
Learning Classifier Systems for Optimisation Problems: A
Case Study on Fractal Travelling Salesman Problem

Maximiliano Tabacman
Departamento de Computacion, Facultad de
Ciencias Exactas y Naturales, Universidad de

Buenos Aires, Argentina
tabacman@dc.uba.ar

Natalio Krasnogor
∗

ASAP research group, School of Computer
Science, University of Nottingham, Jubilee

Campus, Nottingham, NG8 1BB, UK
natalio.krasnogor@nottingham.ac.uk

Jaume Bacardit
ASAP research group, School of Computer
Science, University of Nottingham, Jubilee

Campus, Nottingham, NG8 1BB, UK
Multidisciplinary Centre for Integrative Biology,

School of Biosciences, University of Nottingham,
Sutton Bonington, LE12 5RD, UK

jaume.bacardit @nottingham.ac.uk

Irene Loiseau
Departamento de Computacion, Facultad de
Ciencias Exactas y Naturales, Universidad de

Buenos Aires, Argentina
irene@dc.uba.ar

ABSTRACT
This paper presents a set of experiments on the use of Learn-
ing Classifier Systems for the purpose of solving combinato-
rial optimisation problems. We demonstrate our approach
with a set of Fractal Travelling Salesman Problem (TSP)
instances for which it is possible to know by construction
the optimal tour regardless of the number of cities in them.
This special type of TSP instances are ideal for testing new
methods as they are well characterised in their solvability
and easy to use for scalability studies. Our results show
that an LCS is capable of learning rules to recognise to which
family of instances a set containing a sample of the cities in
the problem belongs to and hence automatically select the
best heuristic to solve it. Moreover, we have also trained
the LCS to recognise links belonging to the optimal tour.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept Learn-
ing, Induction; G.1.6 [Numerical Analysis]: Optimization

General Terms
Algorithms, Experimentation, Performance

Keywords
traveling-salesman-problem, optimization, learning-
classifier-systems, machine learning

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-131-6/08/07 ...$5.00.

1 Introduction

In [8, 5] Moscato and Norman proposed a family of TSP in-
stances for which one can know by construction the optimal
tour for an arbitrary large number of cities. This property
makes these TSP instances very appealing for testing new
heuristics, approximate and exact methods and also scala-
bility properties. Moreover, in [7] the authors also demon-
strated theoretically that some of these instances can be
solved optimally by a heuristic method. For example they
showed that the so called MPeano (displayed in figure 2)
fractal TSP can always be solved by both Nearest Neigh-
bour and Multiple Fragment heuristics, whereas MNPeano
(figure 2) can only be optimally solved by Multiple Frag-
ment. Both of these algorithms might fail when trying to
solve David Tour (figure 1) and Koch Tour (figure 2). On
the other hand, they showed that Furthest Addition From
Minimal Convex Hull can solve Koch Tour.

In this paper we investigate the possibility of using a
Learning Classifier System [4, 10] to learn to classify (par-
tial) instances as belonging to one of these fractal TSP fam-
ilies. The idea behind our research is, first, that if one could
learn to perform this classification reliably then it would
be possible to automatically choose which heuristic (from
the set investigated by Moscato and Norman) to use for the
given instance. We analyse these issues taking into consid-
eration several descriptors for the sample instances and we
also evaluate the impact of noise in our classification. Sec-
ondly, as a further proof-of-concept that the rules learnt by
the LCS could be used with an optimisation goal in mind,
we also train the LCS to recognise, for a set of TSP in-
stances, which edges belong to the optimal tour and which
do not belong to it. We finally integrate these predictive
models into a simple heuristic to solve the TSP problem.
Although the results presented here can only be considered
preliminary in nature they are very encouraging and could
potentially lead to a new way of linking data mining and
optimisation strategies.

2039

2 Theoretical Background
This work focuses on a family of TSP instances known as
Fractal TSP (FTSP) which were defined and characterised
in [7, 5, 8, 6].

