
Bloat control and generalization pressure using

the minimum description length principle for a

Pittsburgh approach Learning Classifier System

Jaume Bacardit1 and Josep Maria Garrell2

1 Automated Scheduling, Optimisation and Planning research group, School of
Computer Science and IT, University of Nottingham, Jubilee Campus, Wollaton

Road, Nottingham, NG8 1BB, UK
jqb@cs.nott.ac.uk

2 Intelligent Systems Research Group, Enginyeria i Arquitectura La Salle, Universitat
Ramon Llull, Psg. Bonanova 8, 08022-Barcelona, Catalonia, Spain, Europe.

josepmg@salleURL.edu

Abstract. Bloat control and generalization pressure are very important
issues in the design of Pittsburgh Approach Learning Classifier Systems
(LCS), in order to achieve simple and accurate solutions in a reasonable
time. In this paper we propose a method to achieve these objectives based
on the Minimum Description Length (MDL) principle. This principle is a
metric which combines in a smart way the accuracy and the complexity
of a theory (rule set , instance set, etc.). An extensive comparison with
our previous generalization pressure method across several domains and
using two knowledge representations has been done. The test show that
the MDL based size control method is a good and robust choice.

1 Introduction

The application of Genetic Algorithms (GA) [1] to classification domains is usu-
ally known as Genetic Based Machine Learning (GBML), and it has traditionally
been addressed from two different points of view: the Pittsburgh approach (or
Pittsburgh LCS) and the Michigan approach (or Michigan LCS), early exempli-
fied by LS-1 [2] and CS-1 [3], respectively. Some representative systems of each
approach are GABIL [4] and XCS [5].

The Pittsburgh approach systems usually evolve variable-length individuals
that are complete solutions to the classification problem. This paper deals with
the control of the individuals length. This control is a very important issue for two
main reasons. The first one is that the evolution of variable-length individuals
can lead to solutions growing without control. This phenomenon is usually known
as Bloat [6] and it has been widely studied in the Genetic Programming field.

The second reason is derived from the fact that usually the fitness of the in-
dividuals is only based on their predictive accuracy over the training examples,
and doesn’t take into account their complexity. Given this fitness function, the
easiest way to increase it is to maximize the probability of correctly classifying
the train examples, which is achieved by increasing the size of the individuals.
This fact produces solutions that are bigger than necessary, contradicting the
Occam’s razor principle [7] which says that “the simplest explanation of the ob-
served phenomena is most likely to be the correct one”. A probable consequence



of the “over-complexity” is an over-fitting of the solutions created which can
lead to a decrease of the generalization capacity. We observed this problem in
our previous work [8].

In this paper we propose a bloat control and generalization pressure method
(GPM ) based on the Minimum Description Length (MDL) principle [9]. It is
an interpretation of the Occam’s Razor principle based on the idea of data
compression, that takes into account both the simplicity and predictive accuracy
of a theory. Pfahringer [10] did a very good and brief introduction of the principle:

Concept membership of each training example is to be communicated
from a sender to a receiver. Both know all examples and all attributes
used to describe the examples. Now what is being transmitted is a the-
ory (set of rules) describing the concept and, if necessary, explicitly all
positive examples not covered by the theory (the false-negative exam-
ples) and all negative examples erroneously covered by the theory (the
false-positive examples). Now the cost of a transmission is equivalent to
the number of bits needed to encode a theory plus its exceptions in a
sensible scheme. The MDL principle states that the best theory derivable
from the training data will be the one requiring the minimum number
of bits.

The MDL principle is integrated into our Pittsburgh LCS adapting it to two
knowledge representations. The classic GABIL one [4] for discrete attributes
and our own Adaptive Discretization Intervals (ADI) rule representation [11]
for the real-valued ones. We have also added an adaptive heuristic in order to
simplify the task of domain specific parameter tuning. The GPM based on the
MDL principle is compared across several domains with our previous work in
this area: The hierarchical selection operator [8], which is explained in section 3.

The paper is structured as follows. Section 2 presents a short description of
how the bloat effect affects Pittsburgh LCS and also some guidelines about how
should be defined the measures used to alleviate the bloat effect. Next, section 3
presents some related work. After the related work we describe the framework of
our classifier system in section 4. Our implementation of the MDL is explained
in section 5. Next, section 6 describes the test suite used in the comparison. The
results obtained are summarized in section 7. Finally, section 8 discusses the
conclusions and some further work.

2 Bloat effect in Pittsburgh approach LCS

In this section we will do a brief and illustrative introduction about how and why
the bloat effect affects Pittsburgh approach LCS. We will also show that fixing
this problem is not a simple task, showing how bad ways to fix this problem can
collapse the learning process.

2.1 What form does it take the bloat effect?

Usually the bloat effect is defined as the growth without control of the individuals
length, and it is a phenomenon that can affect in general all variable-length rep-
resentations. In Pittsburgh LCS this effect takes the form of an exponential-rate



growing of the number of rules of the individuals. This effect can be illustrated
by the first 15 iterations in figure 1, which represents the evolution of the aver-
age individual size for the MX11 problem. If we did not apply any measure to
control this, the program would crash from out of memory shortly after.

2.2 Why do we have bloat effect?

The reason of the bloat effect is well explained in [6]. Its cause is the use of
a fitness function which only takes into account the goodness of the solution
(accuracy in our case). Having a variable-length representation means that it
possible to have several individuals with the same fitness value, and there will
be more long representations of a given solution (fitness value) that short ones.
So, when the exploration finds new solutions, it is more probable that these
solutions will be long than short.

The interpretation of this idea in LCS is that, it is more probable to classify
correctly more train examples with an individual with a lot of rules that with
a short individual. Is this long individual a good solution? Probably no, as this
individual is memorizing the train examples instead of learning them. This shows
a side effect of the bloat effect in LCS : the generated solutions will probably lack
generalization, and its test accuracy will probably be poor.

