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ABSTRACT

This paper proposes a new smart crossover operator for a
Pittsburgh Learning Classifier System. This operator, un-
like other recent LCS approaches of smart recombination,
does not learn the structure of the domain, but it merges the
rules of N parents (N ≥ 2) to generate a new offspring. This
merge process uses an heuristic that selects the minimum
subset of candidate rules that obtains maximum training
accuracy. Moreover the operator also includes a rule prun-
ing scheme to avoid the inclusion of over-specific rules, and
to guarantee as much as possible the robust behaviour of the
LCS. This operator takes advantage from the fact that each
individual in a Pittsburgh LCS is a complete solution, and
the system has a global view of the solution space that the
proposed rule selection algorithm exploits. We have empiri-
cally evaluated this operator using a recent LCS called GAs-
sist. First with the standard LCS benchmark, the 11 bits
multiplexer, and later using 25 standard real datasets. The
results of the experiments over these datasets indicate that
the new operator manages to increase the accuracy of the
system over the classical crossover in 16 of the 25 datasets,
and never having a significantly worse performance than the
classic operator.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning—Concept Learn-
ing, Induction

General Terms

Algorithms,Experimentation,Performance

Keywords

Evolutionary Algorithms, Learning Classifier Systems, Rule
Induction, Smart Crossover operator
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1 Introduction
For several years, a strong line of research in the evolution-
ary computation field is the proposal of smart recombination
operators, with many different approaches, such as estima-
tion of distribution algorithms [10] or competent genetic al-
gorithms [6], among others. In the learning classifier systems
(LCS) field, this line of research has started much recently
[4], when the well-known XCS system [15] was extended with
a crossover operator based on two types of competent genetic
algorithms. These approaches are mainly based on learning
the relationships among the variables of the problem.

This paper presents an smart crossover operator (from
now on, SX) applied to the other main family of LCS,
the Pittsburgh approach. Unlike most of the previous ap-
proaches, we will not apply any learning or statistical tech-
nique to determine the structure of the problem: SX will
use all the rules of N parents (N ≥ 2) and will heuristically
select the minimum subset of rules that obtains maximum
accuracy over the training set, also deciding the order of the
rules. In our system it is easy to determine, at some degree,
the fitness contribution of each part of the global solution
(a rule). Therefore, we will recombine in a smart way the
already existing rules in the population. This approach is
quite different to the smart recombination technique used
in XCS, that was applied at a rule-level. In this sense, we
exploit the main characteristic of the Pittsburgh LCS: Each
individual is a complete solution, therefore SX can have a
global view of the solution space.

We focus on a recent system belonging to the Pittsburgh
approach of LCS, called GAssist [1]. Through the paper, we
describe the basic approach of SX, we test this basic ver-
sion with some theoretical and empirical challenges and we
propose some modifications to overcome the detected weak
points. The final version of SX is tested on a set of standard
25 datasets that represent a broad range of scenarios and it
is compared to the classic crossover operator (from now on,
CX) from several points of view. SX, although having more
computational cost, improves the performance of GAssist
in 16 of the 25 tested datasets (outperforming significantly
CX in four of them) and it never significantly degrades the
performance of the system.

The rest of the paper is structured as follows: First, sec-
tion 2 will describe some related work. Next, section 3 will
contain the main characteristics of GAssist, the Pittsburgh
LCS used in this paper. Section 4 will explain the develop-
ment of the SX presented in this paper. After the definition
of the new operator, section 5 will describe the experiments



done to evaluate its performance and analyze the results of
these experiments. Section 6 will describe the conclusions
and further work of the paper.

2 Related work
The use of informed/wise/smart recombination operators
has been quite widespread in the EC community for some
years. As stated above two of such approaches are esti-
mation of distribution algorithms (EDA) [10] or competent
genetic algorithms [6]. Usually these paradigms involve ap-
plying machine learning or statistic techniques to learn the
structure of the problem being solved and allow the system
to explore better the search space by creating informed ex-
ploration operators.