Instances of the TSP are built by iterating over the rewrit-
ing rules (axioms) of an L-System. A TSP instance of order
n is obtained by iterating the L-system n times. Higher
orders of n give rise to larger and more intrincate city dis-
tributions. FTSP instances have the following properties:

1. By construction, for each instance of order n its opti-
mal tour is known. This makes these instances ideal
for studies related to the scalability of TSP heuristics,
approximation and exact algorithms.

2. It has been proved (and elegantly summarized in Table
1 of [7]) that some heuristics can solve to optimality a
subset of the FTSP considered in this work. Also, the
authors demonstrate that none of the analysed heuris-
tics can solve all the fractal families and symmetrically,
not every family is solved by all heuristics:

”We have seen that while some constructive
heuristics reliably solve one such instance
they may fail on another instance. Thus, we
can view heuristics as set of indices which
characterise an instance and our instances
as indices which characterise heuristics”.

As an example, consider the construction of a David Tour
for the first six orders: the FTSP referred to as David Tour
is a combination of Sierpinski arrowheads that starts with a
shape based on an equilateral triangle. The iterative process
used to obtain each new order implies adding new triangles
and rotating them as specified in [7, 9]. The interpretation
of F, X, and other symbols is the standard L-System nomen-
clature, that is F draws a line in the direction the “turtle” is
facing, + increases the angle by 1

6
of a turn (360/6 degrees),

- decreases the angle by the same amount, X is part of an
axiom without direct graphical meaning, and ! indicates
that the angle considered is to be negated.

Following is a detail of the L-System needed to build
David Tour instances as a function of n (the order):

Begin: FX-XFX-XFX-XFX-XFX-XF

Replacement Rules:

F = !F!-F-!F!

X = !X

In figure 1 six David Tour instances are shown for the
first six orders. For example, at order 0 the instance is
composed of the six cities displayed in the top left panel,
while the order 1 David Tour contains 18 cities for which
the optimal tour is depicted. The order 5 of Koch, MPeano
and MNpeano tours is shown in figure 2.

3 Classifying TSP Instances
We use Learning Classifier Systems to learn to identify
FTSP classes. We have tested two different approaches to
tackle this problem. In the first one, labelled Global Statis-
tics, we characterize instances by a global metric, and try to
learn how to predict the class of sample of cities from these
metrics. An alternative approach, called Partition Statis-
tics, is to divide each case of FTSP and fractal order into
subsegments, and to extract metrics from each subsegment.

Figure 1: David Tour Coordinates - Orders 0 to 5

The instances of the problem are the metrics extracted from
each subsegment. We will also test a variation of Partition
Statistics labelled Scrambled statistics where we introduce
some noise into the data set. We use GAssist [1, 12, 11] as
it has been shown to be robust across a wide range of dif-
ficult data mining problems. We have used the parameters
and version of GAssist specified in [2].

3.1 Global Statistics
We propose next a simple set of features that is used to
characterise instances of the FTSP. The goal is to be able
to decide to which fractal instance a sampled set of cities
belongs to by looking at these features. A successful im-
plementation of this decision step would allow to use (parts
of an) instance as an index into the heuristic that solves it
better (in some cases optimally) as shown in [7].

Please note that each family includes an infinite number
of possible instances (orders), and we would like to identify
a FTSP class by the value of its attributes, despite which
order it represents. This means that GAssist must capture
the similarities between, e.g., the first and third orders of
Koch Tour, and their differences in relation to, e.g., the fifth
order of MPeano. We consider 4 classes (i.e. MNPeano,
NPeano, David Tour, Koch Tour), and for each class be
produce instances up to order 6. A total of 24 instances are
thus available for this experiment.

3.1.1 Characterization of the learning problem
We define next the set of features we use to characterise
instances of the MPeano, MNPeano, David Tour and Koch
Tour family of instances. We have characterized each FTSP
class by 6 different continuous attributes: number of cities in
the sample, maximum X and Y components, Average spread
from X and Y axis center and average of nearest neighbors.