2.3 How can we solve the bloat effect?

It is obvious that we need to add to the system some bias towards good but
simple solutions, but will any intervention in this sense work? The answer is no.
If we introduce too much pressure towards finding simple solutions, we are in
danger of collapsing the population into individuals of only one rule, which can
not generate longer individuals anymore. With this kind of individuals we can
only classify the majority class. Again in figure 1 we can see an example of a too
much strong pressure in the MX11, which is activated just after 15 iterations.
With only a few iterations, a population of an average of more than 120 rules
per individual is reduced to one rule individuals. The bloat control method that
created this situation is the same presented in this paper, but bad parametrized
(InitialRateOfComplexity=0.5).

So, what is the good way to control the bloat effect? There is not a single
answer and, beside the method presented in this paper, in the related work
section several methods that achieve this control are described. Intuitively we
can say that the best method will be the one finding the best balance between
accuracy and complexity.

3 Related work

The MDL principle has been applied as a part of modeling tasks in many different
fields. For example, handwriting recognition and robotic arms [12]. The principle
has also been widely applied in the Machine Learning field. Some examples are
Genetic Programming [13] or c4.5rules [14], where the MDL principle is used to
select the best subset of rules derived from a c4.5 induced decision tree.

There is extensive prior work in the Evolutionary Computation (EC) field
to control the bloat effect, specially in Genetic Programming [13, 15] where this



Fig. 1. Illustration of the bloat effect and how a badly designed bloat control method
can destroy the population

 0

 20

 40

 60

 80

 100

 120

 140

 0  5  10  15  20  25  30

A
ve

ra
ge

 n
um

be
r 

of
 r

ul
es

Iterations

Evolution of the average individual size for the MUX problem with too much strong complexity pressure

effect has been more widely studied. However, it has also been studied in other
EC paradigms like Genetic Algorithms [8, 16] or Evolution Strategies [16]. There
is also some work on generalization pressure operators in systems that not suffer
the bloat effect [17].

4 Framework

In this section we describe the main features of our classifier system. GAssist
(Genetic clASSIfier sySTem) [18] is a Pittsburgh style classifier system based
on GABIL [4]. Directly from GABIL we have borrowed the semantically correct
crossover operator.

4.1 General operators and policies

Matching strategy The matching process follows a “if ... then ... else if ... then...”
structure, usually called Decision Lists [19].

Mutation operators The system manipulates variable-length individuals, making
more difficult the tuning of the classic gene-based mutation probability. In order
to simplify this tuning, we define pmut as the probability of mutating an indi-
vidual. When an individual is selected for mutation (based on pmut), a random
gene is chosen inside its chromosome to be mutated.

Policy for missing values Some of the problems used in the experimentation
reproduced in this paper have missing values. A substitution policy has been
used. Before starting the learning process all missing values are changed with
either the average value of the attribute (for real-valued attributes) or the most
frequent value (for symbolic attributes). These averages are not computed using
all the train instances, but only the ones belonging to the same class as the
instance with a missing values being substituted.



4.2 Bloat control an generality pressure:

We describe briefly our previous work in this area because the MDL method
presented in this paper will be compared to it in the results section. The bloat
control and generalization pressure was achieved by combining the following two
techniques:

– Rule deletion: This operator deletes the rules of each individual that do
not match any training example. This rule deletion is done after the fitness
computation and has two constraints: (a) the process is only activated after
a predefined number of iterations, to prevent a massive diversity loss and
(b) the operator stops when the number of rules of the individual reaches a
certain lower threshold.

– Selection bias using the individual size: Selection is guided as usual by the ac-
curacy of the individual. However, it also gives certain degree of relevance to
the size of the individuals, having a policy similar to multi-objective systems.
We use tournament selection because its local behavior lets us implement
this policy. The criterion of the tournament is given by our own operator
called “hierarchical selection” [8], defined as follows:
• If |accuracya − accuracyb| < threshold then:

∗ If lengtha < lengthb then a is better than b
∗ If lengtha > lengthb then b is better than a
∗ If lengtha = lengthb then we will use the general case

• Otherwise, we use the general case: we select the individual with higher
fitness.

4.3 Knowledge Representations

The following paragraphs describe the knowledge representations that we use to
solve problems with symbolic or real-valued attributes. Some of these represen-
tations are well known or have been described in detail elsewhere, but we believe
that it is important to describe them again because the MDL principle has to
be carefully adapted for each of them.

Rule Representations for symbolic or discrete attributes We will use the GABIL

[4] representation for this kind of attributes. Each rule consists of a condition
part and a classification part: condition → classification. Each condition is a
Conjunctive Normal Form (CNF) predicate defined as:

((A1 = V 1
1 ∨ . . . ∨ A1 = V 1

m)
∧

. . .
∧

(An = V n
2 ∨ . . . An = V b

m))

Where Ai is the ith attribute of the problem and V
j
i is the j th value that can

take the ith attribute.
This kind of predicate can be encoded into a binary string where there is a

bit for each value of all attributes of the domain. Attribute values that appear
in the CNF predicate have their associated bit set to one. If they not appear
in the predicate they have their bit set to 0. An example follows: if we have a
problem with two attributes, where each attribute can take three different values
{1,2,3}, a rule of the form “If the first attribute has value 1 or 2 and the second
one has value 3 then we assign class 1” will be represented by the string 110|001|1.



Rule Representations for real-valued attributes The representation for real-valued
attributes is our own representation called Adaptive Discretization Inter-

vals rule representation [18]. Specifically, we will use the second version of the
representation (ADI2) [11].

This representation is an evolution of the GABIL discrete rule representation.
In GABIL for each attribute we would use a set of static discretization intervals
instead of nominal values. The intervals of the ADI2 representation are not
static, but they evolve through the iterations splitting and merging among them
(having a minimum size called micro-interval). Thus, the binary coding of the
GABIL representation is extended as represented in figure 2, also showing the
split and merge operations.

Fig. 2. Adaptive intervals representation and the split and merge operators.

