Analysis of the Initialization Stage of a Pittsburgh
Approach Learning Classifier System

Jaume Bacardit
Automated Scheduling, Optimisation and Planning group
School of Computer Science and IT, University of Nottingham
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK

jgb@cs.nott.ac.uk

ABSTRACT

This paper is focused on studying the initialization stage
of learning classifier systems (LCS) applying the Pittsburgh
approach. It has a theoretical part where the covering prob-
ability of a random rule set is modelled and a practical part.
The practical part has the objective of developing general
initialization policies that have competent performance on
a broad range of datasets. Two kinds of policies are tested:
(1) ways of tuning the initialization probability of the sys-
tem and (2) smart initialization operators that create rules
that are generalized versions of randomly sampled training
instances. The results identify a subset of settings that are
robust enough to be considered candidates to be the de-
fault initialization policy. These settings have competent
performance compared to several alternative machine learn-
ing systems. Beside identifying the good policies, the exper-
imentation made is also useful to give hints about what kind
of initial solutions is the system able to process successfully
to create well generalized solutions

Categories and Subject Descriptors
1.2 [Artificial Intelligence]: Learning

General Terms

Algorithms,Experimentation

Keywords

Evolutionary Algorithms, Learning Classifier Systems, Rule
Induction

1. INTRODUCTION

In the last decade the behaviour of genetic algorithms
(GA) [13, 11] has been analyzed using several different tech-
niques and approaches. One of them proposes a facet-wise

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

analysis [12] of selectorecombinative GAs based on the build-
ing block (BB) concept, proposing a set of models that
are used to guarantee the success of a GA for problems of
bounded difficulty.

More recently this analysis has been extrapolated to
Learning Classifier Systems (LCS), one of the application of
evolutionary computation to machine learning tasks. Specif-
ically there is extensive theoretical work [8] to model the be-
haviour of XCS [19], one of the most representative systems
of the Michigan approach of LCS.

The aim of this paper is to analyze and improve the ini-
tialization stage of one of the other major LCS families: the
Pittsburgh approach [10]. This study is splitted in two parts.
In the first part one of the theoretical models proposed for
XCS is adapted for a modern-day Pittsburgh system: GAs-
sist [3]. Specifically, the model studied in this paper deals
with the supply of raw building blocks in the population.
That is, the initialization stage of the system.

This theoretical model deals with the probability of
matching a random input instance for the GABIL [10] nom-
inal knowledge representation. The model is also applicable
to representations that inherit the semantics of GA BIL, such
as the Adaptive Discretization Intervals (ADI) [3] knowledge
representation for real-valued attributes.

In the second part of the paper a form of smart initial-
ization operator is studied. This operator creates the initial
rules of the population as generalized versions of randomly
chosen instances from the training set, in a similar manner
to the covering operator of XCS [19] or the initialization
stage of the HIDER genetic iterative rule learning system
[1]. Two instance sampling methods are studied.

These studied models and techniques are tested experi-
mentally on a broad range of real datasets with one general
goal: determining if there is a global initialization policy
with competent performance. If this goal is achieved, it can
alleviate the practitioner of the system from manually tun-
ing the initialization stage of the system for each dataset.
The performance of the system is also compared to a broad
range of alternative learning systems comprising different
learning paradigms and knowledge representations.

The paper is structured as follows. First, section 2
presents some related work, followed by section 3 describ-
ing briefly the framework of the classifier system studied in
the paper. Then, sections 4 and 5 define the match prob-

republish, to post on servers or to redistribute to lists, requires prior specific 2bility model and the smart initialization operator, respec-

permission and/or a fee.
GECCO’'05,June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/000655.00.

tively. Next, section 6 describes the experimental evaluation
reported in this paper. The results of this evaluation are

discussed in section 7 and, finally, section 8 describes the
conclusions and proposes some further work.

2. RELATED WORK

There is extensive theoretical work [8] of the behaviour of
Michigan style systems, specifically on XCS. Its behaviour
is modelled from several different points of view: covering
bound (to make sure that the initial rules can match the in-
put instances), schema bound (to make sure that these ini-
tial rules contain good classifiers), reproductive opportunity
bound (to ensure reproduction and growth of good rules),
time bound (number of needed learning steps to achieve per-
fect accuracy), and niche support bound (ensure that all
sub-solutions are sustained with high probability). Some of
these bounds are also useful for the Pittsburgh approach of
LCS, and the model proposed in this paper is inspired in
the covering bound model of XCS.

The use of initialization operators that use training in-
stance to create rules is not new in the LCS field. The cov-
ering operator performs this task in the XCS system [19].
This operator is activated when the system cannot match
an input example and creates a rule that is a generalized
version of the instance.

A similar operator is used in the HIDER system [1], which
is an evolutionary iterative rule learning system. HIDER
uses iteratively a GA to learn one rule at a time applying
a separate-and-conquer policy. In this case the operator is
used to create the initial population of the GA. These ini-
tial rules are also generalized versions of randomly sampled
training instances.

