldberg DE, Yassine A, Chen Y-P. Genetic
algorithm design inspired by organizational theory:
pilot study of a dependency structure matrix driven

58 Volume 3, January /February 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Large-scale Data Mining using GBML

genetic algorithm. In: GECCO ’03: Proceedings of
the 5th Annual Conference on Genetic and Evolu-
tionary Computation. ACM, New York; 2003, 1620–
1621.

85. Llorà X, Sastry K. Fast rule matching for learning
classifier systems via vector instructions. In: GECCO
’06: Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation. ACM Press,
New York; 2006, 1513–1520.

86. Llorà X, Priya A, Bhargava R. Observer-invariant
histopathology using genetics-based machine learn-
ing. Natural Comput 2009, 8:101–120.

87. NVIDIA. NVIDIA CUDA programming guide 2.0,
2008.

88. Maitre O, Baumes LA, Lachiche N, Corma A,
Collet P. Coarse grain parallelization of evolution-
ary algorithms on GPGPU cards with EASEA. In:
Proceedings of the 11th Annual Conference on Ge-
netic and Evolutionary Computation. ACM, Mon-
treal; 2009, 1403–1410.

89. Langdon WB, Harrison AP. GP on SPMD parallel
graphics hardware for mega bioinformatics data min-
ing. Soft Comput 2008, 12:1169–1183.

90. Lanzi PL, Loiacono D. Speeding up matching in learn-
ing classifier systems using CUDA. In: Bacardit J,
Browne W, Drugowitsch J, Bernadó-Mansilla E, Butz
M, eds. Learning Classifier Systems. Lecture Notes in
Computer Science. Berlin/Heidelberg: Springer; 2010,
1–20.

91. Langdon WB. Large scale bioinformatics data mining
with parallel genetic programming on graphics pro-
cessing units. In: de Vega F, Cantú-Paz E, eds. Paral-
lel and Distributed Computational Intelligence. Stud-
ies in Computational Intelligence. Berlin/Heidelberg:
Springer; 2010, 113–141.

92. Prabhu R. SOMGPU: an unsupervised pattern classi-
fier on graphical processing unit. In: IEEE Congress
on Evolutionary Computation. New York: IEEE;
2008, 1011–1018.

93. Sharp T. Implementing decision trees and forests on
a GPU. In: Computer Vision—ECCV 2008. Berlin:
Springer; 2008, 595–608.

94. Steinkraus D, Buck I, Simard P. Using GPUs for ma-
chine learning algorithms. In: Document Analysis and
Recognition, 2005. Proceedings. Eighth International
Conference on IEEE, New York; 2005. 2:1115–1120.

95. Catanzaro B, Sundaram N, Keutzer K. Fast support
vector machine training and classification on graph-
ics processors. In: Proceedings of the 25th Inter-
national Conference on Machine Learning (ICML
2008). 2008, 111.

96. Franco MA, Krasnogor N, Bacardit J. Speeding
up the evaluation of evolutionary learning systems
using GPGPUs. In: GECCO ’10: Proceedings of the
12th Annual Conference on Genetic and Evolution-

ary Computation. ACM, New York; 2010, 1039–
1046.

97. Venturini G. SIA: a supervised inductive algorithm
with genetic search for learning attributes based con-
cepts. In: Brazdil PB, ed. Machine Learning: ECML-
93—Proceedings of the European Conference on Ma-
chine Learning. Springer-Verlag: Berlin, 1993, 280–
296.

98. NVIDIA. NVIDIA CUDA SDK—Data-Parallel algo-
rithms. Available at: http://www.nvidia.com/content/
cudazone/cuda sdk/Data-Parallel Algorithms.html#
reduction. (Accessed November 21, 2012).

99. various authors. Special issue on integrating multiple
learned models. Mach Learn 1999, 36:5–139.

100. Bacardit J, Krasnogor N. Empirical evaluation of en-
semble techniques for a pittsburgh learning classifier
system. In: Learning Classifier Systems, Revised Se-
lected Papers of IWLCS 2006-2007. LNAI. Berlin:
Springer-Verlag; 2008, 255–268.

101. Bacardit J, Stout M, Hirst JD, Valencia A, Smith RE,
Krasnogor N. Automated alphabet reduction for pro-
tein datasets. BMC Bioinformatics, 2009, 10:6.

102. Lee MC, Boroczky L, Sungur-Stasik K, Cann AD,
Borczuk AC, Kawut SM, Powell CA. Computer-aided
diagnosis of pulmonary nodules using a two-step ap-
proach for feature selection and classifier ensemble
construction. Artif Intell Med 2010, 50:43–53.