Rule set

ClassRule

11 1 0Interval value
Attribute

Microinterval { Interval

Attribute

MergeSplit

11 1 0

Interval to mutate

1 1 0 0 1

Cut point Neighbour selected to merge

1 1 0

The ADI2 representation is defined in depth as follows:

1. Each individuals initial rule and attribute term is assigned a number of
“low level” uniform-width and static discretization intervals (called micro-
intervals).

2. The intervals of the rule are built joining together adjacent micro-intervals.

3. Attributes with different numbers of micro-intervals can coexist in the pop-
ulation. The evolution will choose the correct number of micro-intervals for
each attribute.

4. For computational cost reasons, we will have an upper limit in the number
of intervals allowed for an attribute, which in most cases will be less than
the number of micro-intervals assigned to each attribute.

5. When we split an interval, we select a random point in its micro-intervals
to break it.

6. When we merge two intervals, the state (1 or 0) of the resulting interval is
taken from the one which has more micro-intervals. If both have the same
number of micro-intervals, the value is chosen randomly.

7. The number of micro-intervals assigned to each attribute term is chosen
from a predefined set.

8. The number and size of the initial intervals is selected randomly.



9. The cut points of the crossover operator can only take place in attribute
terms boundaries, not between intervals. This restriction takes place in order
to maintain the semantical correctness of the rules.

10. The hierarchical selection operator uses the length of the individuals (defined
as the sum of all the intervals of the individual) instead of the number of
rules as the secondary criteria. This change promotes simple individuals with
more reduced interval fragmentation.

In order to make the interval splitting and merging part of the evolutionary
process, we have to include it in the GA genetic operators. We have chosen to
add to the GA cycle two special stages applied to the offspring population after
the mutation stage. The split and merge operators are controlled by a probability
(psplit and pmerge) defined for each attribute term of each rule. The code for the
merge operator probability is represented in figure 3.

Fig. 3. Code of the application of the merge operator.

ForEach Individual i of Population

ForEach Rule j of Population individual i

ForEach Attribute k of Rule j of Population individual i

If random [0..1] number < pmerge

Select one random interval of attribute term k

of rule j of individual i

Apply a merge operation to this interval
EndIf

EndForEach

EndForEach

EndForEach

5 The MDL principle applied to generalization pressure

In this section we describe our proposal of bloat control and generalization pres-
sure based on the MDL principle. First, we introduce our implementation of the
basic formula of the principle and its adaptation to each of the knowledge rep-
resentations uses. Finally , we propose a method to adjust automatically the W
parameter of the main MDL formula that appears in the introduction section,
simplifying the domain-specific adjusting of the principle.

5.1 Basic MDL formula

As said in the introduction section, the MDL principle is a metric used to evaluate
the complexity and accuracy of a theory which is inspired by data compression.
The class membership of each training example is to be communicated from a
sender to a receiver. This is done by transmitting a theory (set of rules in our
case) and, if necessary, transmitting the exceptions to this theory. That is, the
misclassified and non-classified examples. The cost of the transmission is equiv-
alent to the number of bits needed to encode the theory plus its exceptions in
a sensible scheme. The principle states that the best theory is the one requir-
ing the minimum number of bits. Therefore, the fitness function becomes the
minimization of the MDL formula [14]:

MDL = W · theory bits + exception bits (1)



W is a weight that adjust the relation between theory and exception bits. The
length of the theory bits (TL) is defined as follows:

TL =

nr∑

i=1

TLi (2)

Where nr is the number of rules of the theory. The definition of the rules for
all the knowledge representations used share a common structure: condition →
class. The condition is defined as a conjunction of predicates, where each pred-
icate is associated to an attribute of the problem. Therefore, TLi is defined as
follows:

TLi =

na∑

j=1

TL
j
i . (3)

Where na is the number of attributes of the problem. TL
j
i is the length of the

predicate associated to the attribute j of the rule i, and has a specific formula for
each knowledge representation used. The reader can see that we have omitted a
term in the formula related to the class associated to the rule. As it is a value
common for all the possible rules it becomes irrelevant and it has been removed
for simplicity reasons.

The exceptions part of the MDL principle (EL) represents the act of sending
the class for the misclassified or unclassified examples to the receiver. We imple-
ment this idea by sending the number of exceptions plus, for each exception, its
index in the examples set (supposing that sender and receiver have the examples
organized in the same order) and its class:

EL = log2(ne) + (nm + nu) · (log2(ne) + log2(nc)) (4)

Where ne is the total number of examples, nm is the number of wrongly classi-
fied examples, nu is the number of unclassified examples and nc is the number
of classes of the problem. This definition is independant from the knowledge
representation.

5.2 Adaptation of the MDL principle for each knowledge

representation

The length of the predicate associated to each attribute (TL
j
i ) has to be adapted

to the type of the attribute and the knowledge representation. While designing
the formula to calculate this length we have to remember that the philosophy
of the MDL principle is to promote simple but accurate solutions. Therefore,
we will prefer formula definitions that promote bias towards simpler solutions
although there may exist shorter definitions.

MDL formula for real-valued attributes and ADI2 rule representa-

tion The predicate associated to an attribute by this representation is defined
as a disjunction of intervals, where each interval is a non-overlapping number
of micro-intervals and can take a value of either true of false. Therefore, the



information to transmit is the number of intervals of the predicate plus, for each
interval, its size and value (1 or 0).

TL
j
i = log2(MaxI) + ni

j
i · (log2(MaxMI) + 1) (5)

MaxI is the maximum number of intervals allowed in a predicate, ni is the
actual number of intervals of the predicate and MaxMI is the maximum allowed
number of micro-intervals in the predicate.

Given the example of attribute predicate in figure 4, where we have 4 intervals
, and supposing that the maximum numbers of intervals and micro-intervals are
respectively 10 and 25, its MDL size is defined as follows:

TL
j
i = log2(10) + 4 · (log2(25) + 1)

Fig. 4. Example of an ADI2 attribute predicate

11 1 0

MDL formula for discrete attributes and GABIL representation The
predicate associated to an attribute by this representation is defined as a dis-
junction of all the possible values that can take the attribute. The simpler way
of transmitting this predicate is sending the binary string that the representa-
tion uses to encode it. This is the approach used by Quinlan in C4.5rules [14].
However, this definition does not take into account the complexity of the term
and does not provide a bias towards generalized solutions.