We can also find examples of Pittsburgh approach sys-
tems that use similar operators, such as the GIL system
[14]. This system proposes a mixed initialization stage, ini-
tializing randomly some of the individuals of the population
and creating rules that are exact copies of randomly sampled
training instances. This is the main difference from the two
previously mentioned systems, where the created rules are
generalized versions of the input instance, not exact copies.
The GIL author states that the best initialization method
is a mix of these two policies (random and instance-based).
However, there is no information about how this mix is per-
formed, nor a model about the initialization behaviour.

3. FRAMEWORK

The system used in this paper is called GAssist [3], and
it is a Pittsburgh learning classifier system descendant of
GABIL [10]. The system applies a near-standard GA that
evolves individuals that represent complete problem solu-
tions. An individual consists of a variable-length rule set.
The knowledge representation for discrete attributes (rules
with conjunctive normal form (CNF) predicates) and the se-
mantically correct crossover operator is taken directly from
GABIL. Next is a brief description of its main features.

Control of the individuals length: Dealing with
variable-length individuals raises some important issues.
One of the most important one is the control of the size
of the evolving individuals because it can grow without con-
trol, something known as Bloat effect [18]. This control is
achieved in GAssist using two different operators:

e Rule deletion. This operator deletes the rules of the
individuals that do not match any training example.
This rule deletion is done after the fitness computation

and has two constraints: (a) the process is only acti-
vated after a predefined number of iterations (to pre-
vent an irreversible diversity loss) and (b) the number
of rules of an individual never goes below a threshold.

e Minimum description length-based fitness function.
The minimum description length (MDL) principle [17]
is a metric applied in general to a theory (being a rule
set in this paper) which balances the complexity and
accuracy of the rule set. We have used an implemen-
tation of the MDL principle tailored to the Pittsburgh
approach and the used knowledge representations [3].

Knowledge representations For nominal attributes the
GABIL [10] representation has been used. For real-valued
attributes we have used a representation called adaptive dis-
cretization intervals (ADI) rule representation [3]. This
representation uses the semantics of the GABIL rules (con-
junctive normal form predicates), but instead of the values
of a nominal attribute, it uses non-static intervals formed
by joining neighbouring low-level intervals provided by sev-
eral predefined candidate discretization algorithms. These
intervals can evolve through the learning process splitting
or merging among them and potentially using several dis-
cretization algorithms at the same time.

Explicit and static default rule: Using the rules of an
individual as an ordered set to perform the match process
allows the creation of very compact rule sets by the use of
default rules. We use an existing mechanism [5] to explicitly
exploit this issue and determine automatically the class for
the default rule.

Policy for missing values: Some of the problems used
in the experimentation reproduced in this paper have miss-
ing values. A substitution policy has been used. Before
starting the learning process all missing values are changed
with either the average value of the attribute (for real-
valued attributes) or the most frequent value (for symbolic
attributes). These averages are not computed using all the
train instances, but only the ones belonging to the same class
as the instance with a missing values being substituted.

4. MODELLING THE MATCH
PROBABILITY

The objective of this section is to model the probability
that an individual has of matching a random input instance.
Therefore, it is dependant of the knowledge representation.
Thus, the first step is to describe briefly the used represen-
tation: the GABIL one.

In GABIL each rule consists of a condition part and a clas-
sification part: condition — classification. Each condition
is a Conjunctive Normal Form (CNF) predicate defined as:

(Ar=ViV.. VAL =V A . ANA = V3V A, = V)

Where A; is the ith attribute of the problem and Vl-j is the
jth value that can take the ith attribute.

This kind of predicate can be encoded into a binary string
in the following way: if we have a problem with two at-
tributes, where each attribute can take three different values
{1,2,3}, a rule of the form “If the first attribute has value
1 or 2 and the second one has value 3 then we assign class
1”7 will be represented by the string 110/001|1. In order to
create the initial population, GABIL uses a probability of
assigning value “1” to each position in the predicate.

Therefore, the probability that each initial rule has of
matching a random input instance is defined in equation 1
where P; is the probability of value “1” and a is the number
of attributes in the domain.

P(match) = (P1)* (1)

We can extend 1 to a whole individual (consisting in a set
of rules) with equation 2 where r is the initial number of
rules per individual.

P(match individual) = 1—(1—P(match))” = 1—(1—(P1)")"
(2)
Equation 2 would be applicable to the GABIL representa-
tion as it is defined. However, in the learning system studied
in this paper we are also using an explicit default rule mech-
anism. This means that we have to use a P; probability
low enough to make sure that the default rule is really used.
Given the assumption of equal class distribution we can tune
P, with the objective of having a match probability equal to
the percentage of examples not covered by the default rule
(where nc is the number of classes in the domain):

P(match individual) =1 — L (3)
ne
1
1—(P)Y)" = — 4
G-y =L (1)
P=gf1- (5)
ne

Two constraints for the minimum and maximum allowed
probability (0.1 and 0.95, respectively) are added. With 5
we have developed an automatic method to adjust the value
for P1. In order to check if the assumption made is valid
enough we computed the experimental average match ratio
of all the rules but the default one for the individuals in the
initial population using the datasets used for the experimen-
tation reported in section 6. Table 1 compares the exper-
imental match ratio with the assumption of uniform class
distribution, showing also the computed P;. The results
indicate that the average divergence is quite low (3.52%)
showing that the assumption is quite reasonable.