Since this model aims to avoid absolute references to the
position of the coordinates in the graph, they must first
undergo a normalization process. The curve is considered as
if meant to fit a 1x1 square, fixed to its lower left border; this
means that the lowest x and y value are 0, but the highest
values need not be exactly 1 (i.e. when the figure described

2040

Figure 2: Order 5 of Koch, MPeano and MNPeano
tours

by the curve is not symmetrical from its center). Given
these constraints, the maximum X/Y component attributes
are computed as follows:

MaximumXComponent =
Xmax −Xmin

max(Xmax −Xmin, Ymax − Ymin)

MaximumY Component =
Ymax − Ymin

max(Xmax −Xmin, Ymax − Ymin)

The average spread from X/Y axis center attributes are
intended to express a general signature of the shape of the
curve in a 2-dimensional space. The Spread of a coordinate
c from a given axis center computes ”how far” the corre-
sponding component is. The metrics are defined as follows:

Spread from X axis center(c) = 1 −
|cx − centerx|

|Xmax − centerx|

Spread from Y axis center(c) = 1 −
|cy − centery|

|Ymax − centery|

Class Order Avg St. Avg. St. Dev. Avg. St. Dev.
Dev. w/o MPeano w/o MNPeano

MPeano 1 70 0.48 90 0.32
MPeano 2 50 0.53 100 0.00
MPeano 3 40 0.52 90 0.32
MPeano 4 70 0.48 100 0.00
MPeano 5 0 0.00 100 0.00
MPeano 6 20 0.42 90 0.32

MNPeano 1 80 0.42 100 0.00
MNPeano 2 0 0.00 60 0.52
MNPeano 3 60 0.52 100 0.00
MNPeano 4 0 0.00 100 0.00
MNPeano 5 50 0.53 100 0.00
MNPeano 6 90 0.32 100 0.00
Koch Tour 1 70 0.48 30 0.48 40 0.52
Koch Tour 2 100 0.00 100 0.00 100 0.00
Koch Tour 3 100 0.00 100 0.00 100 0.00
Koch Tour 4 100 0.00 100 0.00 100 0.00
Koch Tour 5 100 0.00 100 0.00 100 0.00
Koch Tour 6 100 0.00 100 0.00 100 0.00
David Tour 1 10 0.32 0 0.00 10 0.32
David Tour 2 40 0.52 80 0.42 70 0.48
David Tour 3 100 0.00 90 0.32 100 0.00
David Tour 4 90 0.32 90 0.32 90 0.32
David Tour 5 100 0.00 100 0.00 100 0.00
David Tour 6 100 0.00 100 0.00 90 0.32

Table 1: Global Statistics Test Accuracy

The resulting value lies between 0 (when the component is
on a border) and 1 (when the component is in the center).

Finally, the average of nearest neighbors attribute is the
averaged value amongst all the coordinates in the curve of
the nearest neighbors. The nearest neighbors of a coor-
dinate is a number indicating the amount of coordinates in
the curve that are at minimum distance.

3.1.2 Experimental results
In this approach we only have one instance for each FTSP
class and order (24 in total). Given this small set of in-
stances, we have chosen a leave-one-out validation process:
We have used 23 instances for training and the 24th one for
test, repeating this process 24 times, each time using a differ-
ent instance for test. Also, each training process is repeated
10 times with different initial random seeds of GAssist. We
will show then, for each of the 24 instances, the average
accuracy obtained when the instance was used for test.

The results obtained for this model (first accuracy column
in Table 1) show good results for predicting Koch Tours and
David Tour with increasing orders. This can be understood
as the fractal graphs are smaller on the first orders, and
that means a greater proximity between the opposite sides
of the obtained figure. In regard to MPeano and MNPeano
tours, results show a much lower accuracy. This, however,
was expected since both curves share almost all cities, and
even a human observer can not distinguish them.

In order to prove our hypothesis, the experiment was re-
run twice, first discarding the MPeano instances, and then
without the MNPeano ones, so as to avoid confusing GAs-
sist. The second and third accuracy columns in Table 1
confirm the hypothesis, while also maintaining the high ac-
curacy for Koch Tour and David Tour.