Therefore, we define a different formula which is very similar to the one
proposed for the ADI2 knowledge representation. In this formula we simulate
that we have merged the neighbor values of the predicate which have the same
value (true or false):

TL
j
i = log2(nvj) + 1 + ni

j
i · log2(nvj) (6)

nv is the number of possible values of the attribute j and ni is the number of
“simulated intervals” that exist in the predicate. The only difference between
this formula and the ADI2 one is that we do not have to transmit the value of
all the “simulated intervals”, but only the first one (one bit).

If we had an attribute predicate such as “1111100001” we can see that we
have 10 values and 3 “simulated intervals” and that the MDL size of the predicate
would be:

TL
j
i = log2(10) + 1 + 3 · log2(10)

This approach completely makes sense for ordinal attributes, where there
exist an order between values, but not for nominal ones. However, we think that
this definition is also useful for nominal attributes because we want to promote
generalized predicates, where most of the values are true, and this means having
few “simulated intervals”.



5.3 Looking for a parameter-less MDL principle

If we examine all the formulas of the MDL principle we only find one parameter:
W which adjusts the relation between the length of the theory and the length of
the exceptions. Quinlan used a value of 0.5 for this parameter in C4.5rules and
reported the following in page 53 of [14]:

Fortunately, the algorithm does not seem to be particularly sensitive to the
value of W .

Unfortunately, our environment of application of the MDL principle (a GBML
system) is quite different and the value of the W parameter is quite sensitive. If
the value of W is too high, the population will collapse into one rule individuals,
as it can be seen in section bloat. If W is too low, the individuals probably will
be too much specific.

This problem with the adjusting of W leads to a question: Is it possible to
find a good method to adjust automatically this parameter? The completely rig-
orous answer, being aware of the No Free Lunch Theorem [20] and the Selective
Superiority Problem [21] is no.

Nevertheless, at least we can try to find a way to automatically make the
system perform “quite well” in a broad range of problems. In order to achieve
this objective we have developed a simple approximation which starts the learn-
ing process with a very strict weight (but loose enough to avoid a collapse of the
population) and relaxes it through the iterations when the GA has not found
a better solution for a certain number of iterations. This method can be repre-
sented by the code in figure 5.

InitialRateOfComplexity defines which percentage of the MDL formula
should the term W · TL have. Using this supposition and given one individual
from the initial population, we can calculate the value of W . We have used a
simple policy to select this individual: the one with more train accuracy (W =

InitialRateOfComplexity·EL
(1−InitialRateOfComplexity)·TL′

).

This issue raises a question: is this individual good enough? If we recall
section 2, it is more probable that this individual will be long than short. Then,
maybe we would be initializing W with a too small value. Therefore, before
calculating the initial value of W we do a last step: scaling the theory length
of this individual (TL′ = TL · NR

NC
), using as a reference the minimum possible

number of rules of an optimal solution: the number of classes of the domain.

We can see that in order to automatically adjust one parameter we have
introduced three extra parameters (InitialRateOfComplexity, MaximumBestDe-
lay and WeightRelaxationFactor). The second parameter is easy to setup if we
consider the takeover time for the tournament selection [22]. Given a tourna-
ment size of 3 and a population size of 300, the takeover time is 6.77 itera-
tions. Considering that we have both crossover and mutation in our GA, setting
MaximumBestDelay to 10 seems quite safe.

Setting InitialRateOfComplexity is also relatively easy: it the value is too
high (giving too much importance to the complexity factor of the MDL formula)
the population will collapse. Therefore, we have to find the maximum value of



Fig. 5. Code of the parameter-less learning process with automatically adjusting of W

Initialize GA

Ind = Individual with best accuracy from the initial GA population
TL = Theory Length of Ind

EL = Exceptions Length of Ind

NR = Number of rules of Ind

NC = Number of Classes of the domain
TL′ = TL ·

NR
NC

W = InitialRateOfComplexity·EL

(1−InitialRateOfComplexity)·TL′

Iteration = 0
IterationsSinceBest = 0
While Iteration < NumIterations

Run one iteration of the GA using W in fitness computation
If a newbest individual has been found then

IterationsSinceBest = 0
Else

IterationsSinceBest = IterationsSinceBest + 1
EndIf

If IterationsSinceBest > MaximumBestDelay then

W = W · WeightRelaxationFactor

IterationsSinceBest = 0
EndIf

Iteration = Iteration + 1
EndWhile

InitialRateOfComplexity that lets the system perform a correct learning pro-
cess. Doing some short tests with various domains we have seen that values
over 0.1 are too much dangerous. In order to adjust more finely this param-
eter and also set WeightRelaxationFactor we have done tests using again the
MX-11 domain testing three values of each parameter: 0.1, 0.075 and 0.05 for
InitialRateOfComplexity and 0.9, 0.8 and 0.7 for WeightRelaxationFactor.

The results can be seen in table 1, showing three things: test accuracy and
the number of rules of the best individual in the final population and also the
average iteration where 100% train accuracy was reached. We can see that all
the tested configuration manage to reach a perfect accuracy, and also that the
number of rules of the solutions are very close to the optimum 9 ordered rules.
The only significant differences between the combinations of parameters tested
comes when we observe the iterations needed to reach 100% train accuracy. We
can see that as more mild are the parameters used, fewer iterations are needed.
This arises the question of how extrapolative to other domains is this behaviour.
We have to be aware that MX-11 is a synthetic problem without noise.

