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Abstract. Windowing methods are useful techniques to reduce the com-
putational cost of Pittsburgh-style genetic-based machine learning tech-
niques. If used properly, they additionally can be used to improve the
classification accuracy of the system. In this paper we develop a theoreti-
cal framework for a windowing scheme called ILAS, developed previously
by the authors. The framework allows us to approximate the degree of
windowing we can apply to a given dataset as well as the gain in run-
time. The framework sets the first stage for the development of a larger
methodology with several types of learning strategies in which we can
apply ILAS, such as maximizing the learning performance of the sys-
tem, or achieving the maximum run-time reduction without significant
accuracy loss.

1 Introduction

The application of genetic algorithms (GA) [1, 2] to classification problems is
usually known as genetic-based machine learning (GBML). One of the traditional
ways of addressing it is the Pittsburgh approach, early exemplified by LS-1 [3].
Usually, systems applying this approach have a high computational cost, because
each fitness computation means classifying the whole training set.

We can primarily reduce the cost of these fitness computations by either: (a)
decreasing complexity of the individuals or (b) decreasing the dimensionality of
the domain to be classified (there are other methods such as fitness inheritance
or informed competent operators but they may affect the whole GA cycle). The
former methods are usually referred to as parsimony pressure methods [4]. The
latter methods are either characterized as feature selection methods, reducing the
number of problem attributes, or as incremental learning or windowing methods,
reducing the number of training instances per fitness evaluation.

In previous work [5, 6], we empirically tested some training set reduction
schemes. These schemes select a training subset to be used for fitness compu-
tation. Changing the subsets at every iteration of the GA process, the scheme



is a kind of windowing method. Our previous results showed that the tech-
niques achieved the run-time reduction objective with no significant accuracy
loss. Sometimes, test accuracy actually increased, indicating knowledge general-
ization pressures that may alleviate over-fitting.

Several open questions remained. From a run-time reduction perspective, we
are interested in deriving a model of the maximal learning time reduction we
can achieve while avoiding significant accuracy loss. From a learning perspective,
we are interested in the learning time reduction that maximizes accuracy in the
system, given a constant run time. In order to achieve the latter objective, we
need to develop a run-time cost model.

This paper addresses these points. Concentrating our efforts on only one
of our windowing schemes, called ILAS (incremental learning with alternating
strata). We first analyze when a problem gets difficult for ILAS. Once we answer
this question, we develop a cost model of the system. With the two elements in
hand, we finally construct a theory that provides an estimate for optimizing
run-time as well as accuracy performance of the system.

The paper is structured as follows. Section 2 presents some related work.
Then, we describe the framework of our classifier system in section 3. Section
4 describes the ILAS windowing scheme and some previous results that show
the motivation of this paper. Section 5 contains the theoretical models of ILAS

presented in this paper. Finally, section 6 discusses the conclusions and some
further work.

2 Related work

All run-time reduction methods related to training examples share a common
idea: using a subset of the training examples for the learning process. From a
general machine learning point of view, we can distinguish three main categories:

– Wrapper methods [7]. These methods interactively select the most suit-
able examples for the learning process. The subset of training examples used
varies through the iterations until a stopping criteria is met. Such criteria
is usually based on the estimation that the current subset of examples is
similar enough to the original set.

– Modified learning algorithms [8]. These algorithms either are able to
learn incrementally from subsets of the training instances, or they include
and discard instances based on knowledge-representation specific informa-
tion.

– Prototype Selection [9]. These methods apply a preprocessing stage in
which the training set is reduced before the actual learning process. Unlike
the two previous categories, prototype selection does not interact with the
learner.

The ILAS windowing scheme studied in this paper belongs to the second of
the categories described above.



3 Framework

In this section we describe the main features of our classifier system. GAssist
(Genetic Algorithms based claSSIfier sySTem) [10] is a Pittsburgh-style classifier
system based on GABIL [7]. Directly from GABIL we have taken the knowledge
representation for discrete attributes (rules with conjunctive normal form (CNF)
predicates) and the semantically correct crossover operator.

Matching strategy: The matching process follows a “if ... then ... else if ...
then...” structure, usually called a decision list [11].

Control of the individual’s length: Dealing with variable-length individ-
uals raises some important issues. One of the most important one is the control
of the size of the evolving individuals [4]. This control is achieved in GAssist
using two different operators: (1) Rule deletion. This operator deletes the rules
of the individuals that do not match any training example. This rule deletion
is done after the fitness computation and has two constraints: (a) the process is
only activated after a predefined number of iterations (to prevent an irreversible
diversity loss) and (b) the number of rules of an individual never goes below
a threshold. This threshold is approximately the number of classes of the clas-
sification problem. (2) Minimum description length-based fitness function. The
minimum description length (MDL) principle is a metric applied in general to
a theory (being a rule set in this paper) which balances the complexity and ac-
curacy of the rule set. In previous work we developed a fitness function based
on this principle. A detailed explanation of the fitness function can be found in
[12].

