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Abstract. Over the recent years, research on Learning Classifier Sys-
tems (LCSs) got more and more pronounced and diverse. There have
been significant advances of the LCS field on various fronts includ-
ing system understanding, representations, computational models, and
successful applications. In comparison to other machine learning tech-
niques, the advantages of LCSs have become more pronounced: (1) rule-
comprehensibility and thus knowledge extraction is straightforward; (2)
online learning is possible; (3) local minima are avoided due to the evo-
lutionary learning component; (4) distributed solution representations
evolve; or (5) larger problem domains can be handled. After the tenth
edition of the International Workshop on LCSs, more than ever before,
we are looking towards an exciting future. More diverse and challenging
applications, efficiency enhancements, studies of dynamical systems, and
applications to cognitive control approaches appear imminent. The aim
of this paper is to provide a look back at the LCS field, whereby we place
our emphasis on the recent advances. Moreover, we take a glimpse ahead
by discussing future challenges and opportunities for successful system
applications in various domains.

1 Introduction

Learning Classifier Systems (LCSs) are robust machine learning techniques that
can be applied to classification tasks [17, 6], large-scale data mining problems [80,
11], or robot control and cognitive system applications [33, 61], among others.
The well-established field has its origin in John Holland’s work on cognitive
systems [58, 55], initiated with his seminal book on adaption in natural and
artificial systems [57]. Time has seen research on several distinct approaches and
paradigms. Two classic examples of these are the Michigan approach [56] versus
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the Pittsburgh approach [103] and also the strength-based Michigan LCSs [56]
versus the more recent accuracy-based Michigan LCS [111].

Recent years have seen an explosion in quantity and diversity of LCS research.
Advances have been made on various frontiers including different condition rep-
resentations beyond the traditional binary/ternary rules (rules for continuous
attributes [80], hyperellipsoids [28], representations based on S-expressions [78,
21], etc.), other problem classes (function approximation tasks [76, 86], cluster-
ing [109]), smarter exploration mechanisms [36, 84, 10], and various theoretical
advances [34, 26, 91, 94].

The main meeting point of the LCS community, the International Workshop
on Learning Classifier Systems, celebrated its 10th edition in 2007. This gives
us the opportunity to take a look at the evolution of the whole LCS field from
a wider perspective. In this chapter, we give an overview of the main areas of
LCS research in recent years and which challenges and opportunities are laying
ahead. In short, the aim of this chapter is to provide a summary of past, present,
and future LCS research.

The chapter is structured as follows. Section 2 concentrates on the past by
describing briefly the origins of LCS research, its motivation, development, and
first successes. Section 3 surveys present LCS research. It touches on many recent
advances, which we categorize along the lines of representation, learning, theory,
and application. Section 4 discusses future challenges and opportunities. Based
on the state-of-the-art survey, we outline various future research and application
directions, which may exploit the LCS strengths and improve their weaknesses.
Section 5 summarizes and concludes.

2 LCSs: Types and Approaches

John Holland, the father of LCSs, stems from the biological side and consequently
introduced the LCS framework as a cognitive systems framework [58, 55, 56].
Inspired by principles psychology, production systems, and Darwinian evolution,
he designed CSs as systems that evolve production rules in order to convert
given input sensations, as well as potentially internal state representations, into
useful motor commands. Rules were evaluated by basic reinforcement learning
mechanisms—the infamous bucket-brigade algorithm [59]—and rule structure
evolved by means of genetic alterations and fitness-based selection.

Due to the availability of a recent excellent LCS survey [72], rather than
focusing on a historic overview on LCS research, this section gives a short intro-
duction to the basic LCS architecture and the fundamental differences between
Pittsburgh and Michigan-style LCSs. It is hoped that this section (1) forms the
basis for the rest of this chapter and (2) gives a general introduction to what
LCSs are.



LCSs: Past and Future 3

2.1 Basic LCS Components

It might be debatable which systems may be considered LCSs. However, in order
to get a grasp onto the system functionality, it seems important to identify the
minimal components that are usually part of an LCS:

– A set of classifiers, that is, a set of rule-like structures, where rules usually
have a condition-prediction form. This set, as it will be seen later when we
describe the two main LCS paradigms, is often identified as a population,
where each classifier in the set has its own individual identity, while other
times classifiers are just part of a whole and studying them separately does
not always provide good insight. For simplicity in the next paragraphs we
will talk about population, even if it is not entirely appropiate.