In order to check how is the system behaving in real problems, we repeated
this test with another well-known problem: Wisconsin Breast Cancer. The re-
sults can be seen in table 2. Iterations are not included in this table because
we do not know the ideal solution for this problem. Instead, we have included
train accuracy. It will help illustrate the completely different landscape that we



Table 1. Tests with the MX-11 domain done to find the values of InitialRateOfCom-
plexity (IROC ) and WeightRelaxationFactor (WRF )

WRF IROC Test acc. Num. of Rules Iterations until perfect accuracy

0.7
0.05 100.0±0.0 9.3±0.6 301.4±56.8
0.075 100.0±0.0 9.2±0.5 309.0±62.6
0.1 100.0±0.0 9.2±0.5 333.3±62.2

0.8
0.05 100.0±0.0 9.3±0.5 331.0±71.5
0.075 100.0±0.0 9.2±0.3 364.4±75.3
0.1 100.0±0.0 9.2±0.5 374.3±66.9

0.9
0.05 100.0±0.0 9.2±0.5 428.6±99.7
0.075 100.0±0.0 9.2±0.4 475.5±95.6
0.1 100.0±0.0 9.1±0.4 518.4±110.2

have here: Although the differences are not significant, we can see that as more
mild are the parameters used, we have more train accuracy, more rules and less
test accuracy. It seems quite clear that the system suffers from over-learning
if its working parameters are not enough strict. Therefore, we select 0.075 and
0.9 as the values of InitialRateOfComplexity and WeightRelaxationFactor

respectively for the rest of this paper. These values seem to be the most stable
ones.

Table 2. Tests with the Wisconsin Breast Cancer domain done to find the values of
InitialRateOfComplexity (IROC ) and WeightRelaxationFactor (WRF )

WRF IROC Train acc. Test acc. Num. of Rules

0.7
0.05 98.2±0.3 95.6±1.5 4.3±1.5
0.075 98.2±0.3 95.8±1.5 4.1±1.3
0.1 98.1±0.3 95.9±1.7 3.9±1.2

0.8
0.05 98.1±0.3 95.8±1.5 3.9±1.3
0.075 98.0±0.3 96.0±1.7 3.7±0.8
0.1 97.9±0.3 96.0±1.7 3.5±0.9

0.9
0.05 97.8±0.3 95.9±1.7 2.9±0.9
0.075 97.6±0.3 96.0±1.8 2.3±0.6
0.1 97.5±0.3 95.9±1.8 2.2±0.5

Before showing the results for all the datasets tested it would be interesting
to see the stability of the W tuning heuristic presented in this section. In figure
6 we can see the evolution of W through the learning process for the bre and tao
problems 3. The values in the figure have been scaled in relation to the initial
W value. These two problems are selected because they show two alternative
behaviours due to having very different number of rules in their optimal solutions.
We can see that the differences in the evolution of W for different executions
shrink through the iterations, showing the stability of the heuristic.

3 Datasets are detailed in section 6



Fig. 6. Evolution of W through the learning process

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  50  100  150  200  250

W

Iterations

Winsconsin Breast Cancer problem

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600  700  800  900  1000

W

Iterations

TAO problem

6 Test suite

This section summarizes the tests done across several domains in order to eval-
uate the accuracy and efficiency of the method presented in this paper. We also
compare it with our previous proposal.

6.1 Test problems

The selected test problems for this paper present different characteristics in order
to give us a broad overview of the performance of the methods being compared.

First we have some synthetic problems: Tao (tao) [23], a problem that has
non-orthogonal class boundaries, the 11 input multiplexer (mux ) and LED (led),
a problem which represents a seven segments display having the represented
digit as the class. This problem has a 10% artificially added noise. Second, we
also use several real problems provided by the University of California at Irvine
(UCI) repository [24]. The problems selected are: Audiology (aud), Glass gls,
Iris irs, Ionosphere (ion), Pima-indians-diabetes (pim), Primary-Tumor (prt)
and Wisconsin-breast-cancer (bre). Finally, we will use three problems from our
own private repository. The first two deal with the diagnosis of breast cancer
based of biopsies (bps) [25] and mammograms (mmg) [26] whereas the last one is
related to the prediction of student qualifications (lrn) [27]. The characteristics
of all the datasets are listed in table 3. The partition of the examples into the
train and test sets was done using the stratified ten-fold cross-validation method
[28].

6.2 Experimentation design

The goal of the tests done in this paper is to evaluate the performance of the
implementation of the MDL principle described in the prior section. This evalu-
ation includes a comparison of this method our previous generalization pressure
methods (GPM): the Hierarchical Selection operator [8].

In our previous work, the Hierarchical Selection operator was used in com-
bination with the rule deletion operator because it could not control the bloat
effect by itself, but only improved the generalization pressure. This fact makes
us question if it is necessary to use the rule deletion operator for the MDL meth-
ods. We performed a short test to answer this question. The test used again



Table 3. Characteristics of the test problems.

Dataset Number of examples real-valued attributes discrete attributes classes

aud 226 - 69 24
bps 1027 24 - 2
bre 699 - 9 2
gls 214 9 - 6
ion 351 34 - 2
irs 150 4 - 3
led 2000 - 7 10
lrn 648 4 2 5

mmg 216 21 - 2
mux 2048 - 11 2
pim 768 8 - 2
prt 339 - 17 22
tao 1888 2 - 2

Wisconsin Breast Cancer. We use the same GA configuration being used in the
global tests which is detailed at the end of this section.

The results of this short test are in table 4. We show, for each configuration
(GPM with/without rule elimination), the averages and mean deviations of the
test accuracy, the number of rules of the final solution and the run time in seconds
(using a Pentium IV at 1.5GHz). We can see that the use of the rule deletion
operator improved the accuracy for all the GPM. Also, there is a reduction in
the average number of rules (for the Hierarchical GPM ) and run time. The rule
set size reduction does not seem very big in average, but the differences are
considerable if we look at the maximum and minimum sizes for the Hierarchical
method, reflecting that it sometimes cannot control the bloat effect.

Other domains showed similar results. As it seems there does not exist a
bad interaction between the GPM and the rule elimination operator, we have
decided to use the operator for the rest of the tests.