3.2 Partition Statistics
The Global Statistics model succeeded at classifying a TSP
instance by obtaining the attributes computed from the co-
ordinates of the corresponding graph. With the objective of
confirming the robustness of such attributes, we look now
into the case when not all of the coordinates from a curve
are present, but only a subset of the cities is available for
deciding which heuristic to use. A Partition is a subset of
the coordinates of consecutive cities from a given instance.

The Partition Statistics model implies partitioning
each FTSP (and fractal order) and using these partitions

2041

to create the instances that will be fed into GAssist, using
the same attributes that we proposed for the global statistics
model except for the number of cities. It will not be used
because, due to the way in which the FTSP are partitioned,
not even all the partitions for the same order of the same
TSP type share the same value for this attribute.

3.2.1 Partition Construction
Depending on the amount of coordinates we put in each
partition, the number of partitions for each curve will vary.
Likewise, if we are to establish a fixed amount of partitions
to be obtained from each curve, a way has to be devised
to determine the amount of coordinates in each partition.
When the number of coordinates in a curve is not divisible
by the number of partitions we intend to have, Algorithm 1
is applied to our model.

Require: partitionsLeft: Integer
partitions = an empty collection
CoordinatesLeft = curve.coordinates.size
from = 1
to = 0
while partitionsLeft > 0 do

coordinatesInPartition = Round(CoordinatesLeft
partitionsLeft

)

to = min(to + coordinatesInParti-
tion,curve.coordinates.size)
partitionCoordinates = curve.coordinates.copy(from ,
to)
partitions.add(partitionCoordinates)
from = to + 1
partitionsLeft = partitionsLeft - 1

end while
return partitions

Algorithm 1: Instance Partitioning

3.2.2 Experimental Results
We use next a 10-fold cross-validation evaluation process.
In order to analyze the usefulness of the presented model in
classifying partitions of the FTSP instances, the algorithms
presented were used to generate data for 2 to 10 partitions,
considering all 4 curves from order 1 to 6. The previous ex-
periments were rerun, this time considering only 3 curves:
David Tour, Koch Tour and MPeano. The deletion of MN-
Peano from the data has a simple objective: prove that the
low accuracy obtained in the previous experiments is due
to the similarities between MPeano and MNPeano, which
is thought to confuse GAssist. Based on the idea that the
higher orders provide a more distinct shape of the curves,
the same experiments were rerun but omitting the first or-
der of the curves, thus reducing the amount of available
instances on one side, but allowing for a higher level of par-
titioning on the other, which allowed the tests to go as far as
20 partitions, leading to the possibility of a more significant
analysis. Figure 3 presents a comparative of the obtained
results. We can see how the accuracy given by GAssist de-
creases with increasing number of partitions, as well as, as
expected, that higher accuracy can be obtained with three
types of FTSP instead of four.

3.3 Scrambled Statistics
The Scrambled Statistics model objective is to distort the
position of the coordinates, and check how much noise can

Figure 3: Partitions Model Accuracy

GAssist withstand before losing the high accuracies obtained
so far. We aim then at proposing a way to add noise to the
position of the coordinates, and then proceed to suggest how
to experiment with the amount of noise present and under-
stand its effect on the features of the model: we achieve this
aim by computing the variance of the coordinates position
in both axis. We obtain a Gaussian distribution based on
it, with a mean of 0, and then we modify the coordinates
positions by applying white noise using Algorithm 2.