4 The ILAS Windowing Scheme

In this section we describe the windowing scheme we are using in this paper. We
also include some previous results motivating the research presented.

The ILAS scheme is basically a standard Pitt-style GBML system in which
the training set has been stratified (using a methodology similiar to stratified
n-fold cross-validation) into s subsets of equal size. Each strata maintains ap-
proximately the class distribution of the whole training set. Each GA iteration
utilizes a different strata to perform its fitness computation, using a round-robin
policy. Figure 1 presents the pseudocode of ILAS.

Figure 2 show previous results [6] of the ILAS scheme applied to some
datasets (Wisconsin breast cancer (bre) , ionosphere (int), Pima-indians-diabetes
(pim), pen-based recognition of handwritten digits (pen), satimage (sat), thyroid
disease (thy)) from the University of California at Irvine (UCI) repository [13].
The first three datasets are small (less than 1000 instances), while the rest of
datasets are of medium size (ranging from 6435 to 10992 instances). For the small
datasets we tested ILAS using 2, 3 and 4 strata and for the medium datasets
we used 5, 10 and 20 strata.

The ILAS scheme is compared to the standard non-windowed system, la-
beled NON. The table includes results for accuracy and speedup (time of the
original system over time of the windowed system, using the same number of
iterations). Note that some speedup values are larger than the expected value of



Procedure Incremental Learning with Alternating Strata
Input : Examples, NumStrata, NumIterations
Initialize GA
Reorder Examples in NumStrata parts of approximately
equal class distribution
Iteration = 0
StrataSize = size(Examples)/NumStrata
While Iteration < NumIterations

If Iteration = NumIterations − 1 Then

TrainingSet = Examples
Else

CurrentStrata = Iteration mod NumStrata
TrainingSet= examples from

Examples[CurrentStrata · StrataSize] to
Examples[(CurrentStrata + 1) · StrataSize]

EndIf

Run one iteration of the GA with TrainingSet
Iteration = Iteration + 1

EndWhile

Output : Best individual (set of rules) from GA population

Fig. 1. Pseudocode of the incremental learning with alternating strata (ILAS) scheme

1/s. The cause is an implicit generalization pressure introduced by the window-
ing producing smaller individuals, which are faster to evaluate. This fact is also
shown in figure 2 for the Pima dataset.

Dat Sch Acc Spe

bre

NON 95.6% —
ILAS2 95.9% 2.72
ILAS3 96.0% 4.63
ILAS4 95.8% 5.70

ion

NON 89.5% —
ILAS2 90.2% 2.72
ILAS3 90.6% 4.63
ILAS4 91.0% 5.70

pim

NON 75.2% —
ILAS2 74.8% 2.67
ILAS3 74.6% 4.41
ILAS4 74.0% 5.85

Dat Sch Acc Spe

pen

NON 79.9% —
ILAS5 79.9% 5.18
ILAS10 79.4% 10.37
ILAS20 78.9% 20.44

sat

NON 79.9% —
ILAS5 79.9% 4.73
ILAS10 79.4% 9.04
ILAS20 78.9% 16.54

thy

NON 93.6% —
ILAS5 93.7% 5.20
ILAS10 93.6% 9.84
ILAS20 93.5% 18.52
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Fig. 2. Previous results of ILAS and plot of individual size reduction. Dat=dataset,
Sch = windowing scheme, Acc=Test accuracy, Spe=Speedup

The datasets shown in figure 2 exhibit different behavior patterns. The runs
in the small datasets show that accuracy increases in bre and ion when using
ILAS but not in pim. Moreover, the maximum accuracy for bre is achieved
using 3 strata, while in ion it is achieved using 4 strata. In the large datasets,
a larger number of strata slightly decreases accuracy while strongly improving
computational cost. Thus, using ILAS can be beneficial in two aspects: an actual
accuracy increase may be achieved in small datasets; strong run-time reduction
is achieved, while only slightly decreasing accuracy. We are interested in how
ILAS may be applied to achieve optimal results focusing on learning time and
learning accuracy with respect to the number of strata s.

In the next section, we first develop a model of what makes a dataset hard
for ILAS. Once we achieve this objective and we know which is the maximum
number of strata we can use for a dataset, we can decide with how many strata
ILAS should be applied to a given problem.



5 Analysis of the ILAS windowing scheme

This section presents our models for the hardness of a dataset for ILAS and a
computational cost model. The models are crucial for estimating the optimal
ILAS settings for a given problem.

