
Improving the Performance of a Pittsburgh

Learning Classifier System Using a Default Rule

Jaume Bacardit1, David E. Goldberg2, and Martin V. Butz3

1 ASAP, School of Computer Science and IT, University of Nottingham, Jubilee
Campus, Wollaton Road, Nottingham, NG8 1BB, UK,

jqb@cs.nott.ac.uk,
WWW home page: http://www.cs.nott.ac.uk/ jqb/

2 Illinois Genetic Algorithms Laboratory (IlliGAL), Department of General
Engineering, University of Illinois at Urbana-Champaign, 104 S. Mathews Ave,

Urbana, IL 61801,
deg@uiuc.edu,

WWW home page: http://www-illigal.ge.uiuc.edu/goldberg/d-goldberg.html
3 Department of Cognitive Psychology, University of Würzburg, 97070 Würzburg,

Germany,
butz@psychologie.uni-wuerzburg.de,

WWW home page: http://www-illigal.ge.uiuc.edu/ butz/

Abstract. An interesting feature of encoding the individuals of a Pitts-
burgh learning classifier system as a decision list is the emergent genera-
tion of a default rule. However, performance of the system is strongly tied
to the learning system choosing the correct class for this default rule. In
this paper we experimentally study the use of an explicit (static) default
rule. We first test simple policies for setting the class of the default rule,
such as the majority/minority class of the problem. Next, we introduce
some techniques to automatically determine the most suitable class.

1 Introduction

One of the ways to solve classification problems using a genetic algorithm [1, 2] is
called Pittsburgh approach [3] or Pittsburgh learning classifier system. The indi-
viduals of this system encode a full and variable-length rule set and the solution
proposed is the best individual of the population. There are several encoding
options for an individual. One of them is coding an individual as a decision list
[4] (an ordered set of rules). If we apply this strategy in the evolutionary frame-
work, often the system evolves a default rule. That is, a rule that matches any
input instance.

Default rules can be very useful in combination with a decision list because
the size of the rule set can be reduced significantly. For instance, for the 11-bit
multiplexer we can obtain a rule set of 9 rules instead of 16 unordered ones,
as represented in Figure 1. With a smaller rule set, the search space is reduced
resulting in two potential advantages: (1) the learner can learn fewer rules faster
(representing only the other classes of the dataset) and (2) with a smaller rule

set the system may be less sensitive to over-learning, potentially increasing the
test accuracy of the system.

Fig. 1. Unordered and ordered rule sets for the MX-11 domain

Unordered MX-11 rule set
0 0 0 0 # # # # # # # : 0
0 0 0 1 # # # # # # # : 1
0 0 1 # 0 # # # # # # : 0
0 0 1 # 1 # # # # # # : 1
0 1 0 # # 0 # # # # # : 0
0 1 0 # # 1 # # # # # : 1
0 1 1 # # # 0 # # # # : 0
0 1 1 # # # 1 # # # # : 1
1 0 0 # # # # 0 # # # : 0
1 0 0 # # # # 1 # # # : 1
1 0 1 # # # # # 0 # # : 0
1 0 1 # # # # # 1 # # : 1
1 1 0 # # # # # # 0 # : 0
1 1 0 # # # # # # 1 # : 1
1 1 1 # # # # # # # 0 : 0
1 1 1 # # # # # # # 1 : 1

Ordered MX-11 rule set
0 0 0 0 # # # # # # # : 0
0 0 1 # 0 # # # # # # : 0
0 1 0 # # 0 # # # # # : 0
0 1 1 # # # 0 # # # # : 0
1 0 0 # # # # 0 # # # : 0
1 0 1 # # # # # 0 # # : 0
1 1 0 # # # # # # 0 # : 0
1 1 1 # # # # # # # 0 : 0
: 1

The objective of this paper is to investigate the potential benefits of using
an explicit and static default rule in a Pitt LCS. Along those lines, the question
arises which is the best default class to use. Simple strategies may use the major-
ity class. However, our tests show that dependent on the problem, the minority
class may be better as the default class choice. Thus, we develop a mechanism
that is able to automatically determine the best class for the default rule.

The rest of the paper is structured as follows: Section 2 shows some related
work. Next, Section 3 describes briefly the main characteristics of the system used
in this paper. Later, Section 4 illustrates the motivation of using a default rule,
followed by Section 5 that reports the modifications applied to the knowledge
representation of the system to integrate the default rule. Next, Section 6 shows

some illustrative results of the simple policies for the default rule. After the
simple policies, we describe the more sophisticated ones in Section 7. Section
8 shows the experimentation results of applying the described policies. Finally,
Section 9 presents conclusions and further work.

2 Related Work

We can find previous uses of a static default rule in the LCS field, although not
in an explicit way: Classic Pitt-approach systems such as GABIL [3] or GIL [5],
which perform concept learning (learning a concept from sets of positive/negative
examples), implicitly have a default rule that covers the negative examples. The
rules generated do not have an associated class because all of them cover the
positive examples. However, there is no explicit policy to decide which set is the
positive or negative one in order to learn better. The decision simply comes from
the definition of the dataset.

Looking at the machine learning field in general we find other examples of
default rules. The C4.5 rule system [6] uses an explicit default rule and, alike
our system, it generates a rule set acting as a decision list. To select the class
for this default rule, it uses the class that has less instances covered by the other
rules in the rule set. This kind of approach seems feasible when we have induced
the rule set beforehand, instead of using it during learning as our system does.