Table 4. Test of the effects of the Rule Deletion operator for the Breast problem

GPM Rule Deletion Test accuracy Number of Rules Run Time (s)
Min. Max. Avg.

Hierar. No 95.6±1.3 22 2 4.9±3.6 92.8±25.6

Hierar. Yes 95.8±1.6 6 2 2.4±0.7 57.4±2.5

MDL No 95.9±1.7 6 2 2.4±0.7 58.9±3.4

MDL Yes 96.1±1.8 4 2 2.4±0.7 55.8±1.9

In order to allow the replication of our results we show the detailed config-
uration of our tests in table 5. This table is divided in two parts: common and
domain-specific parameters.

The value of the initialization probability (p1) is greater than the usual 0.5
value for some problems. All these problems share a common trait: a high num-
ber of attributes. In this environment, a regular initialization policy can lead
to a situation where very few (or none) train examples are matched by the in-
dividuals. This situation can lead to a collapse of the population towards one



Table 5. Common and problem-specific parameters of the GA.

Parameter Value

General parameters
Crossover probability 0.6
Selection Algorithm Tournament
Tournament size 3
Population size 300
Probability of mutating an individual 0.6
Number of seeds for each experiment 15

MDL Weight heuristically adjusting
InitialRateOfComplexity 0.075
MaximumBestDelay 10
WeightRelaxationFactor 0.9

rule deletion operator
Iteration of activation 40
Minimum number of rules before disabling the operator numClasses + 3

Hierarchical Selection
Iteration of activation 40

ADI rule representation
Maximum number of intervals per attribute 10
Possible size in micro-intervals of an attribute 5,6,7,8,10,15,20,25
psplit 0.05
pmerge 0.05

Code Parameter

#iter Number of GA iterations
p1 Probability of value 1 in initialization
dcomp Threshold parameter in Hierarchical Selection

Problem Parameter
#iter p1 dcomp

aud 1500 0.9 0.005
bps 300 0.75 0.015
bre 250 0.5 0.010
gls 1100 0.5 0.010
ion 450 0.75 0.010
irs 200 0.5 0.010
led 1000 0.5 0.001
lrn 700 0.5 0.010
mmg 275 0.75 0.010
mux 1000 0.5 0.001
pim 225 0.5 0.010
prt 1000 0.9 0.005
tao 900 0.5 0.001

rule individuals, because accuracy becomes an insignificant part of the fitness
computation.

7 Results

In this section we present the results obtained. The aim of the tests was to
determine the performance of the GPM tested in three aspects: accuracy and
size of the solutions as well as computational cost. For each method and test
problem we show the average and standard deviation values of: (1) the cross-
validation accuracy, (2) the size of the best individual in number of rules and (3)
the execution time in seconds. The tests were executed in an AMD Athlon 1700+
using the Linux operating system, C++ language and GCC v3.2.2 compiler.

The results can be seen in table 6. The results were also analyzed using
paired two-sided statistical t-test [29] in order to determine if the MDL method



outperform our previous approach with a significance level of 1%. No significant
outperformances were detected.

As an external reference of the results, in table 7 the accuracy of the two
above methods is compared to IB1 [30], C5.5 [14] 4 and XCS [5] 5. We can see
that, as usual, each method is the best in some problems but all of them perform
similarly in average.

Table 6. Results of the comparative tests. Bold entries show the method with best
results for each test problem.

Problem Configuration Accuracy Number of Rules Time (s)

aud
Hierar. 60.0±4.2 11.2±2.2 89.1±12.4
MDL 63.5±3.9 10.6±2.9 121.2±20.2

bps
Hierar. 80.2±2.9 3.4±0.8 218.0±17.3
MDL 80.2±2.9 3.3±1.0 218.9±13.4

bre
Hierar. 95.8±1.6 2.4±0.7 44.6±1.9
MDL 96.1±1.8 2.4±0.7 43.4±1.5

gls
Hierar. 64.4±3.6 7.2±1.4 71.1±7.9
MDL 64.8±3.0 8.7±1.1 74.2±8.2

ion
Hierar. 90.7±2.8 4.0±1.2 177.6±20.8
MDL 91.3±2.9 5.0±1.6 173.7±17.5

irs
Hierar. 95.1±2.1 4.8±1.0 5.3±0.3
MDL 95.6±3.0 4.6±0.8 5.4±0.3

led
Hierar. 74.4±1.7 18.0±2.0 344.3±13.4
MDL 74.6±1.7 19.3±2.2 332.7±8.2

lrn
Hierar. 68.2±4.6 7.1±1.6 82.9±5.9
MDL 68.1±4.1 9.6±2.0 85.4±5.5

mmg
Hierar. 66.3±4.5 5.1±1.1 39.9±4.7
MDL 64.4±6.4 5.3±1.1 38.6±4.7

mux
Hierar. 100.0±0.0 10.9±1.1 519.0±36.7
MDL 100.0±0.0 9.2±0.4 474.2±14.4

pim
Hierar. 75.0±3.4 4.5±1.3 57.8±5.0
MDL 74.8±3.4 3.9±0.9 57.4±4.7

prt
Hierar. 46.9±5.3 10.2±2.6 39.4±5.3
MDL 47.1±5.2 14.9±3.5 47.1±5.5

tao
Hierar. 94.9±1.1 18.1±3.9 461.3±46.5
MDL 94.7±0.9 15.1±4.6 414.1±33.0

average
Hierar. 77.8±15.9 8.2±5.0 165.4±164.7
MDL 78.1±15.8 8.6±5.0 160.5±148.5

Table 7. Accuracy of Hierar. and MDL methods compared to IB1, C4.5 and XCS.
Bold entries show the method with best results for each test problem.