103. Armananzas R, Inza I, Santana R, Saeys Y, Flores
J, Lozano J, Peer Y, Blanco R, Robles V, Bielza C,
Larrañaga. P. A review of estimation of distribution
algorithms in bioinformatics. BioData Min 2008, 1:6.

104. Bassel GW, Glaab E, Marquez J, Holdsworth MJ,
Bacardit J. Functional network construction in ara-
bidopsis using rule-based machine learning on large-
scale data sets. Plant Cell 2011, 23:3101–3116.

105. Zhang Y, Bhattacharyya S. Genetic programming in
classifying large-scale data: an ensemble method. Inf
Sci 2004, 163:85–101.

106. Folino G, Pizzuti C, Spezzano G. GP ensembles for
large-scale data classification. IEEE Trans Evolut
Comput 2006, 10:604–616.

107. Holden N, Freitas A. Hierarchical classification of
protein function with ensembles of rules and parti-
cle swarm optimisation. Soft Comput 2009, 13:259–
272.

108. Dam HH, Abbass HA, Lokan C. DXCS: an XCS sys-
tem for distributed data mining. In GECCO ’05: Pro-
ceedings of the 7th Annual Conference on Genetic
and Evolutionary Computation. ACM, New York;
2005, 1883–1890.

109. Bull L, Studley M, Bagnall A, Whittley I. Learning
classifier system ensembles with rule-sharing. IEEE
Trans Evolut Comput 2007, 11:496–502.

110. Holland JH, Reitman JS. Cognitive systems based on
adaptive algorithms. In: Hayes-Roth D, Waterman F,

Volume 3, January /February 2013 59c© 2013 John Wi ley & Sons , Inc .



Advanced Review wires.wiley.com/widm

eds. Pattern-directed Inference Systems. New York:
Academic Press; 1978, 313–329.

111. Amdahl G. Validity of the single processor approach
to achieving large-scale computing capabilities. In:
AFIPS Conference Proceedings. ACM, New York;
1967, 483–485.

112. Llorà X, Garrell J. Knowledge-independent data
mining with fine-grained parallel evolutionary algo-
rithms. In: GECCO ’01: Proceedings of the 3th An-
nual Conference on Genetic and Evolutionary Com-
putation. Morgan Kaufmann San Mateo, CA; 2001,
461–468.

113. Llorà X, and Garrell J. Evolving partially-defined in-
stances with evolutionary algorithms. In Proceedings
of the 18th International Conference on Machine
Learning (ICML’2001). Morgan Kaufmann Publish-
ers, San Mateo, CA; 2001, 337–344.

114. Scheidler A., Middendorf M. Learning classifier sys-
tems to evolve classification rules for systems of
memory constrained components. Evolut Intell 2011,
4:127–143.

115. Sastry K, Goldberg DE, Llorà X. Towards billion-
bit optimization via a parallel estimation of distri-
bution algorithm. In: GECCO ’07: Proceedings of
the 9th Annual Conference on Genetic and Evolu-
tionary Computation. ACM, New York; 2007, 577–
584.

116. Jin C, Vecchiola C, Buyya R. MRPGA: An extension
of mapreduce for parellelizing genetic algorithms. In:
Press I, ed. IEEE Fouth International Conference on
eScience 2008. IEEE: New York; 2008, 214–221.

117. Verma A, Llorà X, Goldberg DE, Campbell RH. Scal-
ing genetic algorithms using mapreduce. In: ISDA ’09:
Proceedings of the 2009 Ninth International Confer-
ence on Intelligent Systems Design and Applications.
Washington, D.C.: IEEE Computer Society; 2009,
13–18.

118. Llorà X. Data-intensive computing for competent ge-
netic algorithms: a pilot study using meandre. In:
GECCO ’09: Proceedings of the 11th Annual Con-
ference on Genetic and Evolutionary Computation,
ACM, New York; 2009, 1387–1394.

119. Llorà X, Verma A, Campbell RH, Goldberg DE.
When huge is routine: scaling genetic algorithms
and estimation of distribution algorithms via data-
intensive computing. In: Fernández de Vega F,
Cantú-Paz E, eds. Parallel and Distributed Com-
putational Intelligence. Berlin Heidelberg: Springer-
Verlag; 2010, 1141.

120. Verma A, Llorà X, Venkataraman S, Goldberg DE,
Campbell RH. Scaling eCGA model building via data-
intensive computing. In: IEEE Congress on Evolu-
tionary Computation’10. New York: IEEE; 2010, 1–
8.

121. Dean J, Ghemawat S. MapReduce: simplified data
processing on large clusters. In: OSDI’04: Sixth Sym-

posium on Operating System Design and Implemen-
tation. 2004.