The IREP system [7] induces the rules in order, modeling each class of the
problem (using the instances of the classes still to be learned as negative ex-
amples). The criteria of this global order is ascendant frequency of examples.
Therefore, the default rule of this system uses a majority class policy.

3 Framework

GAssist [8] is a Pittsburgh genetic-based machine learning system descendant
of GABIL [3]. The system applies a near-standard GA that evolves individuals
that represent complete problem solutions. An individual consists of an ordered,
variable-length rule set. Directly from GABIL we have taken the semantically
correct crossover operator for variable-length individuals.

Dealing with variable-length individuals raises some important issues. One
of the most important one is the control of the size of the evolving individuals
[9]. This control is achieved in GAssist using two different operators:

1. Rule deletion. This operator deletes the rules of the individuals that do
not match any training example. This rule deletion is done after the fitness
computation and has two constraints:
(a) The process is only activated after a predefined number of iterations (to

prevent an irreversible diversity loss)
(b) The number of rules of an individual never decreases below a threshold.

This introduces some “neutral code” that can protect the individuals
from the disruptive effect of the crossover operator.

2. Minimum description length-based fitness function. The minimum descrip-
tion length (MDL) principle [10] is a metric applied in general to a theory
(being a rule set in this paper) which balances the complexity and accuracy
of the rule set. In previous work we developed a fitness function based on
this principle. A detailed explanation of the fitness function can be found in
[11].

The knowledge representation used for real-valued attributes is called adap-

tive discretization intervals rule representation (ADI) [12]. This representation
uses the semantics of the GABIL rules (conjunctive normal form predicates),
but applies non-static intervals formed by joining several neighbor discretization
intervals. These intervals can evolve through the learning process splitting or
merging among them potentially using several discretizers at the same time.

Parameters of the system are set as follows: Crossover probability 0.6; tourna-
ment selection; tournament size 3; population size 300; Individual-wise mutation
probability 0.6; initial number of rules per individual 20; probability of “1” in
initialization 0.75; Rule Deletion Operator: Iteration of activation: 5; minimum
number of rules: number of active rules +3; MDL-based fitness function: It-
eration of activation 25; initial theory length ratio: 0.075; weight relax factor:
0.9. ADI knowledge representation: split and merge probability: 0.05; reinitialize
probability at initial iteration: 0.02; reinitialize probability at final iteration: 0;
merge restriction probability: 0.5; maximum number of intervals: 5; set of uni-
form discretizers used: 4, 5, 6, 7, 8, 10, 15, 20 and 25 bins; iterations: maximum
of 1500.

4 Motivation

In order to illustrate the benefits of the default rule, we show the results of
running the system with no static default rule for the Glass problem from the
UCI repository [13] in table 1. We used stratified ten-fold cross validation for
the tests and a hundred random seeds for each fold (a total of 1000 runs, unlike
the 15 seeds and 150 runs used in the rest of the paper).

We can see the benefits of using a default rule and, more importantly, the
benefits of choosing the correct class for the default rule. The choice of the
class for the default rule has a significant influence on the resulting accuracy,
suggesting that a good default rule choice can improve learning performance and
generality of the resulting solution.

5 Static Default Rule Mechanism

To force the usage of a default rule, few modifications are necessary: we only
need to codify our individuals as decision lists, independent of the knowledge
representation used. The implementation of the static default rule is very simple.
Basically it affects only the matching function classifying any input instance
by the default class if no rule (in the decision list) matches the instance. The

Table 1. How the generation of a default rule can affect the performance in the Glass

dataset

Runs generating a default rule 736
Runs not generating a default rule 264
Accuracy of runs with a default rule 66.98±8.00
Accuracy of runs without a default rule 66.27±7.79
Average accuracy of runs using class 1 as default rule 65.45±7.39
Average accuracy of runs using class 2 as default rule 67.76±7.81
Average accuracy of runs using class 3 as default rule 59.40±5.51
Average accuracy of runs using class 4 as default rule 66.18±8.70
Average accuracy of runs using class 5 as default rule 67.66±8.58
Average accuracy of runs using class 6 as default rule 64.48±7.36

pseudocode in Figure 2 clarifies this mechanism. Additionally, the default rule
class is removed from the classes that can be used by the rest of the rules in
the population, effectively reducing the search space. A general representation
of the extended rule set is shown in Figure 3.

1. We determine with some criterion (in the following sections several criteria
are studied) which class is the default class.

2. An individual predicts this default class when no rule matches an input
instance.

3. The other rules of the individual cannot use the default class. Neither ini-
tialization nor mutation can make a regular rule of the individual point to
the default class.

4. The default rule is included in the size of the rule set. This means that the
rest of the system transparently sees an individual with one more rule. This
affects the parts of the fitness formula that uses the size of the rule set as a
variable.

5. The default rule cannot be affected by crossover, mutation nor any other
recombination operator.

6. The rule deletion operator ignores the petitions to delete this rule, in the
rare chance that this rule matches nothing (all problem instances are covered
by other rules already).

7. The MDL-based fitness function computes a theory length for this rule sup-
posing that the rule is totally general, that is, as if it were the emergent
default rule observed before implementing this mechanism.

For the specific case of two-class domains, the classification problem is trans-
formed into a concept learning problem and the resulting knowledge representa-
tion is quite close to the ones used in other evolutionary concept learning systems
like GABIL [3] or GIL [5].