However, until two years ago this line of research had
rarely been used in the LCS field. One of such approaches [4]
was applied to the XCS system [15], that was extended with
a crossover operator based on two types of competent genetic
algorithms: the Extended Compact Genetic Algorithm [8]
and the Bayesian Optimization Algorithm [12]. These two
methods derive global structural information from the best
rules in the population, and later XCS uses this information
to generate offspring in a smart way.

The Compact Classifier System (CCS) [11] is a recent ap-
proach of using EDAs within the framework of a Pittsburgh
LCS. The selected EDA was the Compact Genetic Algo-
rithm [9]. CGA is run iteratively to generate different rules.
Different perturbations of the initial solution of CGA are
needed to generate different rules, and the individuals in
CCS store a set of such perturbations. The objective of
CCS is to determine the minimum set of rules that creates a
maximally general solution. Other early attempts at using
EDAs in a Pittsburgh LCS are also discussed in [11].

Nevertheless, the approach in this paper is probably more
close to what could be called local search or heuristic
crossover instead of really smart crossover. In this scope,
there is a quite early LCS work, the SAMUEL system [7],
that has a similar operator to the one presented here. That
system was applied to multi-step domains, and their opera-
tor generated an offspring containing high-payoff rules that
fired in sequence. However, their operator used rules only
from two parents. Also, it was applied to unordered rules,
while our approach is specifically designed for ordered rules.

3 The GAssist Learning Classifier System
GAssist [1] is a Pittsburgh Learning Classifier System de-
scendant of GABIL [5]. The system applies a near-standard
generational GA that evolves individuals that represent
complete problem solutions. An individual consists of an
ordered, variable–length rule set.

A special fitness function based on the Minimum Descrip-
tion Length (MDL) principle [13] is used. The MDL princi-
ple is a metric applied in general to a theory (being a rule
set here) which balances the complexity and accuracy of the
rule set The details and rationale of this fitness formula are
explained in [1]. The system also uses a windowing scheme
called ILAS (incremental learning with alternating strata)
to reduce the run-time of the system, but also to introduce
extra generalization pressure that improves the generaliza-
tion capacity of the system. This mechanism divides the
training set into several non-overlapped subsets and chooses
a different subset at each GA iteration for the fitness com-
putations of the individuals.

We have used the GABIL [5] rule-based knowledge repre-
sentation for nominal attributes and the adaptive discretiza-
tion intervals (ADI) rule representation [1] for real-valued
ones. To initialize each rule, the system chooses a training
example and creates a rule that covers this example, using
the mechanism proposed at [2]. The representation is ex-
tended with an explicit default rule mechanism: Using the
rules of an individual as an ordered set to perform the match
process allows the creation of very compact rule sets by the
use of default rules. We use an existing mechanism [1] to
explicitly exploit this effect.

4 The smart crossover operator
This section is divided in three parts. The first one de-
scribes the development of the operator itself. The second
one details how SX has been integrated into the framework
of GAssist. Finally, the third part illustrates experimentally
the strong and weak points of the operator, and proposes
possible ways to overcome the current weaknesses.

4.1 Definition of the operator
SX has three main stages, shown by figure 1:

1. Evaluation of the candidate rules

2. Selection of the offspring rule-set

3. Generation of the final individual

The rest of the subsection will focus on the first and sec-
ond stage, as the third one is just the trivial generation
of the offspring, once we have selected which rules will be
joined together to create it. Depending on the employed
knowledge representation it might be necessary to recom-
pute some statistics about the new rule set.

In the first stage, the candidate rules from all parents are
evaluated with all the training set. This process of eval-
uation, which is the most costly part of the algorithm, is
performed only once. From each evaluation a data struc-
ture called “match profile” is be generated. Each match
profile (shown in figure 2) contains a map of the training set
indicating which examples are correctly or incorrectly clas-
sified by the rule and which of them are not matched. The
process of selecting the new rule-set for the offspring uses
these match profiles instead of re-evaluating the rules.