– Classifier/population evolution mechanism, potentially enhanced with
heuristics, that is designed to improve rule structures over time.

– Classifier/population evaluation mechanism, which identifies the quality of
the rule or population of rules.

These components are specified in a rather general sense. However, the three
components immediately imply some of the most important considerations in
LCS research and application. First, the population of classifiers implies that
LCSs are meant to evolve distributed problem solutions in which individual clas-
sifiers specify suitable subsolutions. Thus, LCS somewhat follow a mixture of
experts approach. The overall solution to the problem is thus not represented in
an individual rule but in the concert of rules represented in a classifier popula-
tion.

Second, since rule structures are evolved by evolutionary-inspired, distributed
learning techniques and this evolutionary process depends on fitness estimates,
which are derived by the employed evaluation mechanism, LCSs are highly in-

teractive learning mechanisms. Thus, the interaction—or the race—between suf-
ficiently accurate evaluations and sufficiently focused evolution needs to be bal-
anced to ensure successful learning. The various LCS systems accomplish this in
some way or the other, as will be seen below.

Finally, due to the evolutionary-based structural search, LCSs usually work
exceptionally competitive in problems in which either the signal for rule struc-
tures cannot be determined directly from the feedback signal, or, if a suitable
feedback signal is available, directed error-based structural learners tend to get
stuck in local minima. Thus, due to the interactive evaluation-evolution ap-
proach, LCSs do process feedback signals but they do not convert this signal
directly into structural search biases, but use evolutionary mechanisms to in-
duce a more thorough search that is only indirectly dependent on the feedback.
Thus, LCSs are more likely to find globally-optimal solutions in particularly
challenging problems, which require distributed problem solutions but in which
heuristic search mechanisms tend to prematurely converge to local optima.
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2.2 Michigan vs. Pittsburgh LCSs

One of the most fundamental distinction in LCS research is that of Michigan-
style vs. Pittsburgh-style LCSs. Holland proposed the Michigan-style ones [56],
while Kenneth DeJong and his student [103, 104] proposed the Pittsburgh-style
LCS approach. Several main distinctions between the two approaches can be
drawn:

– Individuals structure
– Problem solution structure
– Individuals competition/cooperation
– Online vs. offline learning

The first most fundamental distinction is the structure of an individual. While
in Michigan systems each individual is a classifier, in Pittsburgh systems each
individual is a set of classifiers. The other distinctions are a consequence of
the first one: in Pittsburgh systems the solution to the problem is the best
individual of the population. The individuals in the population compete to solve
the problem and for reproductive opportinities, while in Michigan systems the
solution is the population, that is, the classifiers in the population cooperate
to solve the problem, while they compete for reproductive opportunities. The
last distinction is just a consequence of the previous distinctions, and will be
discussed later in this section. Figure 1 illustrates the main difference between
the two systems.
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Fig. 1. While Michigan-style LCSs evolve one population of rules, in which the rules
compete for offspring generation, Pittsburgh-style LCSs evaluate and evolve multiple
populations, which compete with each other for reproductions.

Due to the classifier-based competition in Michigan-style LCSs, the popu-
lation is usually continuously evaluated and evolved by steady-state GA tech-
niques. Pitt-style systems, on the other hand, require longer evaluation peri-
ods until the next generation of populations can evolve, since the fitness of the
whole population rather than of individual classifiers needs to be assessed. Thus,
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Michigan-style systems are typically applied in interactive, online learning prob-
lems while Pitt-style systems are rather suitable for offline learning problems.
Nonetheless, either system has also been applied to the other problem type.

Another consequence of the rule-competition vs. population-competition dif-
ference is the typical form of the final solution. While Michigan-style systems
typically evolve highly distributed problem solutions involving a rather large
number of rules (typically hundreds if not more), Pitt-style systems typically
evolve more compact populations involving only few rules in a population (less
than a hundred). As a consequence, it can be expected that Pitt-style systems
are more suitable when compact solutions with few rules are expected to solve
the problem at hand. Michigan-style systems, on the other hand, are more suited
if further distributed solutions are searched for.