6 Simple Policies Determining the Default Rule Class

In order to answer the question of which class is suitable for being the default
class we start by experimenting with two simple policies: using the most and

Fig. 2. Match process using an static default rule

Match process

Input : RuleSet, Instance
Index = 0
Found = false
While Index < RuleSet.size and not Found Do

If RuleSet.rule[Index] matches Instance Then

Class = RuleSet.rule[Index].class
Found = true

Else

Index + +
EndIf

EndWhile

If not Found Then

Class = DefaultClass
EndIf

Output : Predict class Class for instance Instance

Fig. 3. Representation of the extended rule set with the static default rule

ClassRule predicate (knowledge representation−dependant)Rule 1

Class 0

Class 1

Class i−1
Class i+1

Class n

Elements of the
individuals that
can be modified

ClassRule predicate (knowledge representation−dependant)Rule 2

ClassRule predicate (knowledge representation−dependant)Rule n

Default
rule

Match any instance Class iStatic part of
the individuals

by the genetic
operators

least frequent class in the domain. In Section 8 we can see the results of these
tests for several datasets. Here we show the results (in Table 2) of only two
datasets (Glass and Ionosphere), also from UCI. For Glass the best policy is
using the majority class. For Ionosphere the best policy is using the minority
class. The point of showing these two datasets is that it is very difficult to decide
a priori which is the most suitable default rule class for each dataset. The values
of the train accuracy and the number of rules give hints about how to combine
the two policies to maximize the performance of the system. In Section 8 we
show a simple combination consisting of choosing at the test stage the policy
which has more train accuracy.

Table 2. Results using majority and minority policy for the default class in the Glass

and Ionosphere datasets.

Domain Def. Class. Policy Train accuracy Test accuracy Number of rules

Glass disabled 79.9±2.6 66.4±8.1 6.4±0.7
Glass majority 83.2±1.6 69.5±6.9 6.6±0.8
Glass minority 80.6±2.3 66.7±8.0 7.2±0.8

Ionosphere disabled 96.0±0.6 92.8±3.6 2.3±0.6
Ionosphere majority 95.7±0.8 90.0±4.4 5.7±1.2
Ionosphere minority 96.8±0.7 93.0±3.7 2.6±0.8

7 Automatically Determined Default Rule Class

Given that the majority class does not always suite best as default class, the
next step is to modify the system to automatically determine the best default
class. Our initial approach simply assigns a randomly chosen class as default
class to each individual in the initial population. Additionally, we introduce a
restricted mating mechanism to avoid crossover operations between individuals
having different default classes, summarized by the code in Figure 4. Having
removed the default class from the rest of the rules, crossing individuals with
different default classes may create lethals with high probability. Especially in
the specific case of two-class domains, the regular rules of individuals using
different default classes cover completely different subsets of rules. Therefore,
it is impossible to integrate the rules of these two individuals using the regular
crossover operator.

If we run the system in this setting, we observed that usually all individuals
with one default class take over the population. The question is if the system is
able to choose the correct default class during the initial iterations. To answer
this question, we show the evolution of the train accuracy and the number of rules
for the Ionosphere tests described in the previous section in Figure 5. We can
see that the train accuracy of the default class policy using the suitable class for
this problem (that is, the minority class) is lower at the initial iterations than
the accuracy of the majority class policy. Also, we can see the reason for the

Fig. 4. Code of the crossover algorithm with restricted mating

Niched crossover algorithm

Comment To simplify the code, Parents contains only the parent individuals
Comment already selected for crossover by the probability of crossover
Input : Parents

OffspringSet = ∅

While Parents is not empty
Parent1 = select randomly and individual from Parents

Remove Parent1 from Parents

Niche = default class of Parent1
If there are individuals in Parents belonging to Niche

Parent2 = select randomly and individual from Parents

belonging to Niche

Remove Parent2 from Parents

Offspring1, Offspring2 = apply crossover to Parent1, Parent2
Add Offspring1, Offspring2 to OffspringSet

Else

Offspring = clone of Parent1
Add Offspring to OffspringSet

EndIf

EndWhile

Output : OffspringSet

better test accuracy of the minority policy in the smaller (better generalized)
rule set created by this policy.

Fig. 5. Evolution of the train accuracy and the number of rules for the Ionosphere
problem using majority/minority default class policies

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

T
ra

in
 a

cc
ur

ac
y

Iterations

Majority class
Minoriy class

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 50 100 150 200 250

N
um

be
r

of
 r

ul
es

Iterations

Majoritarian class
Minoritarian class

Thus, it appears necessary to introduce an additional niching mechanism
that preserves individuals for all default classes until the system has learned
enough to decide correctly on the best default class. This niching is achieved
using a modified tournament selection mechanism, inspired by [14] in which
the individuals participating in each tournament are forced to belong to the
same class. Also, each default class has an equal number of tournaments. This
niched tournament selection is represented by the pseudocode in Figure 6. The
tournament with niche preservation is used until the best individuals of each

default class have similar train accuracy. After this point, the niching is disabled
and the system chooses freely among the individuals. Specifically, we compute for
each niche the average accuracy over the last 15 iterations of its best individual.
When the standard deviation of all these averages is smaller than 0.5%, we
disable the niched tournament selection, effectively enabling the superior default
class to take over the whole population.

