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Abstract. Prediction of the coordination number (CN) of residues in
proteins based solely on protein sequence has recently received renewed
attention. At the same time, simplified protein models such as the HP
model have been used to understand protein folding and protein structure
prediction. These models represent the sequence of a protein using two
residue types: hydrophobic and polar, and restrict the residue locations
to those of a lattice. The aim of this paper is to compare CN prediction
at three levels of abstraction a) 3D Cubic lattice HP model proteins,
b) Real proteins represented by their HP sequence and c) Real proteins
using residue sequence alone. For the 3D HP lattice model proteins the
CN of each residue is simply the number of neighboring residues on the
lattice. For the real proteins, we use a recent real-valued definition of CN
proposed by Kinjo et al. To perform the predictions we use GAssist, a re-
cent evolutionary computation based machine learning method belonging
to the Learning Classifier System (LCS) family. Its performance was com-
pared against some alternative learning techniques. Predictions using the
HP sequence representation with only two residue types were only a little
worse than those using a full 20 letter amino acid alphabet (64% vs 68%
for two state prediction, 45% vs 50% for three state prediction and 30%
vs 33% for five state prediction). That HP sequence information alone
can result in predictions accuracies that are within 5% of those obtained
using full residue type information indicates that hydrophobicity is a key
determinant of CN and further justifies studies of simplified models.

1 Introduction

The prediction of the 3D structures of proteins is both a fundamental and dif-
ficult problem in computational biology. A popular approach to this problem is
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to predict some specific attributes of a protein, such as the secondary structure,
the solvent accessibility or the coordination number. The coordination number
(CN) problem is defined as the prediction, for a given residue, of the number of
residues from the same protein that are in contact with it. Two residues are said
to be in contact when the distance between the two is below a certain threshold.
This problem is closely related to contact map (CM) prediction. It is generally
believed that functional sites in proteins are formed from a pocket of residues
termed an active site. Active site residues consist of a number of buried (high
CN) residues hence studies of CN are of relevance to understanding protein
function.

While protein structure prediction remains unsolved, researchers have re-
sorted to simplified protein models to try to gain understanding of both the pro-
cess of folding and the algorithms needed to predict it [1, 2, 3, 4, 5]. Approaches
have included fuzzy sets, cellular automata, L-systems and memetic algorithms
[6, 7, 8, 9, 10, 11]. One common simplification is to focus only on the residues
(C-alpha or C-beta atoms) rather than all the atoms in the protein. A further
simplification is to reduce the number of residue types to less than twenty by
using residue sequence representations based, for instance, on physical proper-
ties such as hydrophobicity, as in the so called hydrophobic/polar (HP) models.
Another simplification is to reduce the number of spatial degrees of freedom
by restricting the atom or residue locations to those of a lattice [3, 5]. Lattices
of various geometries have been explored, e.g., two-dimensional triangular and
square geometries or three-dimensional diamond and face centered cubic [9].

The aim of this paper is to compare CN prediction for simplified HP lattice
model proteins (Lattice-HP) with the prediction of the same feature for real pro-
teins using either all twenty amino acid types (Real-AA) or using only the HP
representation (Real-HP). This was done for several levels of class assignment
(two state, three state and five state) and for a range of machine learning algo-
rithms (LCS, C4.5 and NaiveBayes). The CN definition we use for real proteins
was proposed recently by Kinjo et al.[12]. This is a continuous valued function,
rather than the more frequently used discrete formulation [13].

The machine learning algorithm we focus on belongs to the family of Learning
Classifier Systems (LCS) [14, 15], which are rule-based machine learning systems
using evolutionary computation [16] as the search mechanism. Specifically, we
have used a recent system called GAssist, which generates accurate, compact and
highly interpretable solutions [17]. The performance of GAssist will be tested
against some alternative learning mechanisms, and the performance of all these
machine learning paradigms will be discussed.