Require: scramblingRatio: Float
coordinate = original coordinate from the graph
varianceX = variance in the original graph for the x axis
varianceY = variance in the original graph for the x axis
normalGaussianX = random gaussian (mean 0, standard
deviation 1)
normalGaussianY = another random gaussian
adjustedGaussianX = 0 + squareRoot(varianceX) * nor-
malGaussianX
adjustedGaussianY = 0 + squareRoot(varianceY) * nor-
malGaussianY
adjustmentX = adjustedGaussianX * scramblingRatio
adjustmentY = adjustedGaussianY * scramblingRatio
scrambledCoordinate = (coordinate.x + adjustmentX ,
coordinate.y + adjustmentY)
return scrambledCoordinate

Algorithm 2: Coordinate Scrambling

At 20% scrambling the graph is distorted enough to lose
almost all resemblance to its original shape, and this is the
reason that leads us to considering 20% an the upper limit of
GAssist’s learning capacity in this noisy domain. It must be
noted that since the idea of this model is to represent the real
world problems that our proposals might find, we scramble
only the testing sets, since we can ensure by construction
the correct positioning of our FTSP coordinates.

3.3.1 Experimental Results
Experiments will analyze scrambling from 0% to 20% for
two well behaving experiments from the Partition Statistics
model: 8 and 4 partitions, without MNPeano, considering
orders 2 to 6. Results are shown in Figure 4. Results are sim-
ilar to the ones described in the previous section, although
showing slightly lower accuracy, due to the introduced noise.

2042

Figure 4: Scrambling Statistics Accuracy Results

4 Identifying edges from the optimal TSP so-
lution

In this section we use GAssist to learn how to identify edges
that belong to the optimal tour of an FTSP instance. Since
we know by construction the optimal path of the studied
FTSPs, we can easily create a dataset mixing these edges
with random edges not included in the solution, thus ob-
taining an important group of samples to train the system.

4.1 Triplets Model
In the Triplets model, each instance represents a part of a
path between the nodes of a TSP. Because this model was
developed for learning purposes only, it was decided that
instances would contain a path of size 2, that is, two edges.
Also, in order to keep the ideas presented as simple as possi-
ble, we will purposefully omit any normalization process of
the coordinates. So, if for example our TSP had 3 cities in
coordinates (1,1),(1,2) and (2,1), a possible solution would
be: (1, 1) → (1, 2) → (2, 1) → (1, 1). Also, the tour can be
seen backwards and, to complete the possible attributes of
the model, we must consider what happens when the initial
vertex changes. This of course means that redundancy will
exist between instances, but as we will show later, this is
part of the motivation behind the proposed structure.

The objective now is to generate a group of instances large
enough to be used as training and testing sets in GAssist.
First we select a FTSP and its order. Then the associated
instances are built using the edges for the attributes and in-
dicating ”Included” (in an optimum tour) as their class. An
equal number of instances are generated considering edges
that do not belong to the TSP, with class ”Not Included”
(in any optimum tour).

To transform the vertices into GAssist instances, we ap-
ply the following procedure. The destination vertex of the
first edge and the origin vertex of the second edge are the
same. To reduce the size of the instance we intend to present
GAssist with the three different vertices in the right or-
der. Six continuous attributes are used to describe these
instances: Previous X, Previous Y, Current X, Cur-
rent Y, Next X and Next Y.

To generate the instances of the “Not included” class we
randomly choose vertices and combine them so as to gen-
erate different instances. Since we know the optimal path,
we can assure that the randomly generated instances do not
conform to a cycle with lesser cost. Also, since each instance

is randomly generated without connecting it to the previous
ones, the set is not even required to form a Hamiltonian cy-
cle. In order to build a more interesting set, an additional
condition is imposed on these randomly generated instances:
the three coordinates informed must not be repeated in the
same instance, thus avoiding the creation of samples that
would clearly be discarded with a simple optimization of
any program intending to attain the same objective of the
Triplets model.

Figure 5: Triplets Model - Testing Accuracy

4.2 Experimental Results
The test accuracy averaged over 10 runs of GAssist for a fold
(which belong to a particular order of a particular curve), is
then averaged for all 4 folds, generating the accuracy values
displayed in figure 5. Additionally, it must be pointed out
that the implementation of GAssist informs the best accu-
racies obtained during its internal iterations for a given run;
this must be taken into consideration when analyzing the
meaning of the values obtained and presented.