Figure 2: Representation of the match profile of a
rule
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After generating the profiles of the candidate rules, the
central part of the algorithm starts. The procedure is quite
simple: The process starts with an empty rule set, where all
instances are matched by the default rule. Next, for each
candidate rule, we look for the position in the rule set where
this rule can help to maximize the training accuracy of the
whole rule set. If the obtained accuracy is higher than the
previous accuracy of the rule set without the new rule, it is
inserted in that position. If not, the rule is discarded. In
order to avoid any possible bias, we shuffle the candidate
rules before trying to insert each of them into the new rule



Figure 1: Representation of SX

Candidate
Rules

Rule
Evaluation

Rule 1
Rule 2

Rule n−1
Rule n

Match profile 1
Match profile 2

Match profile n−1
Match profile n

Parent 1

Rule 1
Rule 2

Rule m

Rule subset
Selection

Parent 2

Rule 1 Rule 1
Rule 2Rule 2

Rule m Rule m

Parent p

Rule 2

Rule m

Offspring

Rule 1

m can be different for each rule set

set. We will illustrate later with some examples why is this
shuffling process necessary.

In order to reduce the run-time of the algorithm, the com-
putation of the accuracy of each tested rule in the different
positions of the rule set will be computed incrementally. To
support this incremental computation we will use two data
structures. The first one indicates, for each instance in the
training set, if the example is correctly or incorrectly classi-
fied in the current rule set. The second structure indicates
which rule matches each example. These data structures
are initialized in a way that all examples are matched by
the default rule, some of them correctly, some of them not.
These two structures plus a list of the already selected rules
and the current training accuracy of these rules are grouped
in a data structure called “ruleOrder”.

After trying to insert all candidate rules in the rule set,
the selected rule subset is created by removing the inserted
rules that have been subsumed during the process and do
not contribute to increase the training accuracy anymore.
Figures 3 and 4 contains the pseudo-code of the whole rule
selection algorithm.

Please, note that the position where each candidate rule
is inserted is not the position where this rule obtains max-
imum accuracy, but the position that maximizes the global
training accuracy of the rule set. In this way we exploit as
much as possible the advantages of having individuals that
are complete solutions to the domain. Also note that the
algorithm only inserts rules if they contribute to the rule set
accuracy. The aim of this policy is two-fold: (1) avoiding the
insertion of rules with high error rate and (2) also avoiding
the insertion of rules that can be subsumed by other candi-
date rules. Let us illustrate this with two examples:

• We have two rules A and B. Rule B covers a subset of
the examples covered by A. For simplicity we suppose
that neither of the rules cover any negative example

• We try to insert first A and then B

– A is inserted in some position of the rule set, fol-
lowing the specified algorithm

– As B just covers a subset of A, there is no po-
sition in the rule set where B can help increase

the training accuracy, because A is already in the
rule set. Therefore, B is discarded

• We try to insert first B and then A

– B is inserted in some position of the rule set, fol-
lowing the specified algorithm

– A is inserted before B as the algorithm will al-
ways insert the rule in the top-most position that
maximizes accuracy

– In the cleaning-up stage of the algorithm, B will
be removed because it does not match anymore
any example

This example illustrates how this algorithm always tries
to select the most general but accurate rules to generate
the new rule set for the offspring. However, it has some
limitations, illustrated by the second theoretical example:

• We have three rules, A, B and C. Rules B and C cover
together the same examples as A

• Order of insertion: A, B, C or A, C, B

– A is inserted in some position of the rule set

– Neither B or C are inserted as they do not make
the rule-set increase its training accuracy

• We try to insert first either B or C, then A and then
C or B

– B or C is inserted in some position of the rule set

– A is inserted before B or C as the algorithm will
always insert the rule in the top-most position
that maximizes accuracy

– C or B is not inserted

– In the cleaning-up stage of the algorithm, B or C

will be removed because it does not match any-
more any example.