2 Problem Definition

There is a large literature in CN/CM prediction, in which a variety of machine
learning paradigms have been used, such as linear regression [12], neural networks
[13], a combination of self-organizing maps and genetic programming [18] or
support vector machines [19]. Several kinds of input information have been used
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in CN prediction besides the residue type of the residues in the chain, such
as global information of the protein chain [12], data from multiple sequences
alignments [13, 19, 18, 12] (mainly from PSI-BLAST [20]), predicted secondary
structure [13, 19], predicted solvent accessibility [13] or sequence conservation
[19].

There are also two main definitions of the distance used to determine whether
there is contact between two residues. Some methods use the Euclidean distance
between the Cα atoms of the two residues, while others use the Cβ atom (Cα

for glycine). Also, several methods discard the contacts between consecutive
residues in the chain, and define a minimum chain separation as well as useing
many different distance thresholds. Figure 1 shows a graphical representation of
a non-local contact between two residues of a protein chain.

Native
stateContact

Primary structure

Fig. 1. Graphical representation of a non-local residue contact in a protein

Finally, there are two approaches to classification. Some methods predict the
absolute CN, assigning a class to each possible value of CN. Other methods
group instances 1 with close CN, for example, separating the instances with
CNs lower or higher than the average of the training set, or defining classes in a
way that guarantees uniform class distribution. We employ the latter approach
as explained in section 2.3

2.1 HP Models

In the HP model (and its variants) the 20 residue types are reduced to two
classes: non-polar or hydrophobic (H) and polar (P) or hydrophilic. An n residue
protein is represented by a sequence s ∈ {H, P}+ with |s| = n. The sequence s
is mapped to a lattice, where each residue in s occupies a different lattice cell
and the mapping is required to be self-avoiding. The energy potential in the
HP model reflects the propensity of hydrophobic residues to form a hydrophobic
core.

In the HP model, optimal (i.e. native) structures minimize the following en-
ergy potential:

E(s) =
∑

i<j ; 1≤i,j≤n

(∆i,jεi,j) (1)

1 For the rest of the paper the machine learning definition of instance is used: individ-
ual independent example of the concept to be learned [21]. That is, a set of features
and the associated output (a class) that is to be predicted.
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where

∆i,j =
{

1 if i, j are in contact and |i − j| > 1
0 otherwise (2)

In the standard HP model, contacts that are HP and PP are assigned an
energy of 0 and an HH contact is assigned an energy of -1.

2.2 Definition of CN

The distance used to determine contact by Kinjo et al. is defined using the Cβ

atom (Cα for glycine) of the residues. The boundary of the sphere defined by
the distance cutoff dc ∈ �+ is made smooth by using a sigmoid function. Also,
a minimum chain separation of two residues is required. Formally, the CN (Op

i )
of the residue i of protein chain p is computed as:

Op
i =

∑

j:|j−i|>2

1
1 + exp(w(rij − dc))

(3)

where rij is the distance between the Cβ atoms of the ith and jth residues. The
constant w determines the sharpness of the boundary of the sphere. A value of
three for w was used for all the experiments.

2.3 Conversion of the Real-Valued CN Definition into a
Classification Domain

In order to convert the real-valued CN definition into a set of discrete states,
so that it can be used as a classification dataset, Kinjo et al. propose a method
to determine systematically some CN partitions resulting in an N class dataset.
They choose the boundaries between classes in such a way as to generate classes
with a uniform number of instances. They test two versions of this method.
Defining the class boundaries separately for each residue type or defining them
globally for all 20 residue types. In this study the later definition was adopted
for simplicity and because it is more widely used.

3 The GAssist Learning Classifier System

GAssist [17] is a Pittsburgh Genetic–Based Machine Learning system descendant
of GABIL [15]. The system applies a near-standard generational GA that evolves
individuals that represent complete problem solutions. An individual consists of
an ordered, variable–length rule set. A special fitness function based on the
Minimum Description Length (MDL) principle [22] is used. The MDL principle
is a metric applied in general to a theory (being a rule set here) which balances
the complexity and accuracy of the rule set. The details and rationale of this
fitness formula are explained in [17]. The system also uses a windowing scheme
called ILAS (incremental learning with alternating strata) [23] to reduce the
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run-time of the system, especially for dataset with hundreds of thousands of
instances as in this paper. We have used the GABIL [15] rule-based knowledge
representation for nominal attributes and the adaptive discretization intervals
(ADI) rule representation [17] for real-valued ones.