3 Recent Advances in LCSs

This section contains an overview of the recent research in the LCS field. Our
aim is to provide a spotlight of the different directions towards which the field is
advancing. Thus, although our intention is to provide a good description of the
overall advances of the field, for a more detailed survey including further historic
remarks, the interested reader is referred to the mentioned LCS survey [72].

Classical Michigan/Pittsburgh LCS systems were rule systems with ternary
condition structures, discrete actions, and real-valued predictions that used some
form of evolutionary component to learn. Present LCS research has thoroughly
analyzed these representations and mechanisms in several, often facet-wise, theo-
retical models. Moreover, it has gone beyond these these simple representations
and is currently investigating the usage of advanced evaluation and evolution
mechanisms, advanced representations, and the application to more diverse, real-
world problem domains.

This section shows that the current LCS research is very diverse, tackling
many different—albeit partially converging—frontiers towards which this field
is advancing. We organize this section in ten subsections in which these ad-
vances can be placed. Starting from the representation of conditions, actions,
and predictions, we move on to classifier competition, the evolutionary compo-
nent, and theoretic considerations. We finish this section with issues on solution
interpretability, efficiency enhancement techniques, and finally, move on to LCS
application domains and cognitive system approaches.

3.1 Condition Structure

In this category we place the advances in the condition part of the knowledge
representations. That is, the way in which the feature space is partitioned when
a problem is solved. Traditionally, LCSs have used knowledge representations
based on on rules for binary/nominal attributes. The ternary representation of
Michigan LCSs [49, 111] or the representation of the GABIL Pittsburgh LCSs
[40] are two examples of classic knowledge representations.
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Over time, other kinds of knowledge representations were proposed. The main
bulk of them were intended to deal with continuous attributes, something that
previous representations could not do. The earliest approach for continuous at-
tributes [115] was still a rule representation, but this time using hyperrectangles
as the conditions for the classifiers. This approach has been the most popular
one in recent years [106, 3, 82, 29, 14]. Other alternatives are using rule represen-
tations based on fuzzy logic [39], decision trees and synthetic instances used as
the core of a nearest neighbor classifier [81], or hyperellipsoid conditions [28, 35].

Another kind of representation advance is the use of symbolic expressions
to define classifier conditions [77, 2, 78, 21]. This kind of representation may be
the most flexible one, in the sense that it can specify the most diverse types of
problem subspaces. However, due this high diversity, it can also be considered
one of the hardest to learn suitable condition structures reliably.

3.2 Action Structures

While conditions partition the problem space, actions, or classifications, propose
a solution to the specified problem subspace. We analyze here the different alter-
natives regarding the action part of the classifiers. Traditionally, the responses
of LCS systems were static. That is, in a classification problem the possible
responses were the different classes of the domain. Each classifier had a static
associated class. For multi-step domains, the different responses were the differ-
ent discrete movements an agent could execute.

A more recent approach goes beyond these discrete action forms by proposing
computed actions [73]. In this case, each classifier does not have an associated
class label, but a prediction function that computes an action based on the input
pattern that matched the classifier. This prediction function can be a linear
combination of the inputs with a weight vector. Thus, in LCSs with computed
actions, action choice does not only depend on the subspace in which a classifier
condition is satisfied, but also on the action computation executed within the
specified subspace.

3.3 Prediction Structure

While original LCS rules had a constant prediction, which was updated by
gradient-based techniques, different kinds of advanced prediction structures and
prediction estimation techniques have been employed recently. First of all, LCSs
can be applied to classes of problems beyond classification/multi-step domains.
The most prominent of these application domains is that of function approxi-
mation/regression tasks [116, 28, 35, 76, 86] or clustering [109]. Initial function-
approximation LCS approaches tackled the regression problem as a piece-wise
linear approximation, where the problem was solved by the cooperation of mul-
tiple classifiers, each of which handled a different piece of the feature space, and
the continuous output of each classifier was computed as a linear combination of
the input and the weight vector of the classifier. Initially, this weight vector was



LCSs: Past and Future 7

adjusted using a simple delta rule [116, 28, 35], although recently more sophisti-
cated methods such as Recursive Least Squares or Kalman Filters [76] have been
employed. More recently, LCSs have gone beyond linear approximations by also
exploring the possibility of using polynomial predictions [74], neural predictions
[87], and Support Vector Regression [86].