Problem Hierar. MDL IB1 C4.5 XCS

aud 60.0±4.2 63.5±3.9 76.0±6.3 79.0±6.2 41.6±8.1
bps 80.2±2.9 80.2±2.9 83.2±3.0 80.1±4.5 83.2±2.9

bre 95.8±1.6 96.1±1.8 96.0±1.4 95.4±1.5 96.4±2.4

gls 64.4±3.6 64.8±3.0 66.3±10.4 65.8±9.9 70.8±8.1

ion 90.7±2.8 91.3±2.9 86.9±4.6 89.8±4. —
irs 95.1±2.1 95.6±3.0 95.3±3.1 95.3±3.1 94.7±5.0
led 74.4±1.7 74.6±1.7 56.5±1.7 75.0±2.1 74.5±1.9
lrn 68.2±4.6 68.1±4.1 61.4±5.8 68.6±4.4 —
mmg 66.3±4.5 64.4±6.4 63.5±11.5 64.8±6.0 64.3±6.4
mux 100.0±0.0 100.0±0.0 78.6±3.8 99.9±0.2 100.0±0.0

pim 75.0±3.4 74.8±3.4 70.3±3.3 73.1±5.0 75.4±4.4

prt 46.9±5.3 47.1±5.2 37.8±5.3 44.1±5.8 39.9±6.6
tao 94.9±1.1 94.7±0.9 96.1±1.1 95.1±1.9 89.9±1.24 Using the Weka [29] implementations

5 Results taken from [31]



What can we observe in the results? First of all we can see that for the
mux problem, the MDL method manages to generate solutions more near to the
optimum rule set than the Hierarchical Selection method. Also, from a global
point of view the results tell us that the MDL method has achieved our objective
of developing a robust and easier to adjust GPM. It has managed to outperform
(in average) our previous work, the Hierarchical Selection method, in two ways:
accuracy and reduction of the computational cost.

Nevertheless, the differences in the results do not seem to be much significant,
but the way to reach these results, the internal behaviour of each method, is very
different for both methods. We can observe this fact looking at the evolution of
the accuracy average individual size (in rules) through the iterations. It figure 7
we can see this evolution for the bps,bre, mux and tao problems. The plot for the
iterations before the rule deletion activation have been removed from the graph
because they introduce a high distortion.

The Hierarchical Selection method uses a specific-to-general policy. In the
early iterations of the learning process it frequently finds new solutions that
outreach the previous best accuracy by more than dcomp. In this situation the
number of rules of the individuals is irrelevant. But as the learning curve stabi-
lizes, the differences in accuracy between the bests individuals of the population
become smaller than dcomp. Then, the smaller individual are mostly selected
and, as a consequence, the average individual size slowly decreases.

On the other hand the MDL method, because of the behaviour of the W

control heuristic, starts the learning process giving much importance to the size
of the individual, and relaxes this importance through the iterations as dictated
by the heuristic. Therefore, the behaviour is general-to-specific.

In figure 7 we can also see the main problem of the MDL method, which is
the over-relaxation of the W weight. The philosophy of the algorithm we have
proposed to tune W is that we relax this weight when it is too much strict,
that is, when the GA cannot find a better individual for a certain number of
iterations. This condition is sometimes difficult to control, and maybe if the
system was given more iterations, the test performance in some domains would
decrease. On the other hand we can see in figure 7 and in table 6 the reverse
situation for the tao problem: The accuracy obtained by the MDL method is
below the Hierarchical Selection one because the rule set is too much simple.
With some more iterations this method probably would increase its accuracy.

Figure 7 can also help explain the notable computational cost difference
between the tested methods in some domains (mux and tao). Smaller individuals
are faster to evaluate. Therefore, the notable differences in the average individual
size have their consequence in the overall computational cost.

8 Conclusions and further work

In this paper we have proposed a generalization pressure method for Pittsburgh
Approach Classifier Systems based on the MDL principle. This technique pro-
poses a fitness function which combines in a smart way the accuracy and the
complexity of the individual being evaluated. The complexity measure is not
based only on the size of the individual (number of rules) but also on the con-



Fig. 7. Evolution of the average individual size for the bre and bps problems and ADI

representation

 3

 4

 5

 6

 7

 8

 9

 0  50  100  150  200  250

N
u

m
b

e
r 

o
f 

ru
le

s

Iterations

bre problem

MDL
Hierar.

 3

 4

 5

 6

 7

 8

 9

 0  50  100  150  200  250  300

N
u

m
b

e
r 

o
f 

ru
le

s

Iterations

bps problem

MDL
Hierar.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  100  200  300  400  500  600  700  800  900  1000

N
u

m
b

e
r 

o
f 

ru
le

s

Iterations

mux problem

MDL
Hierar.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  100  200  300  400  500  600  700  800  900  1000

N
u

m
b

e
r 

o
f 

ru
le

s

Iterations

tao problem

MDL
Hierar.

tent of the rules. This if one of the main differences between this method and
others found in the literature. Having a bloat control method that takes into
account the semantical content of the rules can help explore better the search
space, beside managing the size of the individual.

Extensive tests comparing the MDL method with our previous proposal have
been done. These tests show that the technique performs slightly better (al-
though not in a significant way based on Student t-tests) and runs also slightly
faster. Beside its good results, the MDL method has another interesting feature,
compared to our previous work in GPM, which is that it does not need a specific
adjustment for each problem being solved. This is due to an adaptive adjustment
of the W parameter. This adjustment is done by an heuristic process that we
have developed. The adjusting of the W parameter is critical because applying
too much or too little generalization pressure in the population can lead to an
incorrect learning process. In the first case the population can collapse into in-
dividuals which are too simple. On the other hand, too little pressure can lead
to over-fitted solutions. The tests have show that the adjustment of W is good,
although it could be better controlled.

Therefore, as further work, other methods of adjusting W (like a specific-to-
general policy) or maybe a stop criterion for the current method (leaving the
value of W fixed after a certain point of the learning process) should be studied.



Also, it could be interesting to extract other measures from the performance of
the GPM tested, like the degree of diversity existing in the population.