5.1 What makes a problem hard to solve for ILAS?

We start our study focusing on the multiplexer [14] family of problems—a widely
used kind of datasets with a well-known model. Our first step is to perform ex-
periments determining how many iterations are needed to achieve 100% accuracy
(convergence time) using the ILAS scheme for a given number of strata. The
results of the experiments for the 6 (MX6) and 11 (MX11) bits multiplexer are
shown in Figure 3. The plots are averaged over 50 independent runs. 3
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Fig. 3. Convergence time for the MX6 and MX11 datasets

For both datasets we can see that the convergence time increases with the
number of strata in an exponential way. Before a certain break point, the first
part of the curve can be approximated by a linear increase. This break point is
the maximum number of strata that is worth using in a dataset.

Intuitively we may suspect that after the break point the strata tend to miss-
represent the whole training set causing learning disruptions. Since we know
the optimal rule size in the multiplexer dataset, we are able to estimate how
representative a strata may be. In the case of MX6 we have 8 rules, each rule
covering 8 instances. In the case of MX11 we have 16 rules, each one covering
128 instances. Only by observing these numbers it is quite easy to see that MX6
has a higher risk of having one of these rules unrepresented in some strata, which
translates into having a break point at strata 3 (as seen in figure 3).

In order to predict the break point, we calculate the probability of having a
particular rule (which corresponds to a sub-solution) unrepresented in a certain

3 Unless noted otherwise, parameters were set as follows: Crossover probability 0.6;
tournament selection; tournament size 3; population size 300; individual-wise muta-
tion probability 0.6; initial number of rules per individual 20; probability of “1” in
initialization 0.75; Rule Deletion Operator: Iteration of activation: 5; minimum num-
ber of rules: number of classes of domain +3; MDL-based fitness function: Iteration
of activation 25; initial theory length ratio: 0.075; weight relax factor: 0.9.



strata. We can approximate this probability supposing uniform sampling with
replacement:

P (unrepresented rule/s) = (1 − p)
D

s (1)

where p denotes the probability that a random problem instance represents a
particular rule, D is the number of instances in the dataset and s is the number
of strata. The probability essentially estimates the probability that a particular
rule is not represented by any problem instance in a strata.

A general probability of success (requiring that no rule is unrepresented) of
the whole stratification process can now be derived using the approximation
(1 −

r
s )s

≈ e−r twice to simplify:

P (success/s) = (1 − P (unrepresented rule/s))
rs

(2)

P (success/s) = e−rs·e−
pD
s (3)

where r denotes the number of rules. The derivation assumes that p is equal for
all rules which is the case for our experimental verification below. If p differs, a
derivation of success is still possible but the closed form is not derivable anymore.

The model is experimentally verified for MX6 and MX11 in figure 4. The
experimental plot is the average of performing 2500 stratification processes and
monitoring when there was an unrepresented rule. We can observe that the
theoretical model is quite close to the experimental data, although it is slightly
more conservative.
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Fig. 4. Probability of stratification success. Verification of model with empirical data

If we overlap this probabilistic model with the convergence time curve we can
see that the exponential area of the convergence time curve starts approximately
when the success probability drops below 0.95. We show this observation in
figure 5 for the MX6 and MX11 and also for two versions of MX6 that have 2
(MX6 2) and 4 (MX6 4) additional redundant bits, thus being more robust to
the stratification process than MX6. We can approximately predict the break
point, achieving one of the objectives of this paper.

5.2 Cost model of ILAS

The second objective of this paper is the development of a run-time model.
Assuming constant run time per iteration, we can model the run-time of the
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Fig. 5. Comparison of the convergence time and the probability of stratification suc-
cess. Vertical scale for left hand side of plots corresponds to iterations of convergence
time. Scale for right hand side is the probability of stratification success (equation 3).
The vertical and horizontal lines mark the 0.95 success point

system by

T = α · it (4)

where T denotes the total time of the learning process, α the time per iteration
and it the number of iterations. Figure 6 shows α values for MX6, MX6 2 and
MX6 4. Clearly, α is strongly dependent on the number of instances in a dataset.
As hypothesized above, time approximately behaves inverse proportional to the
number of strata. To have a better insight in α, we compute α′ as α′

s = αs/α1,
that is, the value of α for s strata over the value for one strata. Figure 6 also
shows α′.
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The evolution of α′ can be approximated by a formula such as α′ = a/s + b,
where s is the number of strata and b is a constant that needs to be adjusted
to the problem at hand (from applying the formula for 1 stratum we know that
a = 1 − b). In order to assign a value to b effectively developing a predictive
model for α′, we did some tests with several datasets of the MX6 family (with
redundant bits and redundant instances) and performed a regression process.
The results showed that b is mostly correlated to the number of instances in
the dataset, and can be modeled as b = c/D+d, applying regression again for c
and d. These values should, at least, hold across different computers of the same
architecture.