4 Experimental Framework

4.1 HP Lattice-Based Datasets

Two datasets were employed in this study, a 3D HP lattice model protein
dataset and a data set of real proteins. Table 1 summarizes both datasets,
which are available at http://www.cs.nott.ac.uk/~nxk/hppdb.html. For the
Lattice-HP study, a set of structures from Hart’s Tortilla Benchmark Col-
lection (http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-
benchmarks.html) was used. This consisted of 15 structures on the simple cubic
lattice (CN=6). Windows were generated for one, two and three residues at each
side of a central residue and the CN class of the central residue assigned as the
class of the instance. The instances was divided randomly into ten pairs of train-
ing and test sets These sets act in a similar way to a ten-fold cross-validation.
The process was repeated ten times to create ten pairs of training and test sets.
Each reported accuracy will be, therefore, the average of one hundred values.

Table 1. Details of the data sets used in these experiments

Name Lattice-HP K1050
Type 3D Cubic Lattice Real Proteins
Number of Sequences 15 1050
Minimum Sequence Length 27 80
Maximum Sequence Length 48 2329
Total Hydrophobic 316 170493
Total Polar 309 84850
Total Residues 625 255343

4.2 Real Proteins Dataset

We have used the same dataset and training/test partitions used by Kinjo et al.
[12]. The real protein dataset (Real-AA) was selected from PDB-REPRDB [24]
with the following conditions: less than 30% sequence identity, sequence length
greater than 50, no membrane proteins, no nonstandard residues, no chain breaks,
resolution better than 2 Å and having a crystallographicR factor better than 20%.
Chains that had no entry in the HSSP [25] database were discarded. The final
data set contains 1050 protein chains. CN was computed using a distance cutoff
of 10 Å. Windows were generated for one, two and three residues at each side of a
central residue and the CN class of the central residue assigned as the class of the
instance. The set was divided randomly into ten pairs of training and test set using
950 proteins for training and 100 for testing in each set. These sets act in a similar
way to a ten-fold cross-validation. The proteins included in each partition are re-
ported in http://maccl01.genes.nig.ac.jp/~akinjo/sippre/suppl/list/.

http://www.cs.nott.ac.uk/~nxk/hppdb.html
http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-
benchmarks.html
http://maccl01.genes.nig.ac.jp/~akinjo/sippre/suppl/list/
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We have placed a copy of the dataset used in this paper at http://www.asap.
cs.nott.ac.uk/~jqb/EvoBIO_dataset.tar.gz(approx.85MB). This same
dataset was used to generate a real protein HP sequence dataset (Real-HP) by
assigning each residue a value of Hydrophobic or Polar as shown in Table 2,
following Broome and Hecht [26].

Table 2. Assignment of residues as Hydrophobic or Polar

Residue (one letter code) Assignment
ACFGILMPSTVWY Hydrophobic
DEHKRQN Polar

4.3 Attribute Distributions

For the Lattice-HP dataset, Figure 2 shows the distribution of hydrophobic/polar
residues. Distributions are shown for a range of class assignments, two state,
three state and five state. A higher proportion of hydrophobic residues are ob-
served in the high CN classes, corresponding to a core of buried hydrophobic
residues. A higher proportion of polar residues are found in the low CN (ex-
posed) classes. This is not surprising, since these model protein structures have
been optimized on the basis of hydrophobicity to group the hydrophobic residues
together.
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Fig. 2. Distribution of hydrophobic/polar residues in the Lattice-HP dataset:
h=hydrophobic, p=polar