3.4 Classifier Competition

Given a specific input problem instance, individual rules usually propose one
action and prediction. However, since usually many classifier match a certain
input, another concern is the the selection of the actual action and prediction
amongst all the machine classifiers available. That is, given a set of classifiers
that match an input pattern, the LCS should choose the classifier/s that produce
the response. In the Pittsburgh approach, the traditional solution is to organize
the classifiers in a decision list [100] (an ordered set of rules), and the first
classifier in the list that matches an input pattern is the one used to predict its
output. In the Michigan approach, the prediction is usually made cooperatively
by all the classifiers of the match or action set. Some recent advances in this
topic are the usage of explicit default rules at the end of the decision list of
Pittsburgh LCSs [8] or the use of better accuracy estimates of classifiers [88,
102] and principled classifier voting [19] for Michigan LCSs. Also the usage of
ensemble learning methods is worth mentioning, which integrates the collective
prediction of a set of models (populations of classifiers in a Michigan LCS [68]
or sets of rules extracted from multiple runs of a Pittsburgh LCS [9]) using some
principled fashion.

3.5 Rule Structure Evolution Mechanisms

The evolutionary mechanisms explores the space of classifier structures. In sim-
ple LCSs, this has been done by simple mutation techniques (random changes in
the ternary condition representation) and simple crossover techniques (typically
applying two-point crossover). Some of the recent advances, however, noted that
such a simple crossover application may be disruptive, consequently applying
Estimation of Distribution Algorithms (EDAs) [79], which generate a model of
the problem structure and then explore the search space based on this model.
There are studies of the application of EDAs for both the Michigan [36] and
Pittsburgh [84] approaches. An alternative to EDAs in the context of smarter
exploration mechanisms is the integration of local search techniques within an
evolutionary algorithm, generally known as Memetic Algorithms [67], with ex-
amples for both Michigan [119] and Pittsburgh [10] LCSs. Also, mutation rates
have been adjusted using self-adaptive mutation [22, 25]. In this case, the search
operators do not improve themselves but rather are evolved to become more
efficient for the current exploration mechanism.
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3.6 Theory and robustness

There have been various theoretical advancements in LCSs, which gives more
detailed explanations of how, why, and when an LCS works. The theoretical
advancements may be separated in the analysis of the evolutionary component
of the LCS system and the evaluation component.

For the evaluation component, Wilson [114, 111] has shown that his ZCS and
XCS systems essentially approximate the Q-value function. Drugowitsch and
Barry [42] provide an excellent mathematical foundation of the rule evaluation
mechanisms in LCSs and particularly their relation to standard machine learn-
ing and adaptive filtering techniques, including Kalman filtering. Generally, rule
evaluation can be considered a gradient-based, steepest-decent approximation
that should adapt the prediction estimation value of a classifier maximally effi-
ciently. Given good approximations, rule evolution can be applied successfully.

On the rule evolution side, the seminal paper on a Theory of Generalization

and Learning in XCS [34] has shown how the evolutionary component in LCSs
picks-up signals of more suitable classifier structures and consequently evolves
those. Due to the strong importance of proper selection pressures, various meth-
ods have been investigated, including proportionate selection with different scal-
ing factors [65] as well as tournament selection methods [37]. Selection pressure
was explicitly modeled in [95], where tournament selection was found to be more
robust than roulette wheel selection.

Meanwhile, generalization applies due to a preference of reproducing more
general classifiers. Moreover, this paper has shown that a general basic sup-
port of structure needs to be available to ensure successful classifier evolution.
[30] has further derived a minimal bound for the population size necessary to
evolve boundedly complex classifier structures. Finally, [32] has derived another
minimal population size bound that is necessary to ensure complete solution
sustenance. All these bounds were used to confirm the PAC-learning capabili-
ties of the XCS classifier system in k-DNF binary problem domains [26]. These
theoretical advancements still await their extension into the real-valued realm,
in which a volume-based classifier condition representation may lead to similar
results.

