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Abstract. Ensemble techniques have proved to be very successful in
boosting the performance of several types of machine learning methods.
In this paper, we illustrate its usefulness in combination with GAssist,
a Pittsburgh-style Learning Classifier System. Two types of ensembles
are tested. First we evaluate an ensemble for consensus prediction. In
this case several rule sets learnt using GAssist with different initial ran-
dom seeds are combined using a flat voting scheme in a fashion similar
to bagging. The second type of ensemble is intended to deal more effi-
ciently with ordinal classification problems. That is, problems where the
classes have some intrinsic order between them and, in case of misclassi-
fication, it is preferred to predict a class that is close to the correct one
within the class intrinsic order. The ensemble for consensus prediction
is evaluated using 25 datasets from the UCI repository. The hierarchical
ensemble is evaluated using a Bioinformatics dataset. Both methods sig-
nificantly improve the performance and behaviour of GAssist in all the
tested domains.

1 Introduction

Ensemble learning, a family of techniques established for more than a decade in
the Machine Learning community, provides performance boost and robustness
to the learning process by integrating the collective predictions of a set of models
in some principled fashion [1]. This family of techniques covers many different
approaches, the two most representative methods being Bagging [2] and Boosting
[3].

This paper presents the empirical evaluation of two types of ensemble tech-
niques that integrate the collective predictions of models generated using Learn-
ing Classifier Systems (LCS) methods. Specifically, we will use the GAssist [4]
LCS, a system belonging to the Pittsburgh approach of LCSs, that has shown
to generate very compact and accurate solutions for a variety of datasets [5, 4,
6–8].

The first of these two approaches will consist in a simple consensus voting
of an ensemble of rule sets generated by running GAssist several times on the



same dataset with different initial random seeds. This is conceptually similar to
Bagging, but its implementation is even simpler.

The second type of ensemble is designed to solve problems of ordinal classi-
fication [9]. That is, when the classes of the problem have some intrinsic order.
We do this with two goals in mind: (1) improving the performance of GAssist for
these datasets and (2) when a misclassification occurs, to try to keep the errors
localized by attempting to minimize the distance between the actual and pre-
dicted classes according to the intrinsic class order. Our ensemble approach takes
a N classes dataset and generates N-1 hierarchically structured binary datasets
from it. As an example, from a 10 classes dataset, first we would learn how to
separate between the examples with a class ≤ 5 and examples with class > 5.
Then, using the examples of class ≤ 5 we would learn how to separate between
≤ 2 and > 2. The same would happen with examples with class > 5. At the end
of this process we would have a hierarchy of 9 binary classifiers. GAssist aim is to
learn these N-1 binary datasets. Afterwards, the ensemble will integrate the pre-
dictions of the N-1 binary models into a final prediction of the N classes domain.
This kind of ensemble has been shown to be useful for a series of Bioinformatics
datasets [6, 7, 10, 11, 8, 12] which give raise to ordinal classification problems.

The rest of the paper is structured as follows: First, section 2 describes some
related work and compares it to the ensemble mechanisms studied in this pa-
per. Next, section 3 contains the main characteristics of GAssist, the Pittsburgh
LCS used in this paper. Section 4 describes and evaluates the first type of en-
semble studied in this paper, the consensus voting ensemble, and section 5 the
second type, the hierarchical ensemble for ordinal classification. Finally, section
6 discusses our findings and suggests possible directions for future research.

will describe the conclusions and further work of the paper.

2 Related work

Usually, there are two questions that have to be addressed when building and
using an ensemble that integrates the predictions of several models:

– What data is used to train each model?
– How are the individual model predictions integrated to produce a final en-

semble prediction?

In the case of Bagging [2], N views of the training set are generated by a
sampling with replacement procedure, and each of the N models in the ensemble
is trained with one of these views. After that, the ensemble prediction process
follows a simple majority voting: the ensemble will predict the most frequent class
from the ones predicted by the N members of the ensemble. The first of the two
types of ensembles studied in this paper shares the same decision mechanism
as Bagging, a consensus voting of the generated models. The difference with
Bagging lays in the way that the models are generated. In our ensemble we have
a single dataset, and the different models are generated by learning this dataset



feeding the GAssist LCS with different random seeds, which results in a simpler
implementation.