An important feature to be remembered in future sec-
tions is that each curve presents a different starting point in
the chart. Eventually, as it can be seen, all curves improve
their accuracy as the order increases, although an asymptote
seems to exist at 90% accuracy, impending a more satisfac-
tory result. Despite that, GAssist has, with the approach
presented in this model to represent the information, sur-
passed by far the 50% that a lazy classifier would have ob-
tained (since half of the instances presented are included in
the optimal tour, while half are not).

A human classifier, put to the test to do the same task,
would probably obtain similar results, as no information
from one used instance can determine the class of another.
This the main idea that will guide the analysis and construc-
tions of the next model: the search for features that allow
the identification of a curve with its class.

5 Generating the optimal TSP path
In the previous sections we have shown how we can employ
LCSs to identify individual FTSP classes as well as identify-
ing subsegments of a path that belong to the optimal path.
Now we would like to integrate all these predictive models
into an heuristic that is able to solve the TSP problem. The
first step, described in this section, is an heuristic that can
automatically generate a close-to-optimal TSP path for each
individual FTSP class.

2043

The Good Enough Solution Finder is mainly based on it-
erating over all of the edges of the complete graph described
by the coordinates it receives, and keeping only the ones al-
lowed by the rule sets generated by GAssist from the triplets
model dataset, described in section 4.1. The algorithm ide-
ally ends up generating a Hamiltonian cycle. The algorithm
is described as Algorithm 3:

Require: C: a set of coordinates , R: a rule set that in-
dicates whether a given triplet is included or not in the
solution to a TSP instance
S = ∅ {This set of triplets can be interpreted as the edges
that make up the solution to the TSP.}
for c ∈ C do

if gradeS(c) < 2 then
if gradeS(c) = 1 then

e1 = The edge ∈ S connecting c
else

e1 = A randomly chosen edge between c and an-
other coordinate c′ with gradeS(c′) < 2, such that
it does not imply a non Hamiltonian cycle

end if
e2 = A randomly chosen edge 6= e1, between c and
another coordinate c′′ with gradeS(c′′) < 2, such
that it does not imply a non Hamiltonian cycle
if R classifies the triplet defined by (e1, e2) as in-
cluded then

S = S ∪ {(e1, e2)}
end if

end if
end for
return S

Algorithm 3: Pseudocode for the Good Enough Solution
Finder

Although this algorithm does not ensure optimality, it
provides an interesting method to obtain quick solutions for
an instance of the TSP that belongs to the class of instances
upon which GAssist was trained. As this work represents
a proof of concept on how to link Genetic Based Machine
Learning to optimisation, we are not interested in comparing
the quality of the solution generated by Algorithm 3 but
rather in assessing whether (1) learning took place and (2)
if it did, how it biases random tour construction. In order
to do this, however, we must first find a way to choose the
right rule set. This topic is covered in the next section.

6 Choosing the correct FTSP class
Just as the rules from Section 4.1 are used within Algorithm
3, we will make use now of the rule sets obtained in Section
3.1. As these rule sets classify a TSP instance into the differ-
ent classes, we will present an algorithm to take advantage
of this and tell us which TSP instance (MPeano/MNPeano,
Koch Tour, David Tour) a set of coordinates belongs to,
regardless of the order of such instance.

The algorithm to which we will refer as Instance Classifier
requires just a few lines of code as shown in Algorithm 4.

Once the rule sets are obtained, the computation and
the complexity required to classify the set of coordinates
received is marginal, as can be seen in Algorithm 4.

Require: C: a set of coordinates , R: a rule set that classi-
fies a set of Global Statistics features into one of the TSP
instances
F = Global Statistics features as described in Section 3.1
computed from C
I = The classification returned by R when applied to F
return I

Algorithm 4: Pseudocode for the Instance Classifier

7 A system to solve TSP
Just by using the ideas proposed in Section 6 we can go from
a set of coordinates to the name of the TSP instance. By
means of the results presented in [8] and [7], this alone means
that we can apply the optimum algorithm to solve MPeano,
MNPeano and Koch Tour. Considering that some of the
rule sets obtained in the experiments detailed in Section 3.1
reached a 100% accuracy, if presented with a set of coordi-
nates belonging to any of the analyzed orders of MPeano,
MNPeano or Koch Tour, we could provide the best solution
to the TSP in linear time with complete certainty.