Moreover, it has been shown that class imbalances pose some difficulties to
LCS learners. Generally, learners are usually biased toward the majority class
when they are exposed to domains with high class imbalances. LCSs also suffer
from these difficulties, with the additional complexity of forgetting infrequent
patterns caused by the incremental learning. The conditions necessary for suc-
cessful learning under such conditions have been theoretically investigated in
[91, 94]. In these studies, the conditions for the discovery and maintenance of
minority-class niches are identified. Also a number of resampling approaches
have been experimentally investigated to favor the discovery of infrequent pat-
terns [90, 92].
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3.7 Interpretability and compaction

While many efforts have relied on improving accuracy of LCSs, interpretability
has also been identified as a relevant issue to get enhanced applicability of LCSs.
This is an issue that have bothered both Michigan and Pittsburgh researchers.
However, the approaches taken have been different. Pittsburgh LCSs usually
include mechanisms for evolving compact rule sets in the search process, e.g., by
means of using of minimum description length principles [7] or multiobjective
approaches searching both for accurate and minimal rule sets [13, 48, 62]. On the
contrary, Michigan LCSs cannot include such a direct preference for compact rule
sets in the evolutionary search and thus, they usually result in large rule sets. One
of the reasons is that LCSs are always performing an exploration process, so that
once the evolution is stopped, the rule set contains many inexperienced rules.
In such cases, Kovacs [66] suggested the use of a condensation phase, where the
GA was disabled to allow for optimal rule sets. On the other hand, in domains
with continuous attributes where LCSs use non-discretized representations, LCSs
tend to evolve large numbers of rules that consist of many partially overlapping
rules that cannot be subsumed during the exploration process. In these cases,
compaction algorithms that prune excess rules with minimum loss of accuracy
are proposed. The use of compaction algorithms was first proposed by Wilson
for XCS with hyperrectangle representation [117] and later studied in [41, 96, 44,
120].

Fuzzy representations have been proposed as an alternative way for getting
highly interpretable rule sets. There are a number of approaches using fuzzy
representations in Pittsburgh and hybrid LCSs [108, 63]. In Michigan LCSs, there
were early approaches such as [110, 99, 18]. Recently, fuzzy representations have
been introduced in XCS [38] and later in UCS [93].

3.8 Efficiency enhancement techniques

Regarding the methods that alleviate the run-time of LCSs, many alternatives
also exist. Some methods apply various kinds of windowing techniques [4] that
allow the LCS to use only a subset of the training examples for fitness compu-
tation. Various policies exist to choose the training subset and the frequency in
which this subset is changed. In [43] a taxonomy of such methods is given.

Parallel implementations of various LCS paradigms exist [81, 23, 80]. The
GALE system [81] is an especially interesting example due to its fine-grained
parallel design, where the topology and communications of the parallel model
are a direct consequence of the population topology and distribution.

A widely explored efficiency enhancement approach in evolutionary compu-
tation is the use of fitness surrogates, that is, cheap estimators of the fitness
function [64]. This approach has been recently explored within the LCS field
[97, 85] by constructing fitness surrogates based on an estimated model of the
problem structure. Finally, there has also been some work in speeding up the
matching operations of classifier conditions for both nominal and continuous rep-
resentations [83, 80] based on the usage of vectorial instructions (SSE, Altivec,
etc.) available on modern day microprocessors.
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3.9 Applications

With regard to applications, a clear aspect where LCSs have shown to perform
competently in comparison to a broad range of machine learning techniques
is in data mining tasks [17, 6]. Until recently, most of the available datasets
were of relatively small size. Now, and mainly thanks to the usage of efficiency
enhancement techniques explained in the previous subsection, LCSs have also
been applied to much larger real datasets in bioinformatics [107] or biomedical
[80] domains, containing hundreds of thousands of instances.

Other real world examples of application of LCSs are the automatic learning
of fighter aircraft maneuvers [101], LCSs applied to medical domains [60] or
to control problems in a steel hot strip mill [20]. There have also been some
studies of the application of LCSs to stream data mining [1, 53], where there
is a continuous flow of examples arriving at a very fast rate which requires
that LCS learn and produce a prediction in very short time. An overview of
recent applications including an extensive bibliography of LCS applications can
be found elsewhere[24].

3.10 Cognitive Systems

Since Holland’s introduction [58], LCSs have also played an important role in
adaptive behavior research and the animat problem—research on the develop-
ment of artificial animals and cognitive robots [112, 113]—and strong relations
to reinforcement learning and particular online generalization in Markov de-
cision processes have been made [70, 114, 111]. Recently, various results have
shown competitive performance of XCS on benchmark machine learning prob-
lems, such as the mountain car problem [75]. Moreover, various studies have
shown that XCS can maintain long reward chains and is able to generalize very
well over large problem spaces [31, 29]. Thus, LCSs can be considered partially
superior alternatives to standard reinforcement learning algorithms and related
machine learning approaches. They have the particular advantage that the bal-
ance between GA and reward propagation and approximation can be maintained
in large problem spaces, consequently learning stable payoff distributions with a
highly generalized set of accurate classifiers.