The model of α′ is verified experimentally with two different datasets: MX11
and an artificial dataset from the UCI [13] repository: LED (using 2000 instances
with 10% of noise). LED was selected it is more similar to a real problem than
the MX datasets due to the added noise. The comparison of the model and
the empirical data can be seen in figure 7, which shows that the model is quite
accurate.
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With this α′ model we can now deduce a formula to approximate the optimal
number of iterations to maximize accuracy within a constant running time. The
question is how many iterations using s strata (its) have the same run time as
a base run time using one strata and it1 iterations. its can be estimated by

its =
it1 · s

1 + b(s − 1)
, (5)

setting a = 1 − b. This formula is quite interpretable: b is the overhead of the
GA cycle. If it were 0, the speedup obtained would be optimal and we could do
as many iterations as it1 · s for s strata. This overhead, however, also depends
on the number of strata showing that the stratification does affect not only the
evaluation stage of the GA cycle but also the resulting model.

6 Summary and Conclusions

This paper focused on a windowing scheme used originally to reduce the run-
time of a Pittsburgh approach genetic-based machine learning system. Previous



results suggested that the scheme could also improve the accuracy performance
of the system. This paper showed how to extract a model to predict when this
is possible.

We have developed two theories to model the behavior of the ILAS win-
dowing scheme. The first one concerns the maximum number of strata that can
be used to separate a dataset before the learning mechanism may be disrupted.
The model is based on the number of rules that are needed to classify a dataset
correctly and the number of instances that cover each rule. Our model is based
on the probability of having all rules represented by at least one instance in each
strata. The experimental validation confirmed the derived bound being slightly
pessimistic about the outcome.

This model is based on the assumption that all rules represent a uniform
number of instances. If the coverage of the rules is not uniform, the probability
should decrease. However, given the slightly more conservative behavior of our
model versus the empirical ratio of represented rules, we think that we can
compensate, to some degree, having unbalanced rules. However, in order to have
a fully usable model of ILAS we have to answer the pending question of how
to model the quasi-linear increase in convergence time before the break point.
Future research needs to address this issue in further detail.

The second theory developed in this section concerns the run-time of ILAS.
Our model can predict the run-time reduction we can achieve in comparison to
the system with 1 strata, given the supposition that all individuals (through all
iterations) have the same rule size and rule distribution. Given datasets as Pima,
shown in figure 2, we know that this is not necessarily true. However, the change
in rule size is always decreasing when using ILAS. Consequently, our model may
be considered as an upper bound in the general case.

With these two models we have constructed a framework that permits the
use of the ILAS scheme in an efficient manner. Based on the expected com-
plexity in the data, practitioners are now able to estimate the number of strata
feasible to use in a dataset. They can also predict the relative run time reduction
achievable. Future research should focus on putting the framework into practice
on real problems, checking which kind of strategies for ILAS can be predicted
successfully and reliably with these models.

Acknowledgments

The authors acknowledge the support provided by the Spanish Research Agency
(CICYT) under grant numbers TIC2002-04160-C02-02 and TIC 2002-04036-
C05-03, the support provided by the Department of Universities, Research and
Information Society (DURSI) of the Autonomous Government of Catalonia un-
der grants 2002SGR 00155 and 2001FI 00514.
Also, this work was sponsored by the Air Force Office of Scientific Research, Air
Force Materiel Command, USAF, under grant F49620-03-1-0129, and by the
Technology Research, Education, and Commercialization Center (TRECC), at
University of Illinois at Urbana-Champaign, administered by the National Cen-
ter for Supercomputing Applications (NCSA) and funded by the Office of Naval



Research under grant N00014-01-1-0175. The US Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation thereon.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the Air Force Office of Scientific
Research, the Technology Research, Education, and Commercialization Center,
the Office of Naval Research, or the U.S. Government.

References

1. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press (1975)

2. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Publishing Company, Inc. (1989)

3. Smith, S.F.: Flexible learning of problem solving heuristics through adaptive
search. In: Proceedings of the Eighth International Joint Conference on Artifi-
cial Intelligence, Los Altos, CA, Morgan Kaufmann (1983) 421–425

4. Soule, T., Foster, J.A.: Effects of code growth and parsimony pressure on popula-
tions in genetic programming. Evolutionary Computation 6 (1998) 293–309

5. Bacardit, J., Garrell, J.M.: Incremental learning for pittsburgh approach classifier
systems. In: Proceedings of the “Segundo Congreso Español de Metaheuŕısticas,
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