Fig. 6. Pseudocode for the niched tournament selection

Niched tournament selection

Input : Population, PopSize, NumNiches, TournamentSize
NextPopulation = ∅

For i = 1 to NumNiches
ProportionNiche[i] = PopSize/NumNiches

EndFor

For i = 1 to PopSize
Niche = select randomly a niche based on ProportionNiche
ProportionNiche[Niche] − −

Select TournamentSize individuals from Population belonging to Niche
winner=Apply tournament
Add winner to NextPopulation

EndFor

Output : NextPopulation

To summarize, the changes introduced to the default rule model by the au-
tomatic policy are the following:

1. Initialization assigns randomly to each individual a class as being the default
class.

2. This class cannot be used in the regular rules of the individual.
3. Individuals having different default classes cannot exchange rules. The crossover

algorithm is modified adding this mating restriction.
4. Niched tournament selection preserves an uniform proportion of individuals

from all default classes in the population. This niching process is achieved re-
serving a quota of tournaments to each niche and only applying tournaments
among individuals belonging to the same niche.

5. The niching mechanism is disabled when individuals using different default
classes can compete fairly among themselves. Specifically, we compute, for
each default class, the average accuracy over the last 15 iterations of its best
individual. When the standard deviation of all these averages is smaller than
0.5%, the niched tournament selection is disabled and a regular tournament
selection takes places until the end of the learning process.

8 Results

In this section, we show the results of comparing the three policies tested for the
default class (majority,minority,auto to the original system (orig) with emergent

default rule. The tests include 15 datasets used previously in [12], summarized in
table 3. Each dataset has been partitioned into training/test sets using stratified
ten-fold cross-validation [15], and having for each fold the tests repeated 15
times.

Table 3. Features of the datasets used in the experimentation of this paper

Dataset Properties
Domain #Inst. #Attr. #Real #Nom. #Cla. Dev.cla. Maj.cla. Min.cla.

bpa 345 6 6 — 2 7.97% 57.97% 42.03%
bps 1027 24 24 — 2 1.60% 51.61% 48.39%
bre 699 9 9 — 2 15.52% 65.52% 34.48%
gls 214 9 9 — 6 12.69% 35.51% 4.21%
h-s 270 13 13 — 2 5.56% 55.56% 44.44%
ion 351 34 34 — 2 14.10% 64.10% 35.90%
lrn 648 6 4 2 5 14.90% 45.83% 1.54%

mmg 216 21 21 — 2 6.01% 56.02% 43.98%
pim 768 8 8 — 2 15.10% 65.10% 34.90%
son 208 60 60 — 2 3.37% 53.37% 46.63%
thy 215 5 5 — 3 25.78% 69.77% 13.95%
veh 846 18 18 — 4 0.89% 25.77% 23.52%

wdbc 569 30 30 — 2 12.74% 62.74% 37.26%
wine 178 13 13 — 3 5.28% 39.89% 26.97%
wpbc 198 33 33 — 2 26.26% 76.26% 23.74%

Table 4 shows the results for these tests, also including a fifth configuration
(majority+minority), in which the majority/minority policy is chosen in the test
stage that obtained more training accuracy. This configuration usually chooses
the correct policy (although there are some exceptions, like bpa). The results
were analyzed using pair-wise statistical t-tests with Bonferroni correction to
determine how many times each method could significantly outperform or be
outperformed by the other methods. These statistical tests are summarized in
table 5.

At first glance, we can see that all but two datasets (wbcd and wpbc) can ben-
efit (by one or more of the studied default class policies) from the inclusion of a
default rule. However, the achieved accuracy increase is not uniform across the
datasets. Some of them, like gls or son, show a notable accuracy increase, while
some others only show a small, non-significant increase. To understand these
different degrees of accuracy increase we have computed the percentage of runs
where the orig configuration was already generating a default rule emergently.
Table 6 shows these results including the accuracy of the orig configuration as
well as the accuracy of the best default class policy for each dataset (and their
difference). Although it is not totally clear, we can see a correlation between the
percentage of discovered default rules and the accuracy difference between us-
ing/not using the default rule. The clearest exception is the gls dataset. However,
considering that this dataset has 6 classes, the benefits of removing the default
class from the pool of classes used in the regular rules are already substantial
even if the orig configuration was already using a default rule.

Table 4. Results of the tests comparing the studied default class policies to the original
configuration using pop. size 300

Domain Result
Default rule policy

Disabled Major Minor Auto Major+Minor

bpa
Train 78.6±1.6 81.4±1.3 80.1±1.6 80.8±1.4 81.4±1.3
Test 63.8±7.4 62.9±7.8 65.2±6.5 64.0±6.9 62.9±7.8

#rules 6.7±1.0 8.9±1.4 8.3±1.5 8.5±1.6 8.9±1.4

bps
Train 84.8±0.9 86.0±0.7 86.8±0.7 86.6±0.7 86.8±0.7
Test 80.1±3.9 81.2±3.6 81.5±3.6 81.4±3.7 81.5±3.6

#rules 5.1±0.4 6.1±1.1 5.7±0.9 5.6±0.8 5.7±0.9

bre
Train 97.7±0.3 98.2±0.3 98.4±0.3 98.4±0.3 98.4±0.3
Test 95.9±2.2 95.0±2.5 95.7±2.0 95.6±2.2 95.7±2.0