For the Real-HP dataset, Figure 3 shows the distribution of hydropho-
bic/polar residues two state, three state and five state class assignments. In
these distributions hydrophobic residues are significantly more prevalent in the
high CN classes, corresponding to a core of buried hydrophobic residues. The ap-
proximately equal distribution of hydrophobic and polar residues observed in the
low CN classes (corresponding to exposed/surface residues) may stem from the

http://www.asap.
cs.nott.ac.uk/~jqb/EvoBIO_dataset.tar.gz(approx.85MB)
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approximately two hydrophobic to one polar assignment ratio in Table 2. These
distributions provide a baseline against which the performance of the prediction
algorithms can be gauged.
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Fig. 3. Distribution of hydrophobic/polar residues in the Real-HP dataset:
h=hydrophobic, p=polar

5 Results

The performance of GAssist was compared to two other machine learning sys-
tems: C4.5 [27], a rule induction system and Naive Bayes [28], a Bayesian learn-
ing algorithm. The WEKA [21] implementation of these algorithms was used.
Student t-tests were applied to the mean prediction accuracies (rather than indi-
vidual experimental data points) to determine, for each dataset, those algorithms
that significantly outperformed other methods using a confidence interval of 95%
and Bonferroni correction [29] for multiple pair-wise comparisons was used.

5.1 Lattice-HP Datasets

Table 3 compares the results of two, three and five state CN predictions for
a range of window sizes for the GAssist LCS, Naive Bayes and C4.5 using the
Lattice-HP dataset. A window size of three means three residues either side of the
central residue, i.e. a seven residue peptide. As the number of states is increased
the accuracy decreases from around 80% to around 51% for all algorithms. For
each state as the window size is increased the accuracy increases by around
0.1-0.2%. With the exception of the C4.5 algorithm which shows a decrease in
accuracy with increasing window size in two and three state predictions. There
were no significant differences detected in these tests.

For two states, the best prediction was given by C4.5 with window size of
one (80%±4.9). For three states the best prediction was given by GAssist with
window size of two (67%±4.1). For five states GAssist again gave the best pre-
dictions for a window size of three (52.7%±5.3).
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Table 3. Lattice-HP Prediction Accuracies

Number of States Algorithm
Window Size

1 2 3

2
GAssist 79.8 ±4.9 80.2 ±5.0 80.0 ±5.3
C4.5 80.2 ±4.9 79.9 ±5.0 79.7 ±5.1
NaiveBayes 79.8 ±4.9 80.0 ±4.9 80.2 ±5.0

3
GAssist 67.4 ±4.9 67.8 ±4.1 67.3 ±5.0
C4.5 67.5 ±4.8 67.6 ±4.2 66.6 ±5.0
NaiveBayes 67.2 ±4.6 67.3 ±4.4 67.5 ±4.8

5
GAssist 51.4 ±4.6 51.3 ±4.2 52.7 ±5.3
C4.5 51.7 ±4.5 51.0 ±4.1 52.2 ±5.1
NaiveBayes 51.7 ±4.6 52.3 ±4.3 51.9 ±5.6

5.2 Real Proteins

Table 4 compares the results of two, three and five state CN predictions on real
proteins for the GAssist LCS, Naive Bayes and C4.5 for the Real-HP dataset.
When an HP sequence representation was used, an increase in the number of
states is accompanied by a decrease in accuracy from around 63-64% to around
29-30% for all algorithms. For each state, as the window size is increased the
accuracy increases by around 1%. For two states, the best predictions were
given by GAssist and C4.5 with window size of three (64.4%±0.5). For three
states the best prediction was given by C4.5 with window size of two (45%±0.4).
For five states C4.5 again gave the best predictions for a window size of three
(30.4%±0.5).

Table 4. CN Prediction Accuracies for the Real-HP and Real-AA datasets. A • means
that GAssist outperformed the Algorithm to the left (5% t-test significance). A ◦ label
means that the Algorithm on the left outperformed GAssist (5% t-test significance)

State Algorithm
HP Based Residue Based

Window Size Window Size
1 2 3 1 2 3

2
GAssist 63.6±0.6 63.9±0.6 64.4±0.5 67.5±0.4 67.9±0.4 68.2±0.4

C4.5 63.6±0.6 63.9±0.6 64.4±0.5 67.3±0.4 67.5±0.3 67.8±0.3
NaiveBayes 63.6±0.6 63.9±0.6 64.3±0.5 67.6±0.4 68.0±0.4 68.8±0.3◦