5. INSTANCE-BASED RULE
INITIALIZATION

This smart initialization algorithm is defined in the code
in figure 1. Basically, it samples without replacement an
instance from the training set and creates a rule that is a
generalization of the given instance (using Pi to generalize
the rule). It also takes into account the use of the explicit
default rule, sampling only instances not belonging to the
class of the default rule.

Two variants of the instance sampling mechanism have
been tested. The first one assigns equal probability to all
eligible instances, that is, not belonging to the default class
of the individual being initialized. The second mechanism
gives equal probability to all eligible classes. After randomly
selecting the class, one of its instances is randomly sampled
with uniform probability. The reason for testing this second
mechanism is that the GAssist system has shown previously
that has some difficulties in solving domains with high class

Table 1: Comparison of the match ratio of the dy-
namic rules of the initial population with the uni-

form class distribution assumption
Name | Experimental | Assumption | Py

bal 69.63%+1.01 66.67% 0.49
bpa 49.71%+1.72 50.00% 0.57
bre 51.17%=+1.09 50.00% 0.69
cmce 70.51%+0.83 66.67% 0.73
col 52.36%40.95 50.00% 0.86
cr-a 50.87%=0.99 50.00% 0.80
gls 86.55%+£1.00 83.33% 0.77
h-c 55.48%=+0.85 50.00% 0.78
h-h 55.46%+1.46 50.00% 0.78
h-s 55.22%+1.18 50.00% 0.78
hep 52.21%=+1.00 50.00% 0.84
ion 56.27%=+1.00 50.00% 0.91
irs 69.84%+1.39 66.67% 0.49
lab 49.96%+0.98 50.00% 0.81
lym 81.63%10.88 75.00% 0.87
pim 52.22%+1.54 50.00% 0.66
prt 97.36%=+0.33 95.24% 0.90
son 61.19%+0.83 50.00% 0.95
thy 67.89%+1.98 66.67% 0.56
vot 50.27%+1.14 50.00% 0.81
wbed | 51.68%+1.29 50.00% 0.69
wdbc | 58.17%=+1.52 50.00% 0.90
wine | 67.71%=+1.05 66.67% 0.80
wpbc | 59.97%=+1.31 50.00% 0.91
700 89.81%=+0.75 85.71% 0.87

62.53% | 58.91% | 0.77

ave. |

Procedure Rule initialization operator
Input : P1,defaultClass, TrainingSet
Rule = create empty rule
Instance = sample without replacement an instance from
TrainingSet not belonging to defaultClass
ForEach attribute in Instance
instanceV alue= Instance.valuelattribute]
ForEach value in attribute
If value = instanceValue Then
Rule.attrs|attribute].val[value] = 1
Else
If Rand[0,1] < P, Then
Rule.attrs[attribute].val[value] = 1
Else
Rule.attrs|attribute].val[value] = 0
EndIf
EndIf
EndForEach
EndForEach
Rule.class = Instance.class
Output : Rule

Figure 1: Smart rule initialization operator

unbalance [3]. It is clear that this mechanism will not com-
pletely solve the problem, but at least we can test if it has
some influence over the performance of the system.

6. EXPERIMENTAL EVALUATION
6.1 Tests design

The objective of the experiments reported in this paper
is to determine which is the most suitable (or at least more
robust) global policy to automatically tune the initialization
stage of GAssist. In order to achieve this objective we will
combine the two kind of techniques studied in this paper:

e Policies to give value to P;

— The automatic policy based on the match proba-
bility model

— Four global values of P;: 0.25, 0.50, 0.75, and 0.90
e The rule initialization operator

— Without smart initialization (labelled NoST)

— With smart initialization and instance-wise uni-
form sampling (labelled TWST)

— With smart initialization and class-wise uniform
sampling (labelled CWST)

The combination of these settings produce 15 configura-
tions to test. 25 datasets have been used in this paper.
These datasets represent a broad range of domains in re-
spect to number of attributes, instances, type, etc. These
problems were taken from the University of California at
Irvine (UCI) repository [6], and their features are summa-
rized in table 2.

The datasets will be partitioned using the standard strat-
ified ten-fold cross-validation method. Also, three different
sets of 10-cv folds and 5 random seed will be used. This
means that the results for each dataset and configuration
will be the average of 150 runs. Student t-tests will be used
in order to analyze and compare the results of the tests,
using a confidence interval of 95%. Also, the Bonferroni
correction will be used for multiple pair-wise comparisons.

The comparison process will use the following methodol-
ogy: First, for each of the three types of initialization oper-
ators tested we will use statistical tests to determine which
of the 5 types of P; tuning policies is the most suitable one.
After the best (or more robust) policy is identified for each
initialization operator these optimal configurations will be
compared among them to determine the global best policy.
This global policy will be compared with some alternative
learning systems.

Parameters of the system are described in table 3.

6.2 Results of the tests with NoSI

Table 4 shows the test accuracy for the tested P tun-
ing policies using the random initialization operator for all
datasets. Table 5 shows global averages over all datasets of
training and test accuracy, and also the results of the t-tests:
the count of times that a method significantly outperforms
other methods and the count of times that a method has
been significantly outperformed.