#rules 2.6±0.7 5.8±1.2 3.2±0.6 3.3±0.7 3.2±0.6

gls
Train 79.9±2.6 83.2±1.6 80.6±2.3 79.0±1.8 83.2±1.6
Test 66.4±8.1 69.5±6.9 66.7±8.0 66.9±7.4 69.5±6.9

#rules 6.4±0.7 6.6±0.8 7.2±0.8 6.9±0.9 6.6±0.8

h-s
Train 89.8±1.2 91.6±0.9 92.1±0.8 91.9±0.9 92.1±0.8
Test 79.5±6.2 79.3±6.4 81.3±6.8 81.3±6.1 81.3±6.8

#rules 6.7±0.9 7.6±1.2 7.3±1.2 7.4±1.3 7.3±1.2

ion
Train 96.0±0.6 95.7±0.8 96.8±0.7 96.8±0.7 96.8±0.7
Test 92.8±3.6 90.0±4.4 93.0±3.7 93.1±3.9 93.0±3.7

#rules 2.3±0.6 5.7±1.2 2.6±0.8 2.6±0.7 2.6±0.8

lrn
Train 75.2±1.9 76.8±0.8 75.4±1.4 75.4±1.0 76.8±0.8
Test 68.5±4.7 68.9±5.7 68.9±4.5 68.6±5.6 68.9±5.7

#rules 8.5±1.9 9.6±1.9 9.2±1.9 8.6±1.7 9.6±1.9

mmg
Train 79.7±1.8 83.2±1.3 83.1±1.3 83.0±1.4 83.2±1.3
Test 66.2±7.8 68.9±8.3 67.8±8.4 66.8±9.0 68.9±8.3

#rules 6.5±0.8 6.7±0.9 6.7±0.8 6.6±0.9 6.7±0.9

pim
Train 79.7±0.9 81.3±0.8 80.9±0.7 81.1±0.8 81.3±0.8
Test 74.7±4.7 75.4±4.8 75.0±4.7 75.0±4.5 75.4±4.8

#rules 5.2±0.4 6.2±1.0 5.6±0.8 6.1±1.0 6.2±1.0

son
Train 92.2±1.6 96.1±1.2 94.8±1.4 95.5±1.4 96.1±1.2
Test 72.6±11.5 77.0±9.0 76.1±9.7 76.1±9.3 77.0±9.0

#rules 6.7±1.1 7.6±1.4 7.7±1.3 7.4±1.1 7.6±1.4

thy
Train 97.4±1.0 98.4±0.7 98.4±0.7 98.1±0.8 98.4±0.7
Test 91.9±5.6 92.8±4.8 92.3±5.3 92.2±5.6 92.8±4.8

#rules 5.2±0.4 5.7±0.6 5.4±0.5 5.5±0.6 5.7±0.6

veh
Train 71.1±2.2 73.5±1.4 73.5±1.4 72.0±1.5 73.5±1.4
Test 66.4±4.7 68.1±4.5 67.4±4.9 67.5±4.7 68.1±4.5

#rules 6.6±1.2 9.3±2.0 9.9±1.6 8.0±1.8 9.3±2.0

wdbc
Train 97.2±0.8 97.8±0.6 97.8±0.6 97.8±0.7 97.8±0.6
Test 94.1±3.0 94.2±3.1 94.0±3.0 94.3±3.1 94.2±3.1

#rules 4.3±1.1 4.6±0.9 4.4±1.0 4.5±1.0 4.6±0.9

wine
Train 99.4±0.5 99.7±0.4 99.9±0.3 99.6±0.4 99.9±0.3
Test 92.7±5.9 93.3±6.2 92.2±6.3 93.9±5.9 92.2±6.3

#rules 3.8±0.7 3.6±0.6 4.1±0.5 3.8±0.6 4.1±0.5

wpbc
Train 84.3±3.0 89.4±2.0 86.4±3.4 88.7±2.3 89.4±2.0
Test 76.0±7.3 75.8±7.4 72.6±8.5 75.2±7.5 75.8±7.4

#rules 2.8±0.8 3.8±0.9 4.2±1.2 3.6±1.0 3.8±0.9

ave.
Train 86.9±9.0 88.8±8.4 88.3±8.8 88.3±9.0 89.0±8.5
Test 78.8±11.4 79.5±10.7 79.3±11.0 79.5±11.3 79.8±10.9

#rules 5.3±1.8 6.5±1.8 6.1±2.1 5.9±1.9 6.1±2.1

Table 5. Summary of the statistical t-tests applied to the experimentation results of
popsize 300, with a confidence level of 0.05. Cells in table count how many times the
method in the row significantly outperforms the method in the column.

Policy Disabled Major Minor Auto Major+Minor Total
Disabled - 2 1 0 0 3
Major 3 - 2 1 0 6
Minor 2 2 - 0 0 4
Auto 2 1 1 - 0 4

Major+Minor 4 2 2 1 - 9

Total 11 7 6 2 0

Table 6. Percentage of runs where orig configuration was already generating a default
rule, accuracy difference between orig and the best default class policy for each dataset.