There have also been advances in Partially observable Markov decision pro-
cesses (PoMDP). XCS was enhanced with internal registers and has been shown
to consequently evolve emergent internal representations that were able to dis-
tinguish aliasing states in the environment [71]. However, the scalability of the
taken approach has not been shown and other researchers have tackled the prob-
lem with various other LCS approaches, such as a Pitt-style policy learners [69]
or the AgentP classifier framework, which uses learning heuristics to overcome
the PoMDP problem [121]. Despite all these efforts, the PoMDP problem is far
from being solved also in the LCSs realm.

AgentP actually belongs to the class of anticipatory learning classifier sys-
tems (ALCS), which form explicit predictions about sensory consequences of ac-
tions. These systems contain classifiers that encode condition-action-next state
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perception triples. Various forms of ALCSs exist including the original ACS sys-
tem [105], the enhanced, online generalizing ACS2 system [27], the mentioned
AgentP, YCS [46], and the MACS system [45]. In comparison with policy learn-
ers, the systems have the advantage that they learn a predictive model of the
environment so that they are able to flexibly adjust their behavior by simulating
possible behaviors internally. This can be most effectively done with dynamic
programming principles [45] but also partial updates have been investigated in
accordance with the Dyna architecture in reinforcement learning [27]. For future
research, it seems particularly appealing to extend these systems into real-world
domains and to modularize them for to be able to efficiently represent distinct
but related spaces of the environment.

4 Challenges and Opportunities

The near future points to several research challenges and various application
opportunities, some of which are also shared with the machine learning commu-
nity as a whole. Of common interest are issues such as applying learners beyond
the traditional classification problems, extracting information from real-world
datasets, system scalability, and rule selection. Besides the machine learning re-
lation, though, advanced, modular system designs and resulting applications to
complex robotics and cognitive systems tasks, amongst other domains, appear
imminent. In the following, we list the, in our opinion, most promising research
directions, including advanced system designs and various application oppor-
tunities. At the end of the section, we emphasize the general need in machine
learning for system cookbooks, that is, principled methodologies for system ap-
plications. For LCSs in particular, the practitioner needs to be further guided to
be able (1) to choose the best LCS for the problem at hand and (2) to suitably
adjust the chosen LCS to optimally prepare it for the application challenge.

4.1 Problem Structure and LCS Modules

A current opportunity for LCS systems is to exploit their easy knowledge extrac-
tion possibilities to extract useful patterns for the integration of unsupervised
learning and semi-supervised learning mechanisms. Some approaches have al-
ready been proposed such as those building clusters by taking advantage of the
generalization capabilities of classifiers [109]. The reverse question needs to be
further investigated, though, that is, if the clusters can again be used for the so-
lution of classification problems. The XCS system essentially combines clustering
and classification and clusters for the generation of accurate classifications.

Semi-supervised data mining approaches, where not all instances are labeled,
could benefit from combined clustering plus potential classification approaches.
Other frameworks, such as unsupervised learning, may also be exploited by LCSs.
Mining association rules can be addressed with LCSs seeking for the most fre-
quent patterns among the attributes. In these cases, generalization is a key issue,
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and LCSs are ready to conquer large problem spaces with the appropriate gener-
alization mechanisms. Thus, LCSs are ready to be applied to domains in which
partially pure clustering and partially problem space clustering for accurate clas-
sifications or predictions are necessary.

So far most LCSs have been flat, processing input and converting that input
into a classification, behavior, or prediction. The great problem space struc-
turing capabilities, however, suggest the generation of more modularized and
hierarchical LCSs. That is, since LCSs have been shown to be able to auto-
matically identify building-block structures in problem domains [36], it appears
imminent that modular LCS systems make these structures explicit, abstract
them, and use the abstracted concepts for further processing. A first approach
in this direction can be found in this book [98]. Due to the LCS principle of
clustering-for-prediction, however, more modular and hierarchical LCSs, which
may process subsets of input dimensions, abstract the information, and merge
it in higher level structures seem possible. Once such system architectures will
be successfully designed, a whole new dimension of LCS systems and successful
LCS applications will be at hand.