Despite these meaningful possibilities, the algorithms pre-
sented and the rule sets obtained allow us to reach even fur-
ther in our ambition of solving the TSP, and so we present
next a system that:

1. Takes a set of coordinates from any order and FTSP
type

2. Determines with Algorithm 4 the FTSP type

3. Uses a pre-built table to deduce from the number of
coordinates the order of the TSP instance

4. Applies Algorithm 3 to identify the edges that belong
to a Hamiltonian Cycle, as an approximation of the
optimum solution to the TSP for the given coordinates

A system as described is then equipped to adjust itself in-
ternally to produce the best possible results for the problem
received as input, instead of pretending to contain a gen-
eral solution for any input. Given that the ”No Free Lunch
Theorems” [13] warn us not to try to obtain a general solu-
tion, we believe that a system with the structure proposed
is guided towards avoiding the restriction stated by these
theorems, as it wraps a group of subsystems each designed
for a specifies subset of the input space.

7.1 Experiment Configuration
The basics of the system implemented are those described
above. In order to analyze the effectiveness of our proposal,
the following experiments were prepared:

• Input: David Tour, Koch Tour and MPeano, from
orders 1 to 4. Total inputs: 12.

• Instance Classification Rule Set: The rule set
shown in Figure 6 was applied, since it was one of
the many which got a 100% testing accuracy when it
was created for Section 3.1.

• Coordinates to order table: Based on the instances
considered, Table 2 was built into the system.

• Triplet Classifying Rule Set: In order to test the learn-
ing achieved by the rules created in Section 4.1, three
different classification schemes were considered:

2044

Instance # of Coordinates Order

David Tour 18 1
David Tour 54 2
David Tour 162 3
David Tour 486 4

Koch Tour 12 1
Koch Tour 48 2
Koch Tour 192 3
Koch Tour 768 4

MPeano 12 1
MPeano 28 2
MPeano 52 3
MPeano 108 4

Table 2: Instance order based on No of coordinates

1. Random Coin: Instead of applying a rule set,
we classify a Triplet as ”Included” or ”Not In-
cluded” with a 50% random probability.

2. Highest Accuracy Rule Set: We pick, from
the rule sets created in Section 4.1, that with the
highest training accuracy for each instance.

3. Ensemble of High Accuracy Rule Sets: Con-
sidering the five rule sets with the highest training
accuracy, we perform a majority voting to decide
whether a Triplet should be considered or not for
the solution proposed, as suggested in [3]. This
includes the rule set from the previous scheme.

1. If yAxisCenterAveragedSpread > 0.594→MPeano

2. If xAxisCenterAveragedSpread ∈ [0.393, 0.452] →
KochTour

3. If maximumXcomponent > 0.985→MPeano

4. Everything else → DavidTour

Figure 6: GAssist rule set used to classify the in-
stances

In case that some coordinates were left unconnected be-
cause of a massive classification of the Triplets as ”Not in-
cluded”, the system completes the solution by joining any
such coordinates with connections to the nearest uncon-
nected neighbour.

7.2 Experimental Results
Figures 7, 8 and 9 present the results of executing the system
proposed with the configuration previously detailed. Below
every image, the length of the solution is indicated.

These results show that the difference between the tour
length obtained by the random coin classification and the
one obtained with the rule sets increases as the number of
coordinates grow. This means that as the problem to solve
becomes more complex, the proposed system improves its
performance over a random solution. Considering the sim-
ple structure of the algorithms used and the basic strategies
applied to obtain the rule sets, the study presented in this
paper leads us to think that a more complex algorithm cou-
pled with better features for GAssist can guide the creation
of high performing solutions for the TSP.