The aim of bagging is to generate models that complement each other. This is
achieved implicitly by the sampling process used to generate the models. On the
other hand, Boosting [3] achieves the same aim in an explicit way. This method
generates the models and the dataset in an iterative way. The first model uses
the original training data, and the later models focus on learning the examples
that were mis-classified by the previous models. This is achieved by weighting the
instances based on their mis-classification rate on previous models. Finally, the
ensemble prediction is a weighted voting process, where the weight of a model
is based on its error over the training data used to generate it.

There are few examples of the use of ensembles in the LCS community. Llorà
et al. [13] studied several policies to select the representative candidates from
the final population of a Pittsburgh LCS, but did not integrate individuals from
several populations. Also, Bull et al. [14] investigated the use of an ensemble
of complete LCS populations using an island model. Their ensemble took place
during the learning process, not afterwards unlike the approach of this paper.

There are several methods reported in the literature to perform ordinal clas-
sification by means of an ensemble. For instance, the method proposed by Frank
and Hall [9] takes advantage of learning techniques that can produce a probabil-
ity of an instance belonging to a certain class and divides the learning process
of an N class ordinal domain into N-1 binary domains in the following way:

1. This method needs models that can produce class probability estimates
2. For a given domain D with ordered classes ranging from 1 to k
3. k − 1 binary domains Di .. Dk−1 are generated, where the class definition

for domain i will be defined by the predicate D > i. That is, the subdomain
D1 will predict if the class of the examples is greater than 1, D2 will predict
if the class of the examples is greater than 2, ...

4. Models for these k − 1 domains are generated
5. For each new unseen instances, the probability that this instance belongs to

each of the k classes is computed as follows:
– P (D = 1) = 1− P (D > 1)
– P (D = i) = P (D > i− 1)− P (D > i), 1 < i < k
– P (D = k) = P (D > k − 1)

6. The ensemble predicts the class with higher probability

This method generates k−1 datasets as in our hierarchical ensemble method.
However all the binary datasets of this method have the same number of in-
stances as the original dataset, while in our method some of the datasets only
need to learn a subpart of the domain (a certain sub-range of the k ordinal
classes) and thus only need to contain the instances of the relevant classes.

An alternative way of doing ordinal classification was proposed by Kramer et
al. [15]. Instead of dividing the problem in several sub-problems and combining
the models learned from them, they treat the dataset as a regression problem,
using the S-CART [16] regression trees induction method, and then map the
continuous predictions provided by S-CART into some of the discrete ordinal



classes. Two types of policies are studied. The first of them is a simple rounding
of the outputs of the unmodified S-CART into the nearest class. The second
policy is to modify internally S-CART so that it produces integer predictions
corresponding to the discrete ordinal classes.

3 The GAssist Learning Classifier System

GAssist [4] is a Pittsburgh Genetic–Based Machine Learning system descendant
of GABIL [17]. The system applies a near-standard generational GA that evolves
individuals that represent complete problem solutions. An individual consists of
an ordered, variable–length rule set.

Using the rules of an individual as an ordered set to perform the match
process allows the creation of very compact rule sets by the use of default rules.
We use an existing mechanism [18] to explicitly exploit this issue and determine
automatically the class for the default rule.

We have used the GABIL [17] rule-based knowledge representation for nomi-
nal attributes and the adaptive discretization intervals (ADI) rule representation
[4] for real-valued ones. To initialize each rule, the system chooses a training ex-
ample and creates a rule that guarantees to cover this example [19].

A fitness function based on the Minimum Description Length (MDL) prin-
ciple [20] is used. The MDL principle is a metric applied to a theory (a rule set
here) which balances its complexity and accuracy. Our specific MDL formula-
tion promotes rule sets with as few rules as possible as well as rules containing
predicates as simple as possible. The details and rationale of this fitness formula
are explained in [4].