Also, it would be very interesting to compare this bloat control method with
recent Pareto-based Multi-Objective techniques like MOLCS [16]. This method
is completely parameter-less, which was one of our goals. However, this means
that the pressure applied to the complexity objective cannot be adjusted and,
probably, it will be too strong or too mild for certain problems. If we know
how the system will behave, having the possibility of some fine-tuning if quite
desirable.

Acknowledgments

The authors acknowledge the support provided under grant numbers 2001FI
00514, TIC2002-04160-C02-02, TIC 2002-04036-C05-03 and 2002SGR 00155.
Also, we would like to thank Enginyeria i Arquitectura La Salle for their support
to our research group. The Wisconsin breast cancer databases was obtained from
the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg.
The primary tumor domain was obtained from the University Medical Centre,
Institute of Oncology, Ljubljana, Slovenia. Thanks go to M. Zwitter and M.
Soklic for providing the data.

References

1. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press (1975)

2. Smith, S.F.: Flexible learning of problem solving heuristics through adaptive
search. In: Proceedings of the Eighth International Joint Conference on Artifi-
cial Intelligence, Los Altos, CA, Morgan Kaufmann (1983) 421–425

3. Holland, J.H.: Escaping Brittleness: The possibilities of General-Purpose Learning
Algorithms Applied to Parallel Rule-Based Systems. In: Machine learning, an
artificial intelligence approach. Volume II. (1986) 593–623

4. DeJong, K.A., Spears, W.M.: Learning concept classification rules using genetic
algorithms. Proceedings of the International Joint Conference on Artificial Intelli-
gence (1991) 651–656

5. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3

(1995) 149–175

6. Langdon, W.B.: Fitness causes bloat in variable size representations. Technical
Report CSRP-97-14, University of Birmingham, School of Computer Science (1997)
Position paper at the Workshop on Evolutionary Computation with Variable Size
Representation at ICGA-97.

7. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)

8. Bacardit, J., Garrell, J.M.: Métodos de generalización para sistemas clasificadores
de Pittsburgh. In: Proceedings of the “Primer Congreso Español de Algoritmos
Evolutivos y Bioinspirados (AEB’02)”. (2002) 486–493

9. Rissanen, J.: Modeling by shortest data description. Automatica vol. 14 (1978)
465–471

10. Pfahringer, B.: Practical uses of the minimum description length principle in
inductive learning (1995)

11. Bacardit, J., Garrell, J.M.: Evolving multiple discretizations with adaptive in-
tervals for a pittsburgh rule-based learning classifier system. In: Proceedings of



the Genetic and Evolutionary Computation Conference - GECCO2003, (in press),
LNCS, Springer (2003)

12. Gao, Q., Li, M., Vitányi, P.: Applying mdl to learn best model granularity. Arti-
ficial Intelligence 121 (2000) 1–29

13. Iba, H., de Garis, H., Sato, T.: Genetic programming using a minimum description
length principle. In Kinnear, Jr., K.E., ed.: Advances in Genetic Programming.
MIT Press (1994) 265–284

14. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
15. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: GECCO 2002: Pro-

ceedings of the Genetic and Evolutionary Computation Conference. (2002) 829–836
16. Llorà, X., Goldberg, D.E., Traus, I., Bernadó, E.: Accuracy, Parsimony, and Gen-

erality in Evolutionary Learning System a Multiobjective Selection. In: Advances
in Learning Classifier Systems: proceedings of the 5th International Workshop on
Learning Classifier Systems, (in press), LNAI, Springer (2002)

17. Bernadó, E., Garrell, J.M.: Multiobjective learning in a genetic classifier system
(MOLeCS). Butllet́ı de l’Associació Catalana l’Intel.ligència Artificial 22 (2000)
102–111

18. Bacardit, J.: Pittsburgh Genetics-Based Machine Learning in the Data Mining era:
Representations, generalization, and run-time. PhD thesis, Ramon Llull University,
Barcelona, Catalonia, Spain (2004)

19. Rivest, R.L.: Learning decision lists. Machine Learning 2 (1987) 229–246
20. Wolpert, D.H., Macready, W.G.: No free lunch theorems for search. Technical

Report SFI-TR-95-02-010, Santa Fe, NM (1995)
21. Brodley, C.: Addressing the selective superiority problem: Automatic algorithm

/model class selection (1993)
22. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in

genetic algorithms. In: Foundations of Genetic Algorithms, Morgan Kaufmann
(1991) 69–93

23. Llorà, X., Garrell, J.M.: Knowledge-independent data mining with fine-grained
parallel evolutionary algorithms. In: Proceedings of the Third Genetic and Evolu-
tionary Computation Conference, Morgan Kaufmann (2001) 461–468

24. Blake, C., Keogh, E., Merz, C.: Uci repository of machine learning databases (1998)
(www.ics.uci.edu/mlearn/MLRepository.html).

25. Mart́ınez Marroqúın, E., Vos, C., et al.: Morphological analysis of mammary biopsy
images. In: Proceedings of the IEEE International Conference on Image Processing.
(1996) 943–947

26. Mart́ı, J., Cuf́ı, X., Regincós, J., et al.: Shape-based feature selection for microcal-
cification evaluation. In: Imaging Conference on Image Processing, 3338:1215-1224.
(1998)

27. Golobardes, E., Llorà, X., Garrell, J.M., Vernet, D., Bacardit, J.: Genetic classifier
system as a heuristic weighting method for a case-based classifier system. Butllet́ı
de l’Associació Catalana d’Intel.ligència Artificial 22 (2000) 132–141

28. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and
model selection. In: IJCAI. (1995) 1137–1145

29. Witten, I.H., Frank, E.: Data Mining: practical machine learning tools and tech-
niques with java implementations. Morgan Kaufmann (2000)

30. Aha, D.W., Kibler, D.F., Albert, M.K.: Instance-based learning algorithms. Ma-
chine Learning 6 (1991) 37–66

31. Bernadó, E., Garrell, J.M.: Accuracy-based learning classifier systems: Models,
analysis and applications to classification tasks. Special Issue of the Evolutionary
Computation Journal on Learning Classifier Systems (in press) (2003)