Rows are sorted by the percentage of default rule generation in orig

Label meaning

DRG Percentage of runs where the default rule was generated in orig configuration
AccO Accuracy of the orig configuration

AccDR Accuracy of the best rule policy on the dataset
AccDif Accuracy difference between AccO and AccDR

Dataset DRG AccO AccDR AccDif

mmg 19.33% 66.21% 68.88% -2.67%
son 36.00% 72.58% 76.99% -4.42%
bps 40.00% 80.10% 81.55% -1.44%
veh 46.67% 66.43% 68.15% -1.72%
pim 50.67% 74.65% 75.37% -0.71%
wdbc 55.33% 94.06% 94.26% -0.20%
h-s 57.33% 79.46% 81.31% -1.85%
bpa 65.33% 63.79% 65.22% -1.43%
thy 68.67% 91.92% 92.79% -0.87%
wine 71.33% 92.74% 93.85% -1.12%
gls 74.00% 66.37% 69.52% -3.15%
lrn 76.00% 68.55% 68.93% -0.39%

wpbc 82.00% 76.03% 75.78% 0.25%
ion 86.00% 92.85% 93.13% -0.29%
bre 96.00% 95.88% 95.74% 0.14%

From the test accuracy averages and the t-test results it is clear that the ma-

jor+minor policy is the best configuration, both in performance and robustness,
because it has been never outperformed in a significant way. However, having in
this configuration a run-time two times larger than in the other configurations,
we have to question whether the computational cost sacrifice is worth it. Looking
at the other configurations, major and auto are tied in accuracy average, but
auto is much more robust than major according to the t-tests.

Nevertheless, it is important to investigate why the auto policy reaches a
lower performance than major+minor. Table 7 shows the class distribution of
the default rules that appear in the auto configuration runs. We can see that
this configuration is not able to determine, which is the most suitable default
class. Actually, on only 5 of the 15 datasets the chosen default class was almost
or totally concentrated on a single class.

Table 7. Default class behavior in the auto configuration

Dataset Major. class pos. Minor. class pos. Class distribution in default rule

bpa 2 1 (50.67%,49.33%)
bps 1 2 (14.67%,85.33%)
bre 1 2 (0.00%,100.00%)
gls 2 4 (14.00%,40.00%,8.67%,9.33%,14.00%,14.00%)
h-s 1 2 (32.00%,68.00%)
ion 2 1 (97.33%,2.67%)
lrn 1 5 (17.33%,35.33%,34.00%,11.33%,2.00%)

mmg 1 2 (48.00%,52.00%)
pim 1 2 (62.00%,38.00%)
son 2 1 (32.00%,68.00%)
thy 1 3 (40.67%,18.67%,40.67%)
veh 3 4 (35.33%,24.00%,13.33%,27.33%)

wdbc 2 1 (48.00%,52.00%)
wine 2 3 (4.00%,70.67%,25.33%)
wpbc 2 1 (1.33%,98.67%)

Another important issue is the number of iterations where the niched tour-
nament selection was used. Table 8 shows these results. We can see that for some
datasets, the niching process was used for quite a long time.

It is reported in the niching literature [16] that we should increase the popu-
lation size in order to guarantee that all niches can be learned properly. For this
reason, a second set of tests was performed increasing the population size from
300 to 400. The results are shown in table 9. The summary of the statistical
t-tests applied to these results is in table 10.

Now we can see a different picture. The increase in population size actually
enables the auto policy to permit all niches to be learned properly. This fact
is reflected by the accuracy performance of this policy, which manages to reach
major+minor, both in accuracy and in robustness, based on the t-tests. Now
that both policies are competitive, the smaller computational cost of auto (also
compared to major+minor using a population size of 300) clearly makes it the
most suitable configuration for the default class.

Table 8. Percentage of iterations that used the niched tournament selection in the
default rule auto configuration

Dataset Percentage of iterations

bpa 8.19%
bps 15.10%
bre 13.71%
gls 27.82%
h-s 13.33%
ion 6.72%
lrn 69.06%

mmg 10.79%
pim 9.41%
son 15.45%
thy 30.20%
veh 20.29%

wdbc 7.66%
wine 34.11%
wpbc 12.43%

Moreover, we can see how the only method that degrades performance when
we increase the population size is the majority class policy, suggesting that the
system is sensitive to over-learning in domains where the majority class policy is
not suitable. The larger average number of rules and the better training accuracy
of the solutions generated by this policy confirm the over-learning problem.

9 Conclusions and Future Work

In this paper we have tested some methods that extend the rule-based and
decision-list-style knowledge representations for a Pittsburgh Learning Classifier
System by using a static default rule. This kind of systems tend to generate
an emergent default rule, which can increase the performance of the system.
By forcing the representation of a default rule, we intended to guarantee these
positive effects.

Simple policies such as using the majority/minority class as the default class
perform quite well compared to the original system. However, they perform
poorly on certain datasets somewhat showing a lack of robustness. We can al-
most integrate the best results of both policies by using the simple heuristic of
selecting the policy with more training accuracy. This mechanism introduces a
good performance boost, but doubles the run-time.