From these results we can see a huge performance differ-
ence between the configurations using values 0.25 and 0.50

Table 2: Features of the datasets used in this paper.
#Inst. = Number of Instances, #Attr. = Number
of attributes, #2Real = Number of real-valued at-
tributes, #2Nom. = Number of nominal attributes,
#Cla. = Number of classes, Dev.cla. = Deviation
of class distribution

Dataset Properties

Code #lInst. #Attr. #Real #Nom. #Cla. Dev.cla.
bal 625 4 4 — 3 18.03%
bpa 345 6 6 — 2 7.97%
bre 286 9 — 9 2 20.28%
cmc 1473 9 2 7 3 8.26%
col 368 22 7 15 2 13.04%
cr-a 690 15 6 9 2 5.51%
gls 214 9 9 6 12.69%
h-c 303 13 6 7 2 4.46%
hep 155 19 6 13 2 29.35%
h-h 294 13 6 7 2 13.95%
h-s 270 13 13 — 2 5.56%
ion 351 34 34 — 2 14.10%
irs 150 4 4 — 3 —
lab 57 16 8 8 2 14.91%
lym 148 18 3 15 4 23.47%
pim 768 8 8 — 2 15.10%
prt 339 17 — 17 21 5.48%
son 208 60 60 — 2 3.37%
thy 215 5 5 — 3 25.78%
vot 435 16 — 16 2 11.38%
wbced 699 9 9 — 2 15.52%
wdbc 569 30 30 — 2 12.74%
wine 178 13 13 — 3 5.28%
wpbc 198 33 33 — 2 26.26%
700 101 16 — 16 7 11.82%

Table 3: GAssist configuration for the tests reported
in the paper

Parameter Value
General parameters

Crossover probability 0.6
Selection algorithm Tournament
Tournament size 3
Population size 400
Individual-wise mutation probability 0.6
Initial #rules per individual 20

Rule Deletion operator
Iteration of activation 5

Minimum number of rules Factive rules + 3
MDL-based fitness function

Iteration of activation 25
Initial theory length ration 0.075
Weight relax factor 0.9
ADI rule representation
Split and merge probability 0.05
Initial reinitialize probability 0.02
Final reinitialize probability 0
#bins of uniform-width discretizers 4,5,6,7,8,10,15,20,25

Maximum number of intervals 5

Table 4: Test accuracy of the tested P; tuning policies using NoSI. The best method for each dataset is marked
in bold. A e symbol marks the methods being significantly outperformed by the best policy according to the

t-tests
Dataset || 25% | 50% | 75% | 90% | Auto

bal 7859+3.98¢ | 78.97+14.08¢ | 78.86£4.00 | 79.33%3.96 | 78.58%£3.85
bpa 62.21£7.97 61.63+£7.27 62.68+7.34 | 62.88+7.57 | 63.13+7.74
bre 68.194+9.260 | 68.46:£9.00 69.48+8.28 | 70.62+7.56 | 69.40+7.56

cme 54.89+4.03 55.03+4.15 | 55.10£4.01 | 54.40£4.02 | 55.02£4.10
col 63.07+1.52¢ | 70.49+13.47e | 93.59+3.94 | 93.48+4.57 | 93.4644.40

cr-a 55.71+2.43e | 85.39+3.92 | 85.10+£4.07 | 85.29+3.69 | 85.05+3.81
gls 62.82:£12.17¢ | 67.52£10.04 | 67.41£9.97 | 68.35+8.72 | 67.92+9.48
h-c 55.38+4.76e | 80.451+5.99 | 79.40+5.68 | 80.35+6.33 | 80.3446.08
h-h 64.57+4.94e | 96.1443.22 | 95.71£3.18 | 95.95+3.51 | 95.83+3.35
h-s 57.11+6.71e | 80.47+7.49 80.52+7.83 | 80.59+7.35 | 80.54+7.18
hep 79.38+2.15e | 82.11+5.85e | 89.16+8.15 | 89.70+7.98 | 89.82+8.20
ion 64.12+1.568 | 64.12+£1.56e | 92.72+4.85 | 92.91+4.58 | 92.56+4.98
irs 95.16+5.70 95.07+5.88 | 95.33+5.70 | 94.89+5.73 | 95.07+5.73
lab 64.25+4.660 | 95.09+10.96e | 97.51+6.29 | 98.17+5.36 | 97.36::6.26

lym 54.86:£3.03e | 69.67£14.79 | 80.47+10.35 | 80.23+10.24 | 80.44%10.76
pim 74.33+4.52 74.36+4.45 74.28+4.54 | TA.T7T+5.14 | 74.90+4.71
prt 28.94+5.48e | 43.13+9.81e | 47.43+6.70 | 48.24+7.61 | 47.93+7.28
son 53.43+2.25e | 53.43+2.25e | 54.73+6.55e | 75.8318.88 | 76.43+9.94
thy 91.88+5.99 91.724+5.86 | 92.15+5.50 | 92.10£5.91 | 92.09+5.91
vot 61.39+1.20e | 96.74+3.57 97.09+3.22 | 97.30+2.65 | 96.97+2.90

wbed 96.06+2.42 96.1942.45 96.00+2.38 | 96.00+2.26 | 96.20+2.28

wdbc 62.74+0.620 | 62.74+0.62¢ | 94.30+2.67 | 94.24+2.91 | 94.14:£2.99

wine 41.02+7.51e | 93.05£5.90 93.35+5.66 | 92.64+5.63 | 93.69+5.17

wpbc 76.44+3.68 76.44+3.68 | 76.51+7.85 | 75.89+8.13 | 74.8548.60
700 41.10+5.04e | 78.40+20.52¢ | 91.29+8.44 | 91.28+8.83 | 92.56+8.38

