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Abstract. The era of data mining has provided renewed effort in the
research of certain areas of biology that for their difficulty and lack of
knowledge were and are still considered unsolved problems. One such
problem, which is one of the fundamental open problems in computa-
tional biology is the prediction of the 3D structure of proteins, or pro-
tein structure prediction (PSP). The human experts, with the crucial
help of data mining tools, are learning how protein fold to form their
structure, but are still far from providing perfect models for all kinds
of proteins. Data mining and knowledge discovery are totally necessary
in order to advance in the understanding of the folding process. In this
context, Learning Classifier Systems (LCS) are very competitive tools.
They have shown in the past their competence in many different data
mining tasks. Moreover, they provide human-readable solutions to the
experts that can help them understand the PSP problem. In this chapter
we describe our recent efforts in applying LCS to PSP related domains.
Specifically, we focus in a relevant PSP subproblem, called Coordination
Number (CN) prediction. CN is a kind of simplified profile of the 3D
structure of a protein. Two kinds of experiments are described, the first
of them analyzing different ways to represent the basic composition of
proteins, its primary sequence, and the second one assessing different
data sources and problem definition methods for performing competent
CN prediction. In all the experiments LCS show their competence in
terms of both accurate predictions and explanatory power.

1 Introduction

The prediction of the 3D structures of proteins is both a fundamental and diffi-
cult problem in computational biology. The usual approach to solve this problem
is to use a divide-and-conquer approach and thus predict some specific attributes
of a protein native structure, such as the secondary structure, solvent accessi-
bility or coordination number. Accurate predictions of these subproblems and
proper understanding of the contribution of each subproblem and the rationale
behind these predictions is crucial to integrating them successfully into a final
3D protein structure prediction (PSP).



Learning Classifier Systems (LCS) [1, 2] are a class of evolutionary compu-
tation based machine learning techniques that could be used to tackle these
issues in PSP. As they have shown in the past their competence on data mining
problems [3, 4] using diverse LCSs such as XCS [5], GALE [6] or GAssist [7].
Importantly, they provide human-readable and highly interpretable solutions to
the prediction problem, usually rule sets. The understanding of these solutions
can lead to improvements in the way the information is represented and also
more efficient integration of them into the final 3D structure prediction.

This chapter shows some competitive advantages of LCS over other tech-
niques and also some of the challenges facing LCSs as they are applied to mining
PSP datasets. Our chapter collects our recent research [8–10] using GAssist [7],
a recent Pittsburgh approach LCS [2]. GAssist was applied to a PSP problem
called coordination number (CN), which is defined as the prediction, for a given
residue, of the number of residues from the same protein that are in contact with
it. Two residues are said to be in contact when the distance between the two is
below a certain threshold. The CN feature is a simplified profile of the density
of the 3D structure of a protein, and therefore can be helpful in constraining the
vast search space of the full PSP problem.

The chapter is divided in two parts. In the first part we analyze some alter-
native representations for the most basic form of information of a protein: its
primary sequence. The primary sequence of a protein is a chain formed by 20 pos-
sible types of amino acids. Therefore the simplest way of representing a protein is
by a string of a 20-letter alphabet. Moreover, these amino acids can be clustered
based on physical and chemical properties, which lead to more simplified alpha-
bets of representing the primary chain. The HP alphabet (hydrophobic/polar)
is perhaps the best known example of reduced alphabets. This simplification is
usually combined with a reduction of the number of spatial degrees of freedom
by restricting the atom or residue locations to those of a lattice [11, 12]. We
compare some of these representations for coordination number prediction and
test them using GAssist as well as other machine learning techniques.

In the second part of the chapter we show our evaluation of various types
of input information, class definitions and learning algorithms applied to coor-
dination number prediction of real proteins. Our aim is to perform a rigorous
evaluation of the contribution of various kinds of information and problem def-
initions towards predicting CN and also analyze the explanatory power that
LCSs can offer in this dataset. All the reported experiments show how LCSs can
perform competitively with other learning techniques. We also show that the
solutions obtained are human-readable and have rich explanatory power. This is
another important advantage of GAssist as the biologists are not only interested
in the quality of the predictions, but also the reasons behind them.