For this reason, we have developed a mechanism that decides automatically
the class for the default rule. This technique works by integrating in a single
population individuals using all possible default classes and letting them compete
among themselves. This approach has a problem, however, which is providing a
fair competition framework, because each default rule class can yield different

Table 9. Results of the tests comparing the studied default class policies to the original
configuration using pop. size 400

Domain Result
Default rule policy

Disabled Major Minor Auto Major+Minor

bpa
Train 79.3±1.7 82.0±1.4 80.7±1.4 81.0±1.6 82.0±1.4
Test 64.0±7.5 62.6±7.5 64.4±6.9 64.5±7.3 62.6±7.5

#rules 6.8±1.0 8.9±1.4 8.3±1.6 8.7±1.4 8.9±1.4

bps
Train 84.9±0.9 86.2±0.7 87.1±0.6 86.9±0.8 87.1±0.6
Test 80.4±4.5 80.9±3.8 81.6±3.8 81.2±3.9 81.6±3.8

#rules 5.1±0.4 6.1±1.1 5.9±1.0 5.8±1.0 5.9±1.0

bre
Train 97.7±0.4 98.3±0.3 98.5±0.4 98.4±0.4 98.5±0.4
Test 95.7±2.3 95.0±2.6 95.7±1.9 95.8±1.9 95.7±1.9

#rules 2.6±0.8 5.8±1.1 3.3±0.7 3.2±0.7 3.3±0.7

gls
Train 80.8±2.5 83.8±1.6 81.3±2.1 79.5±1.7 83.8±1.6
Test 66.8±7.0 69.1±7.7 68.0±8.3 67.1±7.4 69.1±7.7

#rules 6.5±0.7 6.8±0.8 7.5±0.9 6.7±0.8 6.8±0.8

h-s
Train 90.1±1.0 92.0±0.9 92.4±0.8 92.2±0.8 92.4±0.8
Test 79.4±7.0 79.2±5.8 81.6±6.9 81.2±6.6 81.6±6.9

#rules 6.6±0.8 7.8±1.3 7.4±1.2 7.4±1.2 7.4±1.2

ion
Train 96.1±0.6 95.9±0.8 97.1±0.7 96.9±0.7 97.1±0.7
Test 93.5±3.5 90.4±4.3 93.4±3.5 92.8±4.0 93.4±3.5

#rules 2.3±0.7 5.7±1.2 2.6±0.7 2.6±0.9 2.6±0.7

lrn
Train 75.7±1.7 77.2±0.8 75.8±1.4 75.7±1.0 77.2±0.8
Test 68.0±5.0 69.1±5.4 68.7±5.2 69.1±4.9 69.1±5.4

#rules 8.4±1.9 9.5±1.6 9.3±1.9 8.8±1.8 9.5±1.6

mmg
Train 80.3±1.7 83.4±1.3 83.4±1.3 83.5±1.1 83.4±1.3
Test 65.9±8.3 69.0±8.0 67.3±8.9 69.7±7.7 69.0±8.0

#rules 6.5±0.8 6.5±0.9 6.8±1.0 6.6±0.9 6.5±0.9

pim
Train 80.0±1.0 81.5±0.7 81.2±0.7 81.4±0.7 81.5±0.7
Test 74.7±4.6 75.2±4.4 74.8±4.7 74.9±4.6 75.2±4.4

#rules 5.3±0.6 6.3±1.1 5.8±0.9 6.1±1.0 6.3±1.1

son
Train 92.7±1.5 96.7±1.1 95.3±1.3 96.1±1.3 96.7±1.1
Test 71.3±9.4 76.2±9.1 74.6±10.1 76.3±8.9 76.2±9.1

#rules 6.7±1.0 7.6±1.3 7.7±1.5 7.6±1.4 7.6±1.3

thy
Train 97.6±0.9 98.6±0.7 98.6±0.7 98.3±0.8 98.6±0.7
Test 91.5±6.2 92.0±5.2 92.4±4.8 91.4±5.6 92.4±4.8

#rules 5.2±0.5 5.7±0.7 5.4±0.6 5.5±0.6 5.4±0.6

veh
Train 71.9±1.9 74.1±1.3 74.2±1.2 72.6±1.3 74.2±1.2
Test 66.9±4.3 67.6±4.2 68.3±4.5 67.9±4.8 68.3±4.5

#rules 6.5±1.3 9.4±1.8 10.0±1.8 8.4±1.8 10.0±1.8

wdbc
Train 97.2±0.8 98.0±0.5 97.9±0.6 97.8±0.6 98.0±0.5
Test 93.9±2.9 94.4±3.1 94.4±3.2 94.4±3.1 94.4±3.1

#rules 4.3±1.2 4.8±1.1 4.2±0.7 4.5±0.9 4.8±1.1

wine
Train 99.4±0.6 99.7±0.4 99.8±0.3 99.6±0.4 99.8±0.3
Test 94.1±6.0 93.2±6.4 92.0±6.5 93.2±6.3 92.0±6.5

#rules 3.8±0.7 3.7±0.6 4.2±0.5 3.8±0.7 4.2±0.5

wpbc
Train 84.9±2.8 89.9±1.8 87.1±3.3 89.0±2.1 89.9±1.8
Test 76.6±6.7 75.3±7.0 72.4±9.1 76.3±7.1 75.3±7.0

#rules 2.8±0.9 3.9±0.9 4.4±1.2 3.7±1.0 3.9±0.9

ave
Train 87.2±8.8 89.2±8.3 88.7±8.6 88.6±8.9 89.3±8.3
Test 78.8±11.5 79.3±10.7 79.3±11.1 79.7±10.8 79.7±11.7

#rules 5.3±1.7 6.6±1.7 6.2±2.1 6.0±2.0 6.2±2.2

Table 10. Summary of the statistical t-tests applied to the experimentation results of
popsize 400, with a confidence level of 0.05. Cells in table count how many times the
method in the row significantly outperforms the method in the column.