Table 5: Averages of training and test accuracy and
results of the t-tests (#times outperforming/#times
outperformed) for the tested P; tuning policies using
NoSI

Py policy || Training acc. | Test acc. | T-tests
0.25 67.65+17.95 | 64.31+15.83 0/61
0.50 82.77+14.80 | 76.674+14.74 13/25
0.75 89.34+13.29 | 81.614+14.59 22/2
0.90 90.78+11.50 | 82.624+13.48 28/0
Auto 91.05+11.38 | 82.574+13.53 25/0

for P; and the other configurations. Looking at the full
results in table 4 we can see how some configurations are
unable to learn at all in certain datasets. An extreme exam-
ple of this problem is the son dataset which needs at least
a value of 0.90 for P;. The only two configurations that are
able to learn properly for all the tested datasets are 0.75 and
the automatic one.

The automatic policy manages to obtain the highest train-
ing accuracy, which indicates that it is able to produce a set
of initial individuals that allow the system to learn but that
are not over-general, showing a good equilibrium between
generality and specificity. However, this fact does not pro-
duce an advantage in the test stage, where this configura-
tion achieves very similar performance to the 0.75 and 0.90
policies. The combination of t-tests and average accuracy
results indicate that the best policy is 0.90.

6.3 Results of the tests with IWSI

Tables 6 and 7 summarize the results of testing the smart
initialization operator with instance-wise sampling. The re-
sults show how the smart initialization operator has a posi-
tive effect on all the configurations that were unable to learn
in the previous tests with the random initialization opera-
tor. We can observe that two configurations (0.75 and Auto)

Table 7: Averages of training and test accuracy and
results of the t-tests (#times outperforming/#times
outperformed) for the tested P; tuning policies using
IWSI

Py policy || Training acc. | Test acc. | T-tests
0.25 88.83+13.03 | 80.764+14.43 0/18
0.50 90.20+11.70 | 81.774+14.05 3/9
0.75 91.05+£11.29 | 82.50+13.45 8/0
0.90 90.84+11.47 | 82.594+13.58 8/0
Auto 91.02+11.41 82.54+13.52 8/0

have higher training accuracy than the configuration with
top test accuracy (0.90). The smart initialization operator
amplifies the effect observed in the Auto configuration of
the previous tests. The combination of t-tests and average
accuracy results indicate that the best policy is 0.90.

6.4 Results of the tests with CWSI

Tables 8 and 9 summarize the results of testing the smart
initialization operator with class-wise sampling. The results
show how all configurations increase or maintain the test
accuracy in respect to the previously reported results about
the smart initialization operator using instance-wise sam-
pling. This time the only configuration that has never been
significantly outperformed is 0.75, and unlike the two pre-
vious groups of tests, this configuration almost achieves the
top training accuracy.

6.5 Comparison of the initialization operators

This subsection summarizes the results of the previous
three subsections by comparing the best P; policies for the
three studied initialization operators. Table 10 contains this
comparison. We can see how all methods achieve similar test
performance, being IWSI and CWSI slightly more robust
than NoSI.

Table 6: Test accuracy of the tested P, tuning policies using IWSI. The best method for each dataset is marked
in bold. A e symbol marks the methods being significantly outperformed by the best policy according to the

t-tests
Dataset || 25% | 50% | 75% | 90% | Auto

bal 78.23£3.91 78.70£3.99 | 79.01£4.03 | 78.92£3.57 | 79.05+3.65
bpa 62.63+8.32 62.09+8.60 | 62.93+£7.78 | 62.47+£8.59 | 63.56+7.04
bre 64.59+8.62¢ | 66.71+9.50e | 70.65+7.80 | 70.26+7.70 | 69.30+8.77

cmc 54.82:+4.22 54.87+4.00 | 54.89+4.06 | 54.43+3.91 | 54.90+4.13
col 91.65+5.07e | 92.11+4.71 | 92.53+4.60 | 93.12+4.41 | 92.70+4.70