The system also uses a windowing scheme called ILAS (incremental learning
with alternating strata) [21] to reduce the run-time of the system. This mecha-
nism divides the training set into several non-overlapping strata and chooses a
different stratum at each GA iteration for the fitness computations of the indi-
viduals. ILAS empirically showed in previous experiments not only to reduce the
computational cost of GAssist but also to apply generalization pressure (com-
plementary to the one applied by the MDL-based fitness function) that helped
generating more compact and accurate solutions.

Parameters of the system are described in table 1.

4 Ensembles for consensus prediction

The evaluated ensemble technique follows these steps:

1. GAssist is run N times on the unmodified training set, each time using a
different seed to initialize the pseudo-random numbers generator

2. From each of these N runs a rule set is extracted. This rule set corresponds
to the best individual of the population, evaluated using the training set

3. For each instance in the test set, the N members of the ensemble produce a
prediction. The majority class of these predictions is used



Table 1. GAssist configuration for the tests reported in the paper

Parameter Value

General parameters
Crossover probability 0.6
Selection algorithm Tournament
Tournament size 3
Population size 400
Individual-wise mutation probability 0.6
Initial #rules per individual 20

Rule Deletion operator
Iteration of activation 5
Minimum number of rules #active rules + 3

MDL-based fitness function
Iteration of activation 25
Initial theory length ration 0.075
Weight relax factor 0.9

ADI rule representation

Split and merge probability 0.05
Initial reinitialize probability 0.02
Final reinitialize probability 0
#bins of uniform-width discretizers 4,5,6,7,8,10,15,20,25
Maximum number of intervals 5

This ensemble technique is very similar to Bagging, with just one difference:
all models (rule sets) are learned using the same training data: the original
training set.

Each rule set produced by GAssist is stored in text format as its phenotype
representation: the actual ordered predicates in conjunctive normal form that
constitute a rule set. Moreover, when these rule sets are dumped to text format,
only the relevant attributes are expressed. This means that the ensemble code
will not make unnecessary calculations for the match process of the irrelevant
attributes. To illustrate the text format used to express the rules generated by
GAssist, figure 1 contains an example of a rule set for the Wisconsin Breast
Cancer domain generated by GAssist.

1:Att Clump Thickness is [<9.4] and Att Cell Size Uniformity is [<4.6] and Att

Cell Shape Uniformity is [<6.4] and Att Marginal Adhesion is [<7.75] and Att Single Epi Cell Size

is [<5.5][>7.75] and Att Bare Nuclei is [<5.5] and Att Normal Nucleoli is [<4][5.5,8.5] and Att

Mitoses is [<6.76][>7.12] → benign

2:Att Cell Size Uniformity is [<1.9] and Att Single Epi Cell Size is [<7.75] and Att Normal Nucleoli

is [<4][5.5,8.5] → benign

3:Default rule → malignant

Fig. 1. Rule set generated by GAssist for the Wisconsin Breast Cancer dataset



4.1 Empirical evaluation

In order to evaluate the performance of the ensemble method described in this
paper we have used a test suite of 25 datasets that represent a broad range of
domains in respect to number of attributes, instances, type, etc. These problems
were taken from the University of California at Irvine (UCI) repository [22], and
their features are summarized in table 2.

Table 2. Features of the datasets used in this paper. #Inst. = Number of Instances,
#Attr. = Number of attributes, #Real = Number of real-valued attributes, #Nom.
= Number of nominal attributes, #Cla. = Number of classes, Dev.cla. = Deviation of
class distribution

Dataset Properties
Code #Inst. #Attr. #Real #Nom. #Cla. Dev.cla.