3
GAssist 44.9±0.5 45.1±0.5 45.6±0.4 48.8±0.4 49.0±0.4 49.3±0.4

C4.5 44.9±0.5 45.1±0.5 45.8±0.4 48.8±0.3 48.7±0.3 49.1±0.3
NaiveBayes 44.7±0.5 45.2±0.5 45.7±0.4 49.0±0.4 49.6±0.5◦ 50.7±0.3◦

5
GAssist 29.0±0.3 29.6±0.5 30.1±0.5 32.2±0.3 32.5±0.3 32.7±0.4

C4.5 29.0±0.3 29.7±0.4 30.4±0.5 31.9±0.4 31.4±0.4• 31.0±0.5•
NaiveBayes 29.0±0.3 29.7±0.4 30.1±0.5 33.0±0.2◦ 33.9±0.3◦ 34.7±0.4◦

Using full residue information, an increase in the number of states is accom-
panied by a decrease in accuracy from around 68% to around 34% for all algo-
rithms. For each state, as the window size is increased, the accuracy increases by
around 0.5%, with the exception of the C4.5 algorithm which shows a decrease
in accuracy with increasing window size in five state predictions. The LCS out-
performed C4.5 two times and was outperformed by Naive Bayes six times. For
two, three and five state predictions the best results were given by Naive Bayes

.
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with window size of three (68.8%±0.3, 50.7%±0.3 and 34.7%±0.4 respectively).
Most interestingly, moving from HP sequence representation to full residue type
sequence information only results in a 4% increase for two and three state and
1-2% increase for, the more informative, five state prediction.

5.3 Brief Estimation of Information Loss

In order to understand the effect of using a lower-dimensionality profile of a
protein chain such as the HP model, we have computed some simple statistics
on the datasets. Two measures are computed:

redundancy = 1 − #unique instances
#total instances

(4)

inconsistency =

( #unique instances
#unique antecedents

)
− 1

#states − 1
(5)

Equation 4 shows the effect of reducing the alphabet and the window size:
creating many copies of the same instances. Equation 5 shows how this reduction
creates inconsistent instances: instances with equal input attributes (antecedent)
but different class. For the sake of clarity this measure has been normalized for
the different number of target states. Table 5 shows these ratios. For two-states
and window size of one, the Real-HP dataset shows the most extreme case: any
possible antecedent appears in the data set associated to both classes. Fortu-
nately, the proportions of the two classes for each antecedent are different, and
the system can still learn. We see how the Real-HP dataset is highly redun-
dant and how the Real-AA dataset of window size two and three presents low
redundancy and inconsistency rate.

Table 5. Redundancy and inconsistency rate of the tested real-proteins datasets

HP representation AA representation
States Window Size Redundancy Inconsistency Redundancy Inconsistency

1 99.99% 100.000% 93.69% 90.02%
2 2 99.94% 92.50% 6.14% 3.85%

3 99.75% 81.71% 0.21% 0.05%
1 99.98% 96.88% 90.90% 87.01%

3 2 99.92% 86.25% 4.50% 2.84%
3 99.66% 76.00% 0.17% 0.04%
1 99.97% 93.75% 85.84% 81.52%

5 2 99.86% 86.25% 2.97% 1.84%
3 99.46% 74.36% 0.14% 0.03%

6 Discussion

The LCS and other machine learning algorithms preformed at similar levels for
these CN prediction tasks. Generally, increasing the number of classes (number
of states) leads to a reduction in prediction accuracy which can be partly offset
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by using a larger window size. Reduction of input information from full residue
type to HP sequence reduces the accuracy of prediction. The algorithms were,
however, all capable of predictions using HP sequence that were within 5% of
the accuracies obtained using full residue type sequences.

For all of the algorithms studied, in the case of the most informative five
state predictions, moving from HP lattice to real protein HP sequences leads to
a reduction of CN prediction accuracy from levels of around 50% to levels of
around 30%. The significant reduction in the spatial degrees of freedom in the
Lattice-HP models leads to an improvement in prediction accuracy of around
20%.