cr-a 84.96+3.91 85.19+3.81 | 85.15+3.90 | 85.1844.00 | 85.41+3.94
gls 66.54+£9.73 | 67.5819.31 | 66.74+9.37 | 66.80£10.03 | 67.4549.10
h-c 80.38+6.41 80.78+6.30 | 80.70+5.70 | 80.94+5.60 | 80.79+5.95
h-h 95.93+3.46 95.83+3.14 | 95.954+3.36 | 95.97+3.51 | 96.14+3.12
h-s 80.40+7.57 | 80.64+7.09 | 80.15+6.97 | 79.70+7.66 | 79.75+7.23
hep 89.42+7.56 89.43+7.31 | 89.96+7.57 | 89.70+8.38 | 90.06+7.80
ion 85.86£8.80e | 91.77+5.39e | 92.71+4.88 | 92.63+5.08 | 92.25+4.84
irs 94.89+5.83 | 95.16+5.91 | 94.58+5.88 | 95.07+5.78 | 95.07+5.52
lab 96.37+7.06 96.94+6.86 | 97.75+5.79 | 97.77+6.63 | 97.82+5.79
lym 76.93+10.46e | 79.27+11.07e | 80.15+11.11 | 82.47+9.25 | 81.06+11.31
pim 74.33£4.91 74.64+4.45 | 74.62+£4.79 | 74.72+4.77 | 74.4945.09
prt 49.2447.09 | 48.46+7.13 | 48.84+6.96 | 48.2246.96 | 48.21%7.00
son 53.83+3.78e | 62.98+11.31e | 74.30+£9.28 | 76.32+9.29 | 76.68+9.09
thy 91.98+5.41e | 91.57+5.63e¢ | 91.91+5.40 | 92.06+5.82 | 92.10+5.37
vot 96.42+3.69 96.50+3.40 | 97.08+3.35 | 96.97+3.08 | 97.28+3.01

wbed 95.9542.47 96.05+2.53 | 95.92+2.46 | 95.93+2.40 | 96.16+2.38

wdbc 94.2743.15 93.74+3.05 | 94.21£3.00 | 94.36+2.80 | 94.27+2.88

wine 92.48+5.88 | 93.89+5.18 | 92.93+5.00 | 93.18+5.07 | 93.3545.66

wpbc 76.02+8.08 75.87+8.04 | 76.04+9.30 | 75.38+8.17 | 74.10+8.51
700 91.00+8.59¢ | 93.54+7.37 | 92.75+7.29 | 92.17+8.47 | 91.51+8.18

Table 8: Test accuracy of the tested P, tuning policies using CWSI. The best method for each dataset is
marked in bold. A e symbol marks the methods being significantly outperformed by the best policy according

to the t-tests

Dataset || 25% | 50% | 75% | 90% | Auto
bal 78.45£351 78.65+£3.61 | 79.33£3.92 | 79.06£4.25 | 78.76£4.29
bpa 62.89+7.45 62.09+8.13 | 63.144+8.62 | 62.54+7.40 | 62.01+7.39
bre 66.09+£9.52¢ | 67.73+£8.21e | 69.73+7.60 | 71.37+8.03 | 69.51+8.57e
cmc 55.02+4.25 | 55.35124.08 | 54.97+3.78 | 54.58+3.85e | 54.93+4.05
col 91.50+5.30e | 92.06+£5.02 | 92.62+4.81 | 92.85+5.03 | 93.30+4.81
cr-a 85.15+3.88 | 85.04+4.04 | 85.29+3.94 | 85.29+3.94 | 85.38+3.84
gls 68.08+8.66 | 67.38+£10.09 | 68.13+9.21 | 66.61+9.79 | 68.47+9.02
h-c 79.99+6.58 | 80.79+6.44 | 80.25+5.91 | 80.64+5.78 | 81.42+5.87
h-h 96.20+3.32 95.71+3.62 | 95.54+3.67 | 96.16+3.20 | 95.67+3.31
h-s 79.98+7.76 | 81.09+7.48 | 80.1547.47 | 79.781:6.98 | 80.54+7.70
hep 89.82+6.90 | 90.55+7.67 | 90.50+6.87 | 90.54+7.98 | 89.1047.92
ion 84.11+9.97e | 91.99+539 | 92.66+4.95 | 92.65+4.76 | 92.44+5.11
irs 95.2045.63 | 95.02+5.77 | 95.42+5.77 | 95.07+5.78 | 95.11+5.48
lab 96.18+7.27 | 97.76£5.95 | 97.96+5.61 | 97.72+5.88 | 97.4946.12
lym 78.38+11.40e | 77.98+11.16e | 81.23+9.98 | 80.87+10.33 | 81.05+9.85
pim 74.34+4.61 74.2444.75 | T4.77+4.40 | 74.31+£4.74 | 74.54+4.92
prt 47.93+6.93 | 48.80+7.56 | 48.25+7.47 | 47.51+6.81 | 48.07+7.18
son 54.45+5.09 | 64.41+11.89e | 76.50+9.84 | 76.44+8.87 | 76.71+9.44
thy 91.96+5.10 | 92.04+5.21 | 91.56+5.87 | 92.35+5.85 | 91.4645.49
vot 96.12+3.52¢ | 96.38+3.40e | 96.82+3.52 | 97.23+2.75 | 97.16+2.81
whed 96.03+£2.40 | 95.91£2.38 | 96.00+£2.41 | 95.99+2.33 | 96.07+2.42
wdbc 94.00+2.69 | 94.08+£2.96 | 94.53+3.11 | 94.184+2.97 | 94.4042.76
wine 92.75+5.22 93.30+5.63 | 93.124+5.20 | 93.57+5.56 | 92.56+5.88
wpbc 75.57+7.30 | 76.67+8.33 | 76.60+£7.91 | 75.3049.04 | 75.2248.68