bal 625 4 4 — 3 18.03%
bpa 345 6 6 — 2 7.97%
bre 286 9 — 9 2 20.28%
cmc 1473 9 2 7 3 8.26%
col 368 22 7 15 2 13.04%
cr-a 690 15 6 9 2 5.51%
gls 214 9 9 — 6 12.69%
h-c 303 13 6 7 2 4.46%
hep 155 19 6 13 2 29.35%
h-h 294 13 6 7 2 13.95%
h-s 270 13 13 — 2 5.56%
ion 351 34 34 — 2 14.10%
irs 150 4 4 — 3 —
lab 57 16 8 8 2 14.91%
lym 148 18 3 15 4 23.47%
pim 768 8 8 — 2 15.10%
prt 339 17 — 17 21 5.48%
son 208 60 60 — 2 3.37%
thy 215 5 5 — 3 25.78%
vot 435 16 — 16 2 11.38%
wbcd 699 9 9 — 2 15.52%
wdbc 569 30 30 — 2 12.74%
wine 178 13 13 — 3 5.28%
wpbc 198 33 33 — 2 26.26%
zoo 101 16 — 16 7 11.82%

The datasets are partitioned using the standard stratified ten-fold cross-
validation method. Three different sets of 10-cv folds have been used. Also, the
experiments were repeated 15 times with different random seeds. This means
that the GAssist results for each dataset included 450 runs, either by averaging
the test accuracy of each of these 450 runs or by using the ensemble technique.

Student t-tests with a confidence interval of 95% were used to determine
whether significant differences between the performance of the individual runs
of GAssist and the ensemble of these same runs can be measured. The input
data for the t-test will be the test accuracy obtained in each of the 30 test sets
that we have (3x10-cv). The ensemble code produced one accuracy measure for
each test set. The test accuracy of the individual runs of GAssist (15 repetitions



for each data set) were computed by averaging these accuracies. The parameters
of the system are the ones defined in [19].

Table 3 contains the results of the experiments performed to evaluate the
ensemble technique studied in this paper. The table contains, for each dataset,
the average accuracy of the 450 individual runs and the average accuracy of the
30 ensembles produced from the individual runs. We can observe how, for all
datasets, the ensemble produces higher accuracy than the individual GAssist
runs. The average accuracy increase is 2.5%. Also, the accuracy difference was
significant in 10 of the 25 datasets, according to the t-tests.

Table 3. Results of the experiments to evaluate the consensus ensemble applied over
GAssist runs. A • symbol in a row means that the ensemble was able to significantly
outperform the GAssist individual runs according to the t-tests

Dataset GAssist acc. Ensemble acc.

bal 79.0±4.0 82.5±3.8•
bpa 62.4±7.8 65.7±7.7
bre 70.5±7.9 73.0±7.6
cmc 54.4±3.9 55.7±3.6
col 93.3±4.3 96.2±3.2•
cr-a 85.1±4.1 86.0±3.7
gls 66.8±9.5 71.9±8.0•
h-c1 80.4±5.9 83.0±5.2•
h-h 95.7±3.4 96.7±2.7
h-s 80.2±7.6 82.0±6.9
hep 89.8±8.0 93.6±5.5•
ion 92.0±5.2 93.1±5.1
irs 95.3±5.6 95.8±5.6
lab 98.1±5.4 100.0±0.0•
lym 80.8±11.2 84.4±9.9
pim 74.7±4.8 75.6±4.0
prt 47.5±6.7 52.7±6.8•
son 76.6±9.3 84.0±7.5•
thy 92.0±5.7 93.8±5.4
vot 97.1±3.3 97.6±2.7

wbcd 96.1±2.5 96.2±2.3
wdbc 94.3±3.1 95.2±2.7
wine 93.4±5.5 96.3±3.9•
wpbc 75.3±8.3 80.4±7.6•
zoo 92.1±8.0 94.1±6.3
ave 82.5±13.7 85.0±12.9

After showing the benefits of using this kind of ensemble to boost the perfor-
mance of GAssist, we would like to perform some simple tests to illustrate the
impact of the ensemble size in its performance. To this extend, we have reused
the 15 rule sets that were previously integrated into a single ensemble to produce
alternative ensembles of 5 and 10 rule sets. Three ensembles of 5 rule-sets each
were created with non-overlapped rule sets (using rule sets 1-5 for ensemble 1,
rule sets 6-10 for ensemble 2 and rule sets 11-15 for ensemble 3). Three ensem-
bles of 10 rules-sets were created, this time with overlapped rule sets (using rule
sets 1-10 for ensemble 1, 6-10 for ensemble 2 and 1-5,11-15 for ensemble 3). The
performance of the 3 rule sets for each tested ensemble size were averaged.