The rest of the chapter is structured as follows: First, section 2 will contain
background information and related work about proteins, CN prediction and HP
lattice models. Next, section 3 will describe the main characteristics of GAssist,
our machine learning system. Section 4 will detail the experimental procedure.
The results of applying this experimental procedure will be reported in section



5. Next, section 6 will discuss the results presented in the previous section and,
finally, section 7 will describe the conclusions and further work.

2 Problem definition

2.1 Protein Structure and Coordination Number Prediction

Proteins are heteropolymer molecules constructed as a chain of amino acids of 20
different types. This string of amino acids is known as the primary sequence. In
the native state, the chain folds to create a 3D structure. The primary sequence
arranges itself into secondary structure, consisting of local structures such as
alpha helices, beta sheets or coils. These local structures can group in several
conformations or domains forming a tertiary structure. Secondary and tertiary
structure may form concomitantly. The final 3D structure of a protein consists
of one or more domains. In this context, the coordination number of a certain
residue is a profile of the end product of the folding process indicating the num-
ber of other residues that end up near the target residue. Some of these contacts
can be close in the protein chain but some other can be quite far apart, triv-
ial contacts such as those with the immediate neighbour residues are ignored.
Figure 1 contains a graphical representation of the CN of a residue in an alpha
helix, given a minimum chain separation (ignored trivial contacts) of two. In this
example, the CN of the target residue is two.

Fig. 1. Graphical representation of the CN of a residue



This problem is closely related to contact map (CM) prediction that seeks
to predict, for all possible pairs of residues of a protein, whether they are in
contact or not. When the contact map is represented as a binary matrix, the CN
of a residue is the count of the number of ones in the row of the map associated
with that residue. Figure 2 shows the relation between the native structure of a
protein, a contact map and the coordination number of a residue. It also shows
how different secondary structure elements of a protein are reflected as different
kind of patterns in a contact map.

Fig. 2. Relation between a protein native structure and its contact map and the coor-
dination number of its residues

CN of Residue i (sum of contacts) = 12 

There is a large literature in CN and CM prediction, in which a variety of
machine learning paradigms have been used, such as linear regression [13], neural
networks [14], hidden markov models [15], a combination of self-organizing maps
and genetic programming [16] and support vector machines [17].

There are two usual definitions of the distance used to determine whether
or not there is contact between two residues. Some methods use the Euclidean
distance between the Cα atoms of the two residues [15], while other methods use
the Cβ atom (Cα for glycine) [13]. Also, several methods discard the contacts
between neighbouring residues in the primary chain by counting only contacts



with a chain separation greater than a certain minimum. There are also many
different distance thresholds.

Several kinds of input information are used in CN prediction, besides the
amino acid (AA) type of the residues in the primary chain, such as global in-
formation of the protein chain [13], position-specific scoring matrices (PSSM)
computed from multiple sequences alignments [15, 14, 17, 16, 13] (mainly using
PSI-BLAST [18]), predicted secondary structure [14, 17], predicted solvent acces-
sibility [14], physical characteristics of the residues [8] or sequence conservation
[17]. Contact maps for any protein dataset could be easily generated through
our protein structure comparison web server at http://www.procksi.net/ and
used as raw data for data mining tasks.

2.2 HP Models

As protein structure prediction remains an unsolved problem, researchers have
resorted to simplified protein models to try to gain understanding of both the
process of folding and the algorithms needed to predict it [19, 20, 11, 21, 12]. Ap-
proaches have included fuzzy sets, cellular automata, L-systems and memetic
algorithms [22–27]. One common simplification is to focus only on a representa-
tive atom of each residues (C-alpha or C-beta atoms) rather than all the atoms in
the protein. A further simplification is to reduce the number of residue types to
less than twenty by using representations based, for instance, on physicochemical
properties such as hydrophobicity, as in the so called hydrophobic/polar (HP)
models. A further simplification is to reduce the number of spatial degrees of
freedom by restricting the atom or residue locations to those of a lattice [11,
12]. Lattices of various geometries have been explored, e.g., two-dimensional tri-
angular and square geometries or three-dimensional diamond and face centered
cubic [25].