• We try insert first B and C (in any order) and then A

– B and C are inserted in some position of the rule
set



Figure 3: Pseudo-code of the Rule Selection algorithm - first part

Procedure RuleSelectionAlgorithm
Input : MatchProfiles, Examples, DefaultClass
Shuffle MatchProfiles

RuleOrder = InitializeRuleOrder(Examples,DefaultClass)
ForEach profile in MatchProfiles

(newAccuracy,position) = FindBestPosition(RuleOrder,profile)
If newAccuracy > RuleOrder.accuracy

RuleOrder=InsertRule(RuleOrder,profile,position)
EndIf

EndFor

Eliminate from RuleOrder.selectedRules those rules that do not match any example
Output : RuleOrder.selectedRules,RuleOrder.accuracy

Procedure InitializeRuleOrder
Input : Examples,DefaultClass

RuleOrder.selectedRules = ∅
RuleOrder.accuracy = accuracy of classifying all examples using DefaultClass
RuleOrder.exampleClassifiedOK = initialize map of size Examples.size

RuleOrder.exampleMatchedByRule = initialize map of size Examples.size
ForEach example in Examples

RuleOrder.exampleMatchedByRule[example] = 0
If example.class = DefaultClass

RuleOrder.exampleClassifiedOK[example] = true

Else

RuleOrder.exampleClassifiedOK[example] = false

EndIf

EndFor

Output : RuleOrder

Procedure FindBestPosition
Input : RuleOrder,profile
bestPosition = 0
bestAccuracy = AccuracyAtPosition(RuleOrder,profile,0)
For position=1 to RuleOrder.selectedRules.length − 1

accuracy = AccuracyAtPosition(RuleOrder,profile,position)
If accuracy > bestAccuracy

bestAccuracy = accuracy

bestPosition = position
EndIf

EndFor

Output : bestAccuracy,bestPosition

– As A covers the same examples as the union of
B and C, we cannot find any position where A

increases the fitness of the rule set. Therefore, A

is never inserted

In the second example there is one case where we end up
with a sub-optimal rule-set. How can we guarantee that we
do not try to insert A as the last rule? In this paper we
use the following heuristic: We repeat several times the pro-
cess of creating the offspring rule set with different initial
orderings, and we will select the rule set that have max-
imum accuracy. If we have two candidate rule sets with
the same accuracy, we select the one with smaller number
of rules. The pseudo-code for the whole operator including
this improvement is represented in figure 5.

4.2 Integration of the operator in GAssist
crossover stage

Analyzing the detailed pseudo-codes presented it is possible
to see that SX only recombines already existing rules, and
it does not generates new ones (as the standard crossover
does). Therefore, we need to mix both kinds of crossovers.
This section describes the integration of the new SX into
GAssist and its combination with the traditional crossover.
The integration of both crossovers occurs through a random
control variable (PSmartX) that stochastically selects which
one to use. To prevent SX from choose the same parent
twice in the same offspring generation process, we sample
without replacement the parents.

4.3 Illustration of the smart crossover perfor-
mance and robustness improvement pro-
posal

This subsection illustrates the performance of the SX with
some plots and results tables. First we show how this oper-
ator improves the performance of GAssist in a few datasets.
Later we show its main weakness, namely overlearning, and
we propose a heuristic that alleviates this weakness.

The first dataset that we test is the most standard bench-
mark in the LCS community: the 11 bit multiplexer. This
is an easy test, as CX can solve successfully this dataset
and finds the optimal solution always. However, the new
operator helps GAssist converge towards the optimal solu-
tion using less iterations. Figure 6 illustrates the GAssist
performance testing separately the three parameters of SX:
number of parents, number of repetitions of the rule selec-
tion process and probability of smart crossover. Each plot
is the average of 10 runs.

The next two datasets are bal and zoo, detailed in next
section. These two datasets are quite small. However, GAs-
sist had showed in the past some difficulties in learning them
[1]. Table 1 reports the accuracy for both datasets testing
all combination of these values for the parameters for SX:

• Number of parents: 2, 5 and 10

• Number of repetitions of the rule selection process: 1,
2 and 5

• Probability of Smart Crossover: 0.05 and 0.10



Figure 4: Pseudo-code of the Rule Selection algorithm - second part

Procedure AccuracyAtPosition
Input : RuleOrder,profile,position
newAccuracy = RuleOrder.accuracy