200 92.66+8.20 | 93.59+7.09 | 93.05+7.24 | 92.48+7.24 | 92.0448.46

6.6 Comparing the bestr, policy with some
alternative learning systems

In this subsection we compare the best GAssist configura-
tion (CWSI) to some alternative learning systems that rep-
resent several type of knowledge representations and learn-

ing paradigms:

e C4.5 [16], the well known decision tree induction

learning system

e IBk [2], a nearest neighbour classifier using k=3

e NaiveBayes [15], a Bayesian network approach us-
ing a non-parametric kernel density estimator for real-

valued attributes

e LIBSVM [9], a support vector machine

Table 9: Averages of training and test accuracy and
results of the t-tests (#times outperforming/#times
outperformed) for the tested P; tuning policies using
CwWSI

Py policy || Training acc. | Test acc. | T-tests
0.25 88.74+13.00 | 80.924+14.39 0/17
0.50 90.29+11.57 | 81.944+13.93 3/9
0.75 91.05+11.34 | 82.724+13.44 7/0
0.90 90.82+11.47 | 82.60+13.67 9/1
Auto 91.08+11.42 | 82.544+13.48 9/1

Table 10: Averages of training and test accuracy and
results of the t-tests (#times outperforming/#times
outperformed) for the best P; tuning policies for
each studied initialization operator

Py policy || Training acc. | Test acc. | T-tests
NoSI 90.78+11.50 | 82.624+13.48 0/2
TWSI 90.84+11.47 | 82.594+13.58 1/0
CWSI 91.05+£11.34 | 82.724+13.44 1/0

With the exception of LIBSVM, we have used the WEKA
[20] implementation of these algorithms, using the default
parameters. Table 11 summarizes the results of this com-
parison. We can see how GAssist is the top performing
method and also the learning system least times being sig-
nificantly outperformed (almost tied with LIBSVM. As ex-
pected given the selective superiority problem [7], there is
no learning system completely superior to the other ones.
Nevertheless the results show how GAssist has competitive
performance compared to the other systems.

As a reference for the results reported in this paper, there
is a recent comparison of a basic GAssist version (using
NoSI) against XCS in the literature [4]. Results of XCS
are not included in this paper because different partitions of
the datasets where used therefore the statistical tests used
would not be directly applicable.

7. DISCUSSION

The reported results show some general trends. First of
all, GAssist needs very general initial individuals (very high
Py probability) in order to learn properly. This requirement
can be slightly relaxed when the smart initialization opera-
tor is used, specially when applying the class-wise sampling.
Also, observing the results for each of the three tested initial-
ization operators we can see how the configuration achieving
top training accuracy is not the best one in the test stage.

These two facts indicate that the goal of the initialization
policies should not be to generate the most accurate initial
individuals, but to create a set of individuals that by means
of the current crossover and mutation operators can lead to

Table 11: Averages of training and test accuracy and
results of the t-tests (#times outperforming/#times
outperformed) for the comparison of GAssist with
some alternative learning systems

Py policy | Training acc. | Test acc. | T-tests
GAssist 91.05+£11.34 | 82.72+13.44 44728
C4.5 90.47£9.29 79.45+13.06 19/59
IBk 88.84+9.39 81.344+14.09 34/42
NaiveBayes 84.30+12.87 | 81.23+14.44 | 43/33
LIBSVM 84.44+14.37 | 80.99+15.38 | 61/29

well generalized final solutions. By this we mean that the
system right now is not capable of merging accurate but low-
supported rules to create more general and equally accurate
rules. Nevertheless, this is not a critical drawback because
the results show how GAssist has competent performance.
It only reflects the initialization requirements of the system.

It is necessary to analyze if it is worth using the smart
initialization operator. The results show how it is only sig-
nificantly better than the original random initialization in
one of the 25 tested datasets. This operator has to be com-
bined with a high P; probability in order to achieve good
test accuracy, and this means that the influence of the op-
erator is smaller because the generated rules are not that
much different from a pure randomly initialized rule.

Nevertheless, we think that this is only a first step. If
this operator can be combined, for instance, with a fitness
function biased towards individuals that cover all classes in
the dataset, the performance of GAssist in domains with
high class unbalance can be improved. Also, if the system
could be extended with smart recombination operators that
do not require such high P; probability, the initialization
policies could be tuned to more aggressive (less over-general)
settings in order to boost the performance of the system in
both training and test accuracy.

8. CONCLUSIONS AND FURTHER WORK

This paper has studied the initialization stage of the Pitts-
burgh approach of learning classifier systems. The paper
started by proposing a model for the match probability of a
random rule set (individual) for the GABIL knowledge rep-
resentation. The model was applied to automatically tune
P, the initialization probability used in GABIL, which led
to the second part and major objective of the paper: deter-
mine empirically if there is a global initialization policy that
is suitable for a broad range of datasets.

The experimentation contained two kinds of tested tech-
niques: (1) P; tuning policies, comparing the automatic pol-
icy proposed with some global values for P; and (2) initial-
ization operators, comparing the purely random rule ini-
tialization operator against an smart one generating rules
that are a generalized version of a randomly sampled train-
ing instance. Two types of instance sampling methods were
tested: a pure sampling without replacement of all instance
in the training set and a sampling process where all classes
in the dataset have equal probability of being used.