Table 4 shows the results of these experiments comparing the performance
of the ensembles of 5, 10 and 15 rule sets. This time we applied a different
statistical tests, the Friedman test, because it is suited to compare multiple
methods across different datasets. We have used the test as suggested in [23]. The
test indicate that indeed there are significant performance differences between
the three sizes of ensemble (with a probability of error of 1.1e−6). The Holm
post-hoc test was used to compare a control method (the best method, the 15-
rule-sets ensemble) against the other methods. With a confidence level of 95%,
the Holm test indicated that the differences between the best ensemble and the
other two ensembles are significant. Nevertheless, the average accuracy difference
between the 5-rule-sets ensemble and the 15-rule-sets ensemble is only 0.6, and
1.9% over the average GAssist accuracy. This shows how with very few rule sets
we can significantly boost the performance of GAssist.

Table 4. Comparing ensembles of different sizes (5, 10 and 15 rule-sets per ensemble)
applied over rule-sets generated by GAssist

Dataset 5 rule sets 10 rule sets 15 rule sets

bal 81.6±2.9 82.3±3.0 82.5±3.8
bpa 64.4±6.7 65.5±6.6 65.7±7.7
bre 71.7±6.5 73.1±7.2 73.0±7.6
cmc 55.1±3.5 55.2±3.5 55.7±3.6
col 95.7±3.0 96.0±2.9 96.2±3.2
cr-a 85.9±3.8 85.7±3.8 86.0±3.7
gls 70.1±7.3 71.3±7.7 71.9±8.0
h-c1 82.5±5.0 83.0±4.7 83.0±5.2
h-h 96.2±2.6 96.3±2.6 96.7±2.7
h-s 81.6±6.7 82.0±6.5 82.0±6.9
hep 92.1±5.5 92.9±5.0 93.6±5.5
ion 93.1±4.6 93.0±4.9 93.1±5.1
irs 95.6±5.0 95.7±5.3 95.8±5.6
lab 99.3±2.1 99.7±1.3 100.0±0.0
lym 83.7±9.6 84.3±10.1 84.4±9.9
pim 75.5±3.5 75.8±3.5 75.6±4.0
prt 51.6±5.5 52.3±6.1 52.7±6.8
son 81.7±6.5 82.9±7.0 84.0±7.5
thy 93.4±5.0 93.3±5.4 93.8±5.4
vot 97.5±2.6 97.7±2.7 97.6±2.7

wbcd 96.3±2.3 96.2±2.3 96.2±2.3
wdbc 95.1±2.5 95.2±2.8 95.2±2.7
wine 95.9±3.4 96.3±3.3 96.3±3.9
wpbc 79.2±7.1 79.7±7.3 80.4±7.6
zoo 94.1±5.8 93.8±6.2 94.1±6.3
ave 84.4±13.1 84.8±12.9 85.0±12.9

5 Ensembles for ordinal classification

5.1 Motivation

The motivation for developing this kind of ensembles comes from our research in
Bioinformatics, specially in Protein Structure Prediction (PSP). In this research



area there are many features related to different properties of the complex 3D
structure of proteins, some of these features are continuous like solvent acces-
sibility [24]. Other features are defined as an integer, potentially having a high
cardinality, such as contact number [6] or recursive convex hull [8]. Predicting
these features can help improving the general problem of predicting the full 3D
structure of a protein. If we have to predict these features using classification
techniques we need to discretize them into a certain number of states. Therefore,
we end up generating a problem of ordinal classification and, depending on the
chosen number of states, potentially having a high number of classes.