8 Conclusions and further work
In this work we presented a proof-of-concept of the use of
a Learning Classifier System, GAssist, for the classification
of TSP instances. We have used fractal TSP instances as
these have been indexed with the heuristics that can solve
them to optimality. Thus, being able to correctly classify a

subset of cities into one of four fractal TSP families, namely
MNPeano, MPeano, David Tour, Koch Tour, allows us to
decide which heuristic to use for solving them on-the-fly. In
principle it should be possible to extend this work to other
fractal instances and other heuristics and even, perhaps, to
non fractal TSP instances. We have also shown that a LCS
might be able to learn to classify the edges of the complete
graph belonging to a fractal instance into those that be-
long to the optimal tour and those that do not. In contrast
to similar work done with neural network where the NN is
used to learn the optimal tour, the LCS provides insights on
why it chooses one edge over another to be included in the
optimal tour as its rules are human-readable and explicit.

Future work will include a more systematic analysis of
the work done here by (1) substantially extending the order
for which instances have been generated, (2) systematically
investigating richer representations for the various data min-
ing problems and (3) testing smarter ensemble techniques.

9 Acknowledgments
NK acknowledges the EPSRC for grant EP/D061571/1.

10 References

[1] J. Bacardit. Pittsburgh Genetics-Based Machine
Learning in the Data Mining era: Representations,
generalization, and run-time. PhD thesis, Ramon Llull
University, Barcelona, Catalonia, Spain, 2004.

[2] J. Bacardit. Analysis of the initialization stage of a
pittsburgh approach learning classifier system. In
GECCO 2005: Proceedings of the Genetic and
Evolutionary Computation Conference, volume 2,
pages 1843–1850. ACM Press, 2005.

[3] J. Bacardit and N. Krasnogor. Empirical evaluation of
ensemble techniques for a pittsburgh learning classifier
system. In Proceedings of the 9th International
Workshop on Learning Classifier Systems. (to
appear), LNAI, Springer-Verlag, 2008.

[4] J. H. Holland and J. S. Reitman. Cognitive systems
based on adaptive algorithms. In D. Hayes-Roth and
F. Waterman, editors, Pattern-directed Inference
Systems, pages 313–329. Academic Press, New York,
1978.

[5] A. Mariano, P. Moscato, and M. Norman. Arbitrarily
large planar etsp instances with known optimal tours.
Pesquisa Operacional, 15:89–96, 1995.

[6] A. Mariano, P. Moscato, and M. Norman. Using
l-systems to generate arbitrarily large instances of the
euclidean traveling salesman problem with known
optimal tours. In Anales del XXVII Simposio
Brasileiro de Pesquisa Operacional, Vitoria, Brazil,
6-8 Nov. 1995.

[7] P. Moscato and M. Norman. An analysis of the
performance of traveling salesman heuristics on
infinite-size fractal instances in the euclidean plane.
Technical report, CeTAD - Universidad Nacional de
La Plata, 1994.

[8] M. Norman and P. Moscato. The euclidean traveling
salesman problem and a space-filling curve. Chaos,
Solitons and Fractals, 6:389–397, 1995.

[9] H. Peitgen, H. Jürgens, and D. Saupe. Chaos and
Fractals. Springer, February 2004.

2045

Figure 7: David Tour results with the TSP Solving System for different rule sets

Figure 8: Koch Tour results with the TSP Solving System for different rule sets

Figure 9: MPeano results with the TSP Solving System for different rule sets

[10] S. Smith. A Learning System Based on Genetic
Algorithms. PhD thesis, University of Pittsburgh,
1980.

[11] M. Stout, J. Bacardit, J. D. Hirst, and N. Krasnogor.
Prediction of recursive convex hull class assignments
for protein residues. Bioinformatics, In press, 2008.

[12] M. Stout, J. Bacardit, J. D. Hirst, R. E. Smith, and
N. Krasnogor. Prediction of topological contacts in
proteins using learning classifier systems. Soft
Computing, Special Issue on Evolutionary and

Metaheuristic-based Data Mining (EMBDM), In
Press, 2008.

[13] D. Wolpert and W. Macready. No free lunch theorems
for optimization. IEEE Transactions on Evolutionary
Computation, 1(1):67–82, April 1997.

2046