ForEach example in Profile.listOK
If RuleOrder.exampleClassifiedOK[example] = false

and RuleOrder.exampleMatchedByRule[example] ≥ position

Increase newAccuracy by one example
EndIf

EndFor

ForEach example in Profile.listKO
If RuleOrder.exampleClassifiedOK[example] = true

and RuleOrder.exampleMatchedByRule[example] ≥ position
Decrease newAccuracy by one example

EndIf

EndFor

Output : newAccuracy

Procedure InsertRule
Input : RuleOrder,profile,position
Insert rule associated to profile in RuleOrder.selectedRules at position position

ForEach example in RuleOrder.exampleMatchedByRule
If RuleOrder.exampleMatchedByRule[example] >= position

RuleOrder.exampleMatchedByRule[example] + +
If profile.MatchMap[example] = 1

RuleOrder.exampleMatchedByRule[example] = position

If RuleOrder.exampleClassifiedOK[example] = false
Increase RuleOrder.accuracy by one example

EndIf

EndIf

If profile.MatchMap[example] = −1
RuleOrder.exampleMatchedByRule[example] = position
If RuleOrder.exampleClassifiedOK[example] = true

Decrease RuleOrder.accuracy by one example
EndIf

EndIf

EndIf

EndFor

Output : RuleOrder

Figure 5: Pseudo-code of the main body of SX

Procedure SmartCrossoverOperator
Input : Parents,DefaultClass
Examples = Get Training Set Rules = Extract all rules from Parents

MatchProfiles = Generate the match profile of Rules using Examples
BestRules = ∅
BestAccuracy = 0
For as many repetitions as NumRepetitions

(NewRules,NewAccuracy) = RuleSelectionAlgorithm(MatchProfiles,Examples,DefaultClass)
If NewAccuracy > BestAccuracy

BestRules = NewRules

BestAccuracy = NewAccuracy
Else If NewAccuracy = BestAccuracy

If NewRules.Length < BestRules.Length

BestRules = NewRules
BestAccuracy = NewAccuracy

EndIf

EndIf

EndFor

Offspring = Generate individual from BestRules
Output : Offspring

The experimentation settings used in these tests are detailed
in next section. From table 1 we observe how the new op-
erator achieves a maximum performance boost of 2.4% over
CX for both datasets, showing clearly the benefits of SX.

However, a very different situation appears when we test
the operator on the wpbc dataset. As table 2 shows, SX is
never able to outperform CX. Moreover, in one of the config-
urations the performance decrease achieves 6.1%, which is a
quite large performance drop. When looking for the causes
of this issue, we observed that the training accuracy of the
worst smart crossover configuration had increased by 5.8%
over CX, while the average number of rules had doubled.
These observations indicate that the cause of this perfor-
mance drop is overlearning.

In order to fix the problem of overlearning we prune the
rule sets generated by SX by removing rules that match only
a few examples, as these very specific rules are the main can-
didates to obtain poor test accuracy. How many examples
do we set up as a threshold to apply this pruning process?
The aim of this research is to produce an operator that has
robust performance across a broad range of datasets in many
different circumnstances. For this paper we propose a cer-
tain heuristic that has produced reasonably robust results
across several datasets. As any heuristic, it has some limita-
tions due to the bias it introduces, but we leave the proposal
of a more sophisticated pruning mechanism for further work.
The current heuristic works as follows:

1. The heuristic defines a certain threshold. Rules that



Table 1: Performance of the original SX on the bal and zoo datasets

Dataset Repetitions
PSmartX = 0.05 PSmartX = 0.10

2 parents 5 parents 10 parents 2 parents 5 parents 10 parents

bal

— Accuracy without smart crossover : 79.0±4.0
1 78.8±4.2 80.7±4.3 81.5±3.9 78.6±4.0 80.8±4.0 81.1±3.8
2 78.6±4.1 80.4±4.1 81.4±3.7 78.4±3.9 80.7±3.7 81.3±3.8
5 78.5±4.2 80.4±4.2 81.2±3.8 78.1±4.3 80.9±3.8 81.2±3.6

zoo

— Accuracy without smart crossover : 92.1±8.0
1 92.9±7.6 93.6±6.6 94.0±6.7 93.1±7.0 94.3±6.4 94.4±6.7
2 93.5±7.0 94.1±6.7 94.5±6.6 93.7±6.5 94.1±6.7 94.4±6.3
5 93.7±7.1 94.5±6.3 94.4±6.4 93.7±6.9 94.2±6.4 94.4±6.4