5.2 Ensemble definition

Our ensemble-based approach at ordinal classification is divided in two parts: (1)
decomposition of the original N classes dataset into several binary sub-datasets
and (2) integration of the models generated for each dataset to produce a final
N-classes prediction.

Hierarchical datasets generation The generation of the binary datasets
works as follows:

1. We have an original dataset with N ordinal classes
2. We select a certain cut-point between the classes with the following criterion:

we will select the cut-point that produces the most balanced sets in terms
of number of instances at left and right of the cut-point

3. We generate a binary dataset from the N classes dataset: instances belonging
to classes below the cut-point will be labelled as class 0. Instances belonging
to classes over the cut-point will be labelled as class 1

4. The steps 2 and 3 will be repeated recursively for the instances to the left
and to the right of the cut-point, until we arrive to the trivial case: having
a binary dataset

5. Finally, GAssist is run several times on each of the N-1 datasets. The binary
model at each node of the hierarchy will be a consensus prediction ensemble
as defined in the previous section.

This process will effectively convert a N classes ordinal classification domain
into N-1 binary classification domains organized in a hierarchical way. The struc-
ture of this hierarchical ensemble is represented in figure 2 for a 10 classes dataset.
The root node separates between examples with a class < 5 and class ≥ 5. This
node will be trained with the whole dataset, assigning class 0 to the examples
of the original classes 0 through 4 and class 1 to examples with an original class
ranging from 5 to 9. Then, we will take the examples with classes ranging from
0 to 4 (the examples that had class 0 at the root node) and we will train a new
node with them. This node will learn how to separate between examples with a
class < 3 and a class ≥ 3. Again, a binary dataset will be generated to do so.
Examples of classes 0 to 2 will have class 0. Examples of classes 3 and 4 will have
class 1. Afterwards, we will use the examples from the original classes 0 through



2 to learn how to separate between classes 0..1 and class 2. Class 2 is a leaf of
the hierarchy and no model is needed for this branch. Finally, we would train
another model using examples from classes 0 and 1 to learn how to distinguish
them. The rest of the hierarchy of the ensemble would be generated and trained
in a similar way.

Unlike the Frank and Hall approach [9], these N-1 datasets will not have
the same number instances as the original training set: The first dataset, corre-
sponding to the root of the hierarchy will have the same number of examples as
the original training set. Then, the dataset corresponding to the left branch of
the root node will contain the examples having a class less than the cut point
of the root node. The dataset corresponding to the right branch of the root will
have the examples having a class greater than the cut point of the root node,
etc.

N>=5N<5

N<3 N>=3 N<7 N>=7

Root node Classes=[0..9]

N<2 N>=8

N=2 N=7

Fig. 2. Representation of the hierarchical ensemble for ordinal classification. Nodes
(circles) with no descendants are already binary problems

Integration of the models into a single prediction The ensemble predic-
tions will be performed as follows:

1. For each test instance, we will query the model at the root of the hierarchy
to determine if its class is lower or higher than the first cut-point.

2. If the root model predicts class 0, the next step is to predict this instance
using the model generated for the left branch of the root node

3. If the root model predicts class 1, the next step is to predict this instance
using the model generated for the right branch of the root node

4. The process will continue until we reach a leaf node

This process will also be faster than the Frank and Hall method, as only
log2(k) models will be queried, instead of all k−1 of them. Moreover, the model



used at each node to predict if a given instances is lower or higher than the cut
point is an ensemble itself, using the method described in the previous sections.

5.3 Empirical evaluation of the hierarchical ensemble

We will use only one domain to illustrate the performance of this hierarchical
ensemble. This domain belongs to the Bioinformatics field, and specifically to
protein structure prediction (PSP) [6]. Proteins are heterogeneous molecules
that have a complex 3D structure very difficult to determine experimentally and
therefore needs to be predicted. Several different features can be predicted from
a proteins 3D structure. The domain used in this paper is called prediction of
average solvent accessibility [25]. This property is real-valued and therefore we
need some criterion to convert it into an ordinal set of classes. We will use the
equal frequency discretization algorithm [26] for this task, dividing the domain
into 10 ordinal classes.