While such modular, hierarchical LCS systems may be applied to various
problem domains, the application in the cognitive systems realm appears most
appealing. Over the recent years, research in cognitive neuroscience, psychology,
and the mind in general has emphasized two very important aspects of brain
structure and functionality: interactive modularity and sensorimotor codes [47,
51, 52, 89, 118]. That is, the brain structures sensory and motor information in
various modules, whereby the purpose of these modules is to satisfy motivational
modules and serve control modules for successful behavioral executions. Thus,
many sensorimotor codes are found in the brain, which encode the dependence
of sensory information on motor commands in various forms and multimodal
modules. LCSs can structure sensory information for successful prediction and
motor control. Thus, they have the potential to directly develop sensorimotor
codes. Once advanced system modularity and further interactivity of LCS sys-
tems is realized, then also the interactive modularity of sensorimotor codes may
be mimicked. Thus, the design of advanced, cognitive LCSs appears to be within
our grasp.

4.2 LCS Cookbook

Many different learning algorithms have been proposed and evaluated experi-
mentally in a number of domains. No difference in LCSs: Various LCSs have
been proposed and applied to various problem domains—each of which with
some claimed superiorities shown by some evaluations in suitable problems or
problem classes. With such a variety of available methods, the practitioner finds
it difficult to choose a learner for a given application. Which LCS is better
suited for a given problem? Which are the conditions of applicability of an LCS?
Although we wish to be able to give exact answers to these questions, it is cur-
rently still a big challenge to give precise system design recommendations given
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a particular problem. In fact, often the trouble already starts at the problem
definition itself and particularly the to-be expected problem structures.

Thus, a big challenge is the development of further theoretical understanding
of which types of problems exist and which kind of LCS, or learning method in
general, is most suited to solve each type of problem. Goldberg has approached
this challenge with the definition of boundedly difficult problems in various opti-
mization problem domains [50]. The theoretical performance analyses of the XCS
classifier system have moved along a similar vein and identified various problem
properties that influence problem difficulty [29]. Another approach works on
the categorization of problems by means of geometrical descriptors, such as the
separability of classes or the discriminant power of attributes [15, 54, 12]. These
works have identified some features that are critical to the success of learners and
can act as predictors of the learners’ performance [16]. However, there is much
more work needed to further understand the intrinsic characteristics of data and
find the key properties relevant for the identification of the most potent learning
algorithm.

Another dimension of problem complexity, rather simpler to describe but
nonetheless equally difficult for LCS systems, is the size of the problem. That
is, how can we make sure that LCS performance is not degraded when tackling
problems of larger sizes. Scalability analysis of LCSs in such domains is still at
its beginning but the theoretical knowledge on different facets of the problem
is available [5, 29, 94]. Thus, compound approaches that tackle all the problem
facets in real-world data mining applications are pending.

Further extensions of such investigations in the LCS realm appear in close
reach, including further analyses of adversarial LCS problems and further studies
of which features are critical for LCS success. These studies are expected to close
the gap between LCSs and other machine learning methods. Moreover, they are
expected to lead towards more precise knowledge of the relative strengths and
weaknesses of the available learning systems and, in particular, the domains
of competence of different LCS learners. On this road, we expect that LCSs
and evolutionary approaches for machine learning will be progressively better
known and become accepted in the machine learning community as a whole.
Meanwhile, the particular strengths of LCSs will become appreciated, such as
learning robustness, versatility due to the availability of several representations
and balanced learning influences, and the explanatory power of LCSs.

4.3 Data Mining

Clearly the available applications in the data mining domain have not exploited
the full potential of LCSs. Knowledge extraction and exploitation are still at
the beginning. Moreover, the systems’ versatility has not been exploited to its
fullest.

In particular, it appears that there is still a lot of room for applying LCSs in
real-world domains, far beyond studies that are based on the known toy problems
from the UCI repository. Although the problems from the UCI repository have
been labeled “real-world problems”, and although they technically mostly are,
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they do not fully represent the difficulties of real-world data mining applications.
LCSs may be applied to mine interesting patterns from very large datasets,
containing hundreds of thousands of registers and a great number of attributes,
plus all associated complexities altogether (including high instance imbalances,
noise, missing information, partially labeled instances, etc).