Table 2: Performance of the original SX on the wpbc dataset

Dataset Repetitions
PSmartX = 0.05 PSmartX = 0.10

2 parents 5 parents 10 parents 2 parents 5 parents 10 parents

wpbc

— Accuracy without smart crossover : 75.3±8.3
1 74.4±8.4 73.5±9.6 70.8±9.9 74.7±8.5 72.5±10.2 69.2±10.2
2 74.6±9.5 73.5±8.8 70.5±10.0 74.6±8.5 72.0±9.1 70.4±10.2
5 74.6±9.5 73.5±8.8 70.5±10.0 74.6±8.5 72.0±9.1 70.4±10.2

Figure 6: Evolution of the training accuracy for the
MX-11 dataset under different combination of pa-
rameters for SX
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correctly classify a number of examples smaller than
the threshold are be removed

2. A different threshold is defined for each class

3. The threshold is set at 5% of the training examples
belonging to that class

4. The threshold has a minimum value of 5

5. Finally, in order to classify correctly extremely small
datasets, the threshold is never higher than 20% of the
training examples belonging to that class

The results reported in next section use all the algorithmic
considerations described so far.

5 Results
In this section we test SX including the rule pruning code
on a set of 25 datasets that represent a broad range of do-
mains in respect to number of attributes, instances, type,
. . . . These problems were taken from the University of Cal-
ifornia at Irvine (UCI) repository [3], and their features are
summarized in table 3. The datasets are partitioned us-
ing the standard stratified ten-fold cross-validation method.
Also, three different sets of 10-cv folds and 15 random seed
are used. This means that the results for each dataset and
configuration are the average of 450 runs. Student t-tests
are used in order to analyze and compare the performance
of SX, using a confidence interval of 95%. The t-tests are
applied separately for each dataset. Also, the Bonferroni
correction is used for multiple pair-wise comparisons. The
used parameters of the system are the ones defined in [2].

For all 25 datasets we test the 18 combinations defined
in previous section for the three parameters of the operator.
First we will analyze the global performance of each of the
18 configurations for all datasets in order to select the best
configuration, and later we will compare, dataset by dataset,
this configuration against the original operator.

Table 4 reports the average accuracy over the 25 datasets
of each of the 18 configurations. This table is complemented
with the results of the t-tests in table 5. We report the t-
tests applied between each of the 18 configurations of SX
and CX. In average, all 18 tested configurations achieve
better performance than CX. The maximum average accu-
racy difference is 0.4% obtained by the configurations with
PSmartX = 0.10, number of parents = 10 and repetitions
= 2,5. Moreover, only one configuration, and in a single
dataset was significantly outperformed by CX, and two con-
figurations managed to outperform significantly the base
configuration in four datasets. Based on the combination
of the t-tests and the obtained average accuracies, we select
the configuration with PSmartX = 0.10, number of parents



Table 3: Features of the datasets used in this paper.
#Inst. = Number of Instances, #Attr. = Number
of attributes, #Real = Number of real-valued at-
tributes, #Nom. = Number of nominal attributes,
#Cla. = Number of classes, Dev.cla. = Deviation
of class distribution

Dataset Properties
Code #Inst. #Attr. #Real #Nom. #Cla. Dev.cla.

bal 625 4 4 — 3 18.03%
bpa 345 6 6 — 2 7.97%
bre 286 9 — 9 2 20.28%
cmc 1473 9 2 7 3 8.26%
col 368 22 7 15 2 13.04%
cr-a 690 15 6 9 2 5.51%
gls 214 9 9 — 6 12.69%
h-c 303 13 6 7 2 4.46%
hep 155 19 6 13 2 29.35%
h-h 294 13 6 7 2 13.95%
h-s 270 13 13 — 2 5.56%
ion 351 34 34 — 2 14.10%
irs 150 4 4 — 3 —
lab 57 16 8 8 2 14.91%
lym 148 18 3 15 4 23.47%
pim 768 8 8 — 2 15.10%
prt 339 17 — 17 21 5.48%
son 208 60 60 — 2 3.37%
thy 215 5 5 — 3 25.78%
vot 435 16 — 16 2 11.38%
wbcd 699 9 9 — 2 15.52%
wdbc 569 30 30 — 2 12.74%
wine 178 13 13 — 3 5.28%
wpbc 198 33 33 — 2 26.26%
zoo 101 16 — 16 7 11.82%