The hierarchical ensemble obtained an accuracy of 23.9±3.0, while a flat en-
semble of GAssist models performing normal classification, without any specific
knowledge of the intrinsic class order, obtained an accuracy of 22.1±4.6. For ref-
erence, please note that Solvent Accessibility prediction accuracy for 10 classes
with the kind of input information used in this paper ranges from 20 to 24%
[25].

The performance difference is not significant, but the behaviour of both ap-
proaches is quite different: Table 5 contains the confusion matrix on one of the
test folds for the hierarchical classifier, while table 6 contains the confusion ma-
trix for the flat ensemble. The predictions of this domain are usually fed back
into another PSP prediction task. Therefore it is important that, in the case
of a mis-classification, the wrong predicted class is close to the real class in
the intrinsic class order. The hierarchical classifier achieves this objective much
better that the flat ensemble, as most of the predictions appear quite close to
the diagonal. Numerically, we can compute the behaviour difference as the av-
erage misclassification penalty (AMP), defining the misclassification penalty as
the distance in the intrinsic class order between the real and predicted classes
of each test instance. The hierarchical ensemble obtained an AMP of 1.7±0.2,
while the flat ensemble obtained an AMP of 2.0±0.2. In this case, the AMP
difference between both systems was significant, according to the t-tests with
95% confidence level.

6 Conclusions and further work

This paper has empirically studied the use of ensemble techniques in combina-
tion with Learning Classifier Systems, specifically using GAssist, a Pittsburgh
approach LCS. Two types of techniques are studied. The first kind of ensem-
ble performs a Bagging-style consensus prediction, while the second one is an
hierarchical ensemble intended to deal with ordinal classification domains.



Table 5. Confusion matrix of the hierarchical classifier on a test set of the average
solvent accessibility domain. Each cell contains the percentage of instances of the class
in the row predicted as the class in the column

Predicted class

R
e
a
l
c
la

ss

0 1 2 3 4 5 6 7 8 9
0 50.0 0.0 0.0 33.3 16.7 0.0 0.0 0.0 0.0 0.0
1 0.0 11.1 0.0 55.6 22.2 0.0 0.0 0.0 11.1 0.0
2 18.2 0.0 9.1 36.4 18.2 0.0 18.2 0.0 0.0 0.0
3 0.0 10.0 10.0 30.0 30.0 0.0 0.0 10.0 10.0 0.0
4 7.7 0.0 0.0 7.7 30.8 23.1 15.4 15.4 0.0 0.0
5 0.0 0.0 0.0 0.0 25.0 0.0 50.0 25.0 0.0 0.0
6 0.0 0.0 0.0 25.0 0.0 0.0 37.5 25.0 12.5 0.0
7 0.0 0.0 0.0 0.0 0.0 11.1 22.2 22.2 44.4 0.0
8 0.0 0.0 0.0 0.0 0.0 5.6 11.1 44.4 27.8 11.1
9 0.0 0.0 0.0 0.0 0.0 8.3 0.0 33.3 25.0 33.3

Table 6. Confusion matrix of the flat ensemble on a test set of the average solvent
accessibility domain. Each cell contains the percentage of instances of the class in the
row predicted as the class in the column

Predicted class

R
e
a
l
c
la

ss

0 1 2 3 4 5 6 7 8 9
0 83.3 0.0 0.0 0.0 0.0 16.7 0.0 0.0 0.0 0.0
1 77.8 11.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1
2 54.5 18.2 0.0 0.0 0.0 27.3 0.0 0.0 0.0 0.0
3 50.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0
4 30.8 7.7 0.0 0.0 0.0 30.8 7.7 0.0 15.4 7.7
5 25.0 0.0 0.0 0.0 0.0 25.0 0.0 0.0 50.0 0.0
6 12.5 12.5 0.0 0.0 0.0 12.5 0.0 0.0 37.5 25.0
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.1 22.2 66.7
8 0.0 0.0 0.0 0.0 0.0 11.1 0.0 0.0 27.8 61.1
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.7 83.3