Policy Disabled Major Minor Auto Major+Minor Total
Disabled - 2 1 0 0 3
Major 1 - 1 0 0 2
Minor 1 3 - 0 0 4
Auto 1 3 1 - 0 5

Major+Minor 2 3 1 0 - 6

Total 5 11 4 0 0

learning progress. In order to achieve this fairness, we use a niched tournament
selection that guarantees that all niches (different default rules) survive in the
population until they can compete successfully by themselves. This automatic
mechanism performs best when we increase the population size, which is an usual
requirement in most systems that use niching, because we have to guarantee that
each niche has enough individuals to ensure sufficient diversity for building block
supply and thus successful and reliable learning.

The increase in population size for the majority/minority policies, however,
showed no performance increase or even some performance decrease, suggesting
the amplification of the policy weaknesses This weaknesses are derived from
overlearning, which is reflected in the larger training accuracy and larger average
rule set sizes and also on the statistical tests.

Although the automatic policy does not outperform the major+minor policy,
the accuracy difference is quite small in most datasets and the computational cost
is significantly lower. Therefore, it appears that in most situations the automatic
policy is the best method.

One of the main sacrifices done in the auto default class determination policy
is the mating restriction introduced in the crossover algorithm, preventing the
creation of lethals, because it is almost impossible to create competitive offspring
if the parents cover different subsets of the training instances. However, it would
be useful to study if there are any feasible ways to recombine successfully in-
dividuals with different default classes. If we achieve this objective, perhaps we
can reduce the population size requirements of the auto policy.

Another alternative would be to develop more sophisticated heuristics that
combine the simple default class policies. It might be possible to have a method
that only requires a short run to reliably decide on the most suitable default rule
class, instead of running a full test for each candidate class. To do so, it appears
necessary to also investigate in general in which cases which default rule class is
most appropriate. It is expected that the best default rule class does not only
depend on the class distribution and class boundaries but also, mutually, on the
representation of the class boundaries in the evolving rules. Future research will
shine further light on this matter.

Acknowledgments

The authors acknowledge the support provided by the Spanish Research Agency
(CICYT) under grant numbers TIC2002-04160-C02-02 and TIC 2002-04036-
C05-03, the support provided by the Department of Universities, Research and
Information Society (DURSI) of the Autonomous Government of Catalonia un-
der grants 2002SGR 00155 and 2001FI 00514. Additional funding from the Ger-
man research foundation (DFG) under grant DFG HO1301/4-3 as well as from
the European commission contract no. FP6-511931 is acknowledged. Additional
support from the UK Engineering and Physical Sciences Research Council (EP-
SRC) under grant GR/T07534/01 is acknowledged.

Also, this work was sponsored by the Air Force Office of Scientific Research,
Air Force Materiel Command, USAF, under grant F49620-03-1-0129, and by the
Technology Research, Education, and Commercialization Center (TRECC), at
University of Illinois at Urbana-Champaign, administered by the National Center
for Supercomputing Applications (NCSA) and funded by the Office of Naval
Research under grant N00014-01-1-0175. The US Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation thereon.

The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the Air Force Office of Scientific
Research, the Technology Research, Education, and Commercialization Center,
the Office of Naval Research, or the U.S. Government.

References

1. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press (1975)

2. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Publishing Company, Inc. (1989)

3. DeJong, K.A., Spears, W.M., Gordon, D.F.: Using genetic algorithms for concept
learning. Machine Learning 13 (1993) 161–188

4. Rivest, R.L.: Learning decision lists. Machine Learning 2 (1987) 229–246
5. Janikow, C.: Indictive Learning of Decision Rules in Attribute-Based Examples:

a Knowledge-Intensive Genetic Algorithm Approach. Phd dissertation, University
of North Carolina (1991)

6. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
7. Cohen, W.W.: Fast effective rule induction. In: International Conference on Ma-

chine Learning. (1995) 115–123
8. Bacardit, J.: Pittsburgh Genetics-Based Machine Learning in the Data Mining era:

Representations, generalization, and run-time. PhD thesis, Ramon Llull University,
Barcelona, Catalonia, Spain (2004)

9. Soule, T., Foster, J.A.: Effects of code growth and parsimony pressure on popula-
tions in genetic programming. Evolutionary Computation 6 (1998) 293–309

10. Rissanen, J.: Modeling by shortest data description. Automatica vol. 14 (1978)
465–471

11. Bacardit, J., Garrell, J.M.: Bloat control and generalization pressure using the
minimum description length principle for a pittsburgh approach learning classifier
system. In: Proceedings of the 6th International Workshop on Learning Classifier
Systems, (in press), LNAI, Springer (2003)

12. Bacardit, J., Garrell, J.: Analysis and improvements of the adaptive discretization
intervals knowledge representation. In: GECCO 2004: Proceedings of the Genetic
and Evolutionary Computation Conference, Springer (to appear) (2004)

13. Blake, C., Keogh, E., Merz, C.: UCI repository of machine learning databases
(1998) (www.ics.uci.edu/mlearn/MLRepository.html).

14. Oei, C.K., Goldberg, D.E., Chang, S.J.: Tournament selection, niching, and the
preservation of diversity. IlliGAL Report No. 91011, University of Illinois at
Urbana-Champaign, Urbana, IL (1991)

15. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection. In: IJCAI. (1995) 1137–1145

16. Goldberg, D.E.: Sizing populations for serial and parallel genetic algorithms.
In: Proceedings of the Third International Conference on Genetic Algorithms
(ICGA89), Morgan Kaufmann (1989) 70–79