In contrast, moving from the real protein HP sequences to real protein full
residue type sequences (for the same five state CN predictions) only a 3-5%
improvement in prediction accuracy results from inclusion of this additional
residue type information. This seems to indicate that hydrophobicity information
is a key determinant of CN and that algorithmic studies of HP models are
relevant. The rules that result from a reduced two letter alphabet are simpler and
easier to understand than those from the full residue type studies. For example,
for the HP representation a rule set giving 62.9% accuracy is shown below (an
X symbol is used to represent positions at the end of the chains, that is beyond
the central residue being studied).

1. If AA−1 /∈ {x} and AA ∈ {h} and AA1 ∈ {p} then class is 1
2. If AA−1 ∈ {h} and AA ∈ {h} and AA1 /∈ {x} then class is 1
3. If AA−1 ∈ {p} and AA ∈ {h} and AA1 ∈ {h} then class is 1
4. Default class is 0

In these rules, a class assignment of high is represented by 1 and low by 0.
For the full residue type representation a rule set giving 67.7% accuracy is:

1. If AA−1 /∈ {D, E, K, N, P, Q, R, S, X} and AA /∈ {D, E, K, N, P, Q, R, S, T}
and AA1 /∈ {D, E, K, Q, X} then class is 1

2. If AA−1 /∈ {X} and AA ∈ {A, C, F, I, L, M, V, W, Y } and AA1 /∈
{D, E, H, Q, S, X} then class is 1

3. If AA−1 /∈ {P, X, Y } and AA ∈ {A, C, F, I, L, M, V, W, Y } and AA1 /∈
{K, M, T, W, X, Y } then class is 1

4. If AA−1 /∈ {H, I, K, M, X} and AA ∈ {C, F, I, L, M, V, W, Y } and AA1 /∈
{M, X} then class is 1

5. Default class is 0

Recently, Kinjo et al [12] reported two, three and ten state CN prediction
at accuracies of 72.1%, 53.7%, and 18.8% respectively, which is higher than our
results. However, they use a non-standard accuracy measure that usually gives
slightly higher results than the one used in this paper. Also, they use more input
information than was used in the experiments reported in this paper.

The aim of this paper was to compare the performance difference between the
Real-AA and Real-HP representations, not to obtain the best CN results. We
have undertaken more detailed studies on both the HP model dataset for CN
and Residue Burial prediction and the real protein datasets for CN prediction
in comparison to the Kinjo work (papers submitted).
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7 Conclusions and Further Work

This paper has shown that it is possible to predict residue CN for HP Lattice
model proteins at a level of around 52% for five state prediction using a window
of three residues either side of the prediced residue. For real proteins, five state
CN prediction using a window size of three can be performed at a level of 30%
using HP residue profiles. This can be increased to 32% using full sequence
information. This is perhaps understandable since reducing the sequence to an
HP sequence discards useful information. However, the representation with only
two residue types is only a little worse than that with a full twenty letter alphabet
(64% vs 68% for two state prediction, 45% vs 50% for three state prediction and
30% vs 33% for five state prediction). Thus, most of the information is contained
in the HP representation, indicating that hydrophobicity is a key determinant
of CN. This is consistent with earlier studies [30].

Initial estimates of information inconsistency (ambiguous antecedent to con-
sequent assignments) in the reduced two letter alphabet dataset indicate that
considerable inconsistency is present even for five state assignments using larger
window sizes. The algorithms presumably learn from the various distributions
of these inconsistencies during their learning stage. Li et al. [31] have investi-
gated whether there is a minimal residue type alphabet by which proteins can
be folded. They conclude that a ten letter alphabet may be sufficient to charac-
terize the complexity of proteins. We are performing studies to investigate such
reduced letter alphabets and to quantify the information loss in each. In future,
we will extend these studies to prediction of other structural attributes, such
as secondary structure and relative solvent accessibility. These studies will help
determine the relative utility of CN for designing prediction heuristics for HP
models and Real proteins.
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