These methods are not really new contributions, just variations of already
existing techniques, but the experiments reported in the paper illustrate that
they are very useful in combination with GAssist. The first one boots significantly
the performance of GAssist on several domains, even when using very few rule
sets per ensemble, while the other one helps GAssist minimize the importance
of the mis-classifications, which is an issue of concern in ordinal domains.

For future work, it would be interesting to determine how can we tweak
GAssist to provide the correct models to the ensemble in order to maximize the
accuracy of the consensus prediction. For the hierarchical ensemble, a possible
future line is to study other policies to partition the ordinal domain into several
binary sub-domains, such as the ones described in the related work section. A
question always open in ensemble research and very difficult to address is the in-
terpretability capacity of the ensembles. We would like to investigate how can we
improve this issue in our context. Finally, checking the accuracy-computational
cost trade-off of these ensemble techniques would be very useful.



7 Acknowledgements

We acknowledge the support of the UK Engineering and Physical Sciences Re-
search Council (EPSRC) under grants GR/T07534/01 and EP/E017215/1. We
are grateful for the use of the University of Nottingham’s High Performance
Computer.

References

1. various authors: Special issue on integrating multiple learned models. Machine
Learning 36 (1999)

2. Breiman, L.: Bagging predictors. Machine Learning 24 (1996) 123–140
3. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In:

International Conference on Machine Learning. (1996) 148–156
4. Bacardit, J.: Pittsburgh Genetics-Based Machine Learning in the Data Mining era:

Representations, generalization, and run-time. PhD thesis, Ramon Llull University,
Barcelona, Catalonia, Spain (2004)

5. Bacardit, J., Butz, M.V.: Data mining in learning classifier systems: Comparing xcs
with gassist. In: Advances at the frontier of Learning Classifier Systems. Springer-
Verlag (2007) 282–290

6. Bacardit, J., Stout, M., Krasnogor, N., Hirst, J.D., Blazewicz, J.: Coordination
number prediction using learning classifier systems: performance and interpretabil-
ity. In: GECCO ’06: Proceedings of the 8th annual conference on Genetic and
evolutionary computation, ACM Press (2006) 247–254

7. Stout, M., Bacardit, J., Hirst, J.D., Krasnogor, N., Blazewicz, J.: From hp lat-
tice models to real proteins: Coordination number prediction using learning clas-
sifier systems. In: Applications of Evolutionary Computing, EvoWorkshops 2006,
Springer LNCS 3907 (2006) 208–220

8. Stout, M., Bacardit, J., Hirst, J.D., Krasnogor, N.: Prediction of recursive convex
hull class assignments for protein residues. Bioinformatics In press (2008)

9. Frank, E., Hall, M.: A simple approach to ordinal classification. In: Proc 12th
European Conference on Machine Learning, Springer (2001) 145–156

10. Bacardit, J., Stout, M., Hirst, J.D., Sastry, K., Llora, X., Krasnogor, N.: Auto-
mated alphabet reduction method with evolutionary algorithms for protein struc-
ture prediction. In: Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation (GECCO2007), London, England, ACM Press (2007)
346–353

11. Stout, M., Bacardit, J., Hirst, J.D., Blazewicz, J., Krasnogor, N.: Prediction of
residue exposure and contact number for simplified hp lattice model proteins using
learning classifier systems. In: Applied Artificial Intelligence, Genova, Italy, World
Scientific (2006) 601–608

12. Stout, M., Bacardit, J., Hirst, J.D., Smith, R.E., Krasnogor, N.: Prediction of
topological contacts in proteins using learning classifier systems. Soft Computing,
Special Issue on Evolutionary and Metaheuristic-based Data Mining (EMBDM)
In Press (2008)
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