The combination of these two kinds of policies led to 15
configurations being tested. We tested separately the P;
tuning policies for each initialization operator in order to
determine the most suitable policy for each of them. Later,
when comparing the initialization operators we used only
these best policies. The objective was to determine if there
is some general initialization policy with competent perfor-
mance, in order to simplify the tuning process needed to
adjust the system for each dataset. This objective has been
completely achieved, and by more than a single configura-
tion. The results also indicate the kind of initial individuals
that are required in order to guarantee that the system cre-
ates well-generalized solutions.

The main priorities of the further work should be to mod-
ify the system to exploit more successfully the techniques
studied in this paper by means of smart recombination op-
erators and class-wise fitness functions. It would also be
worth to use the match probability model from others points

of view. For simplicity reasons, we have used only a single
value for the initial number of rules per individual. It would
be worth to study the influence of this variable in the per-
formance of the system. Moreover, the model could be used
to create a population sizing formula. A model relating the
generality degree of the individuals with the success of the
crossover operator would also be useful to complement the
existing match probability model and refine the P; tuning
formula.

9. ACKNOWLEDGEMENTS

The author would like to thank Martin Butz for his use-

ful comments, and acknowledge the support provided by
the Spanish Research Agency (CICYT) under grant num-
bers TIC 2002-04160-C02-02 and TIC 2002-04036-C05-03,
the support provided by the Department of Universities, Re-
search and Information Society (DURSI) of the Autonomous
Government of Catalonia under grants 2002-SGR-00155 and
2001-F1-00514.
Also, this work was sponsored by the Air Force Of-
fice of Scientific Research, Air Force Materiel Command,
USAF, under grant F49620-03-1-0129, and by the Tech-
nology Research, Education, and Commercialization Center
(TRECC), at University of Illinois at Urbana-Champaign,
administered by the National Center for Supercomputing
Applications (NCSA) and funded by the Office of Naval Re-
search under grant N00014-01-1-0175. The US Government
is authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright notation
thereon.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of the Air Force Office of Scientific Re-
search, the Technology Research, Education, and Commer-
cialization Center, the Office of Naval Research, or the U.S.
Government.

10. REFERENCES

[1] J. Aguilar-Ruiz, J. Riquelme, and M. Toro.
Evolutionary learning of hierarchical decision rules.
IEEFE Transactions on Systems, Man and Cybernetics,
Part B, 33(2):324-331, April 2003.

[2] D. W. Aha, D. F. Kibler, and M. K. Albert.
Instance-based learning algorithms. Machine Learning,
6(1):37-66, 1991.

[3] J. Bacardit. Pittsburgh Genetics-Based Machine
Learning in the Data Mining era: Representations,
generalization, and run-time. PhD thesis, Ramon Llull
University, Barcelona, Catalonia, Spain, 2004.

[4] J. Bacardit and M. V. Butz. Data mining in learning
classifier systems: Comparing xcs with gassist. In
Proceedings of the 7th International Workshop on
Learning Classifier Systems. (in press), LNAI,
Springer-Verlag, 2004.

[5]

(12]

(13]

(14]

J. Bacardit, D. E. Goldberg, and M. V. Butz.
Improving the performance of a pittsburgh learning
classifier system using a default rule. In Proceedings of
the 7th International Workshop on Learning Classifier
Systems. (in press), LNAI, Springer-Verlag, 2004.

C. Blake, E. Keogh, and C. Merz. UCI repository of
machine learning databases, 1998.
(www.ics.uci.edu/mlearn/MLRepository.html).

C. Brodley. Addressing the selective superiority
problem: Automatic algorithm /model class selection.
In Proceedings of the Tenth International Conference
on Machine Learning, pages 17-24. Morgan
Kaufmann Publishers, 1993.

M. V. Butz. Rue-based Evolutionary Online Learning
Systems: Learning Bounds, Classification and
Prediction. PhD thesis, University of Illinois at
Urbana-Champaign, 2004.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines. Department of Computer
Science and Information Engineering, National Taiwan
University, 2001. Software available at
http://www.csie.ntu.edu.tw/"cjlin/libsvm.

K. A. DeJong, W. M. Spears, and D. F. Gordon.
Using genetic algorithms for concept learning.
Machine Learning, 13(2/3):161-188, 1993.

D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Publishing Company, Inc., 1989.

D. E. Goldberg. The Design of Innovation: Lessons
from and for Competent Genetic Algorithms. Kluwer
Academic Publishers, 2002.

J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, 1975.

C. Janikow. Indictive Learning of Decision Rules in
Attribute-Based Examples: a Knowledge-Intensive
Genetic Algorithm Approach. PhD thesis, University
of North Carolina, 1991.

G. H. John and P. Langley. Estimating continuous
distributions in Bayesian classifiers. In Proceedings of
the Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 338-345. Morgan Kaufmann
Publishers, San Mateo, 1995.

J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

J. Rissanen. Modeling by shortest data description.
Automatica, vol. 14:465-471, 1978.

T. Soule and J. A. Foster. Effects of code growth and
parsimony pressure on populations in genetic
programming. Evolutionary Computation,
6(4):293-309, Winter 1998.

S. W. Wilson. Classifier fitness based on accuracy.
Evolutionary Computation, 3(2):149-175, 1995.

I. H. Witten and E. Frank. Data Mining: practical
machine learning tools and techniques with java
implementations. Morgan Kaufmann, 2000.