122. Rissanen J. Modeling by shortest data description.
Automatica 1978, 14:465–471.

123. Llorà X, Ács B, Auvil L, Capitanu B, Welge M,
Goldberg DE. Meandre: semantic-driven data-
intensive flows in the clouds. In: Proceedings of
the 4th IEEE International Conference on e-Science.
IEEE, New York; 2008, 238–245.

124. Urbanowicz RJ, Granizo-MacKenzie A, Moore JH.
Instance-linked attribute tracking and feedback for
michigan-style supervised learning classifier systems.
In: GECCO ’12: Proceedings of the 14th Annual
Conference on Genetic and Evolutionary Computa-
tion. ACM Press, New York; 2012, 927–934.

125. Won KJ, Saunders C, Prügel-Bennett A. Evolving
fisher kernels for biological sequence classifi-
cation. Evolut Comput. Available at: http://
www.mitpressjournals.org/doi/abs/10.1162/EVCO
a 00065?journalCode=evco. (Accessed December
19, 2011).

126. Wilson S.W. Classifier fitness based on accuracy. Evo-
lut Comput 1995, 3:149–175.

127. Bull L, ed. Applications of Learning Classifier Sys-
tems. Berlin: Springer-Verlag; 2004.

128. Ghosh A, Jain LC, eds. Evolutionary Computation in
Data Mining. Berlin: Springer-Verlag; 2005.

129. Bull L, Bernadó-Mansilla E, Holmes J, eds. Learning
Classifier Systems in Data Mining. Berlin: Springer-
Verlag; 2008.

130. del Jesús MJ, Gámez JA, Puerta JM. Special issue on
evolutionary and metaheuristics based data mining
(EMBDM). Soft Comput 2009, 13:209–318.

131. Shafi K, Abbass HA. An adaptive genetic-based sig-
nature learning system for intrusion detection. Expert
Syst Appl 2009, 36:12036–12043.

132. Bacardit J, Krasnogor N. A mixed discrete-continuous
attribute list representation for large scale classifica-
tion domains. In: GECCO ’11: Proceedings of the
11th Annual Conference on Genetic and Evolution-
ary Computation. ACM, New York; 2009, 1155–
1162.

133. Marı́n-Blázquez JG, Martı́nez Pérez G. Intrusion de-
tection using a linguistic hedged fuzzy-XCS classifier
system. Soft Comput 2009, 13:273–290.

134. Lesk AM. Introduction to Protein Structure. Oxford:
Oxford University Press; 2001.

135. Moult J, Fidelis K, Kryshtafovych A, Rost B,
Tramontano A. Critical assessment of methods of
protein structure prediction. Round VIII. Proteins
2009, 77:1–4.

136. Baldi P, Pollastri G. The principled design of
large-scale recursive neural network architectures
DAG-RNNS and the protein structure prediction
problem. J Mach Learn Res 2003, 4:575–602.

60 Volume 3, January /February 2013c© 2013 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Large-scale Data Mining using GBML

137. Punta M, Rost B. PROFcon: novel prediction of long-
range contacts. Bioinformatics 2005, 21:2960–2968.

138. Ezkurdia I, Graña O, Izarzugaza JMG, Tress ML.
Assessment of domain boundary predictions and the
prediction of intramolecular contacts in CASP8. Pro-
teins 2009, 77:196–209.

139. Monastyrskyy B, Fidelis K, Tramontano A,
Kryshtafovych A. Evaluation of residue-residue con-
tact predictions in CASP9. Proteins 2011, 79:119–
125.

140. Butz MV, Lanzi PL, Wilson SW. Hyper-ellipsoidal
conditions in XCS: rotation, linear approximation,
and solution structure. In: GECCO ’06: Proceedings
of the 8th Annual Conference on Genetic and Evolu-

tionary Computation. ACM, New York; 2006, 1457–
1464.

141. Witten IH, Frank E. Data Mining: Practical Machine
Learning Tools and Techniques. San Mateo, CA:
Morgan Kaufmann; 2005.

142. Alcala Fdez J, Sánchez L, Garcı́a S, del Jesus M,
Ventura S, Garrell J, Otero J, Romero C, Bac-
ardit J, Rivas V, Fernández J, Herrera. F. Keel: a
software tool to assess evolutionary algorithms for
data mining problems. Soft Comput 2009, 13:307–
318.

143. Mahout: Scalable machine learning and data mining.
Available at: http://mahout.apache.org/. (Accessed
November 21, 2012).

Volume 3, January /February 2013 61c© 2013 John Wi ley & Sons , Inc .