Searching patterns through datasets structured in some manner, different
from the usual plain file, can also be a difficult challenge to any learning scheme.
Data may be presented in complex structures. While the traditional form consists
of a number of instances, each characterized by a fixed number of attributes with
associated class, data is now often presented in more intricate ways. Medical
records contain diverse data sets, which were collected from many sources: some
may have a variable number of medical tests associated, others may contain
results from related tests performed over a variable number of individuals of the
same family, etc. Thus, incomplete information, multiple-instance learning, and
varied types of data are some of the difficulties that LCSs will need to face.

These are, in our opinion, the data mining-related challenges for LCS. As we
have mentioned in section 3.9, there are some initial examples of LCS application
to large-scale real datasets. These examples have shown that, indeed, LCS can
be applied successfully to these kind of domains, providing accurate solutions
and high explanatory power due to its rule-based representations. However, one
question remains unanwered in a broad and systematic sense: how can we guar-
antee that our LCS are well adjusted when applied to data mining domains?
The answer is not simple, but we think that the challenges that we presented
in the first to subsections of this section are important steps towards this an-
swer, specially the cookbook part. If we are able to (1) determine which LCS
modules/paradigms are more suited for the domain at hand thanks to all the
problem complexity metrics and (2) know how to parametrize our LCSs appropi-
ately by using principled policies derived from the theoretical analysis made from
each LCS component/faced, then we will have surpassed an important milestone
towards successful LCS application to data mining tasks and, even more impor-
tant, we will provide the community with sound instructions of how to get the
best of the available LCS technology, which can help to broaden its acceptance
and use in the scientific community.

5 Conclusions

LCSs have come a long way. While the first LCSs were mainly biologically in-
spired and designed as admittedly simple but flexible adaptive systems, modern
LCS applications focused mainly on the datamining challenge. Over the last
decade or so, LCS research has progressed towards a solid system understand-
ing, it has created a theoretical foundation of LCS learning concepts, and it has
shown LCS competitiveness in various machine learning challenges.

While there are still challenges to be solved, we believe that these chal-
lenges are actual opportunities for future successful research efforts and even
potentially groundbreaking system applications. LCSs are ready to solve com-
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plex real-world problems in the datamining domain but also in the cognitive
systems domain and others. The rest of this book provides a great overview of
current research advances and application approaches. Various pointers to fur-
ther recent literature are available throughout the book. Thus, we hope that
these IWLCS post-workshop proceedings once again give a useful overview of
current system progresses and encourage further effort along the plotted research
directions. Only future research can ultimately verify the apparent opportunities
ahead.
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89. O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual conscious-
ness. Behavioral and Brain Sciences 24 (2001) 939–1031
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115. Wilson, S.W.: Get real! XCS with continuous-valued inputs. In Booker, L.,
Forrest, S., Mitchell, M., Riolo, R.L., eds.: Festschrift in Honor of John H. Holland,
Center for the Study of Complex Systems (1999) 111–121

116. Wilson, S.W.: Classifiers that approximate functions. Natural Computing: an
international journal 1 (2002) 211–234

117. Wilson, S.W.: Compact Rulesets from XCSI. In Lanzi, P., Stolzmann, W., Wilson,
S., eds.: Advances in Learning Classifier Systems, 4th International Workshop.
Volume 2321 of Lecture Notes in Artificial Intelligence., Springer (2002) 197–210

118. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for
motor control. Neural Networks 11 (1998) 1317–1329

119. Wyatt, D., Bull, L.: A memetic learning classifier system for describing
continuous-valued problem spaces. In Hart, W., Krasnogor, N., Smith, J., eds.:
Recent Advances in Memetic Algorithms. Springer (2004) 355–396

120. Wyatt, D., Bull, L., Parmee, I.: Building Compact Rulesets for Describing
Continuous-Valued Problem Spaces Using a Learning Classifier System. In
Parmee, I., ed.: Adaptive Computing in Design and Manufacture. Volume VI.,
Springer (2004) 235–248

121. Zatuchna, Z.V.: AgentP: A Learning Classifier System with Associative Percep-
tion in Maze Environments. PhD thesis, School of Computing Sciences, UEA
(2005)