= 10 and repetitions = 5 to compare it in detail against CX.
From table 4 we can identify some general trends. The most
sensitive parameter of the operator is the number of parents
used in SX, followed by PSmartX and being the number of
repetitions of the rule selection algorithm the least impor-
tant parameter.

Table 6 contains the comparison of several metrics be-
tween CX and the selected configuration of SX. We report
three metrics: the test accuracy, the average rule-set size
of the generated solutions and the algorithm run-time. We
can observe how SX obtains better accuracy than CX in 16
of the 25 datasets. In 5 of these datasets the difference is
higher than 1%. On the other hand, the maximum perfor-
mance hit of the new operator compared to CX is 0.64%.
The run-time of SX is clearly higher than the run-time of
the classic operator. This issue was expected, as this con-
figuration is the one using the highest number of rules to
generate one offspring.

The comparison of the number of rules generated by both
crossover operators is not uniform. In some cases, such as
the gls dataset, SX generates more rules than CX, but these
added rules mean a performance boost of more than 3%.
On the other hand, on some datasets such as bre, col or
vot, SX manages to generate more compact rule sets with
higher accuracy, indicating that the algorithm has been able
to select the appropriate and minimum number of rules to
generate an accurate rule set. However, we can observe how,
for the bal dataset, the achieved accuracy is less than the
one achieved in previous section by SX without rule pruning.
The developed pruning heuristic, although has showed to be
quite robust, still has some limitations. Finally, as a refer-
ence, the accuracy for several alternative machine learning
systems using same the datasets and cross-validation parti-
tions used in this paper is reported in [1].

6 Conclusions and further work
In this paper we have proposed an smart recombination op-
erators designed for the Pittsburgh approach of Learning
Classifier Systems. In comparison with some recent Michi-
gan LCS smart recombination approaches, the focus of the
new operator does not take place at a rule level, but as a
rule set level. In this way we exploit the main character-
istic of the Pittsburgh LCS: having a global view of the
whole solution. The tested SX selects several parents from
the population, evaluates all their rules on all examples and
then selects the minimum subset of rules that maximizes
the training accuracy of the whole rule set. This selection
process has been extended after some short tests with a rule
pruning method to avoid the danger of overlearning. The
tests performed over a broad range of datasets indicate that
the new operator can help GAssist in outperforming signifi-
cantly the classic crossover operator in several datasets, and
it has been never outperformed. Also, in some datasets the
final rule-sets obtained were smaller, showing the capacity
of SX for avoiding unnecessary or incorrect rules. All this
performance boost and robustness has some cost, which is
the longer run-time of the system.

There are several lines of future work. The most imme-
diate one is the proposal of a better rule pruning heuris-
tic, as we have observed how the current pruning code, al-
though being quite robust, can compromise part of the possi-
ble achievable performance boost. After this improvement,
it will be the moment to compare the performance of SX
against other paradigms of LCS and other alternative ma-
chine learning systems. Moreover, GAssist has recently [14]
been applied to very large bioinformatics datasets, of approx
260000 instances. It is important to evaluate the perfor-
mance of SX on such datasets, and to check if it is feasible
to combine successfully SX with the windowing mechanism
used in [14] which guarantees a reasonably efficient learning
time on these datasets. Alleviating the run-time of the SX
operator would also be useful.

Finally, there is another area of smart recombination that
we have not treated so far, which acts at the rule level. The
proposed operator can only act over the currently existing
rules in the population, and in some cases it might be possi-
ble that the system is unable to find better individual rules
with the current mechanisms. It could be very useful to
combine both kinds of smart exploration.
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