In the HP model (and its variants) the 20 residue types are reduced to two
classes: non-polar or hydrophobic (H) and polar (P) or hydrophilic. An n residue
protein is represented by a sequence s ∈ {H,P}+ with |s| = n. The sequence s
is mapped to a lattice, where each residue in s occupies a different lattice cell
and the mapping is required to be self-avoiding. The energy potential in the
HP model reflects the propensity of hydrophobic residues to form a hydrophobic
core.

In the HP model, optimal (i.e. native) structures are those that minimize the
following energy potential:

E(s) =
∑

i<j ; 1≤i,j≤n

(∆i,jεi,j) (1)

where

∆i,j =
{

1 if i, j are in contact and |i− j| > 1
0 otherwise (2)

In the standard HP model, contacts that are HP and PP are assigned an
energy of 0 and an HH contact is assigned an energy of -1. Figure 3 shows a



protein sequence represented with the HP alphabet and its optimal structure
when using a 3D cubic lattice.

Fig. 3. Representation of a protein sequence using HP alphabet and its optimal struc-
ture in the 3D cubic lattice
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3 The GAssist Learning Classifier System

GAssist [7] is a Pittsburgh Genetic–Based Machine Learning system descendant
of GABIL [28]. The system applies an almost standard generational GA, which
evolves individuals that represent complete problem solutions. An individual
consists of an ordered, variable–length rule set.

We have used the GABIL [28] rule-based knowledge representation for nomi-
nal attributes and the adaptive discretization intervals (ADI) rule representation
[7] for real-valued ones. Section 5 shows an example of a rule set generated by
GAssist using the GABIL representation. To initialize each rule, the system
chooses a training example and creates a rule that guarantees to cover this ex-
ample [29].

A fitness function based on the Minimum Description Length (MDL) prin-
ciple [30] is used. The MDL principle is a metric applied to a theory (a rule set



here) which balances its complexity and accuracy. Our specific MDL formula-
tion promotes rule sets with as few rules as possible as well as rules containing
predicates as simple as possible. The details and rationale of this fitness formula
are explained in [7].

The system also uses a windowing scheme called ILAS (incremental learning
with alternating strata) [31] to reduce the run-time of the system, specially for
dataset with hundreds of thousands of instances, as in this chapter. This mech-
anism divides the training set into several non-overlapping strata and chooses a
different stratum at each GA iteration for the fitness computations of the indi-
viduals. ILAS empirically showed in previous experiments not only to reduce the
computational cost of GAssist but also to apply generalization pressure (com-
plementary to the one applied by the MDL-based fitness function) that helped
generating more compact and accurate solutions. Figure 4 shows the pseudocode
of the ILAS windowing scheme.

Fig. 4. Pseudocode of the Incremental Learning with Alternating Strata scheme

Procedure Incremental Learning with Alternating Strata
Input : Examples, NumStrata, NumIterations
Initialize GA
Examples = ReorderExamples(Examples,NumStrata)
Iteration = 0
StratumSize = size(Examples)/NumStrata
While Iteration < NumIterations

IfIteration = NumIterations − 1
TrainingSeg = Examples

Else
CurrentStratum = Iteration mod NumStrata
TrainingSeg = examples from

Examples[CurrentStratum · StratumSize] to
Examples[(CurrentStratum + 1) · StratumSize]

EndIf
Run one iteration of the GA with TrainingSeg
Iteration = Iteration + 1

EndWhile
Output : Best set of rules from GA population

Finally, we have used a ensemble mechanism wrapped over GAssist to boost
its performance. We generate several rule sets using GAssist with different ini-
tial random seeds and combine them as an ensemble, producing a consensus
prediction using a simple majority vote. This approach is similar to Bagging
[32] but simpler as, unlike Bagging, it does not need to scramble the training
set to genereate slightly different classifiers to combine them as an ensemble.
In previous work [33] we empirically evaluated this ensemble mechanism over a
set of 25 real-world datasets from the University of California at Irvine (UCI)



repository [34]. On average, the ensemble obtained a test accuracy 2.5% higher
than the standalone GAssist.

GAssist used its standard parameters [7] with the 1000 iterations for the runs
in the first stage, and 20000 for the runs in the second stage, 150 strata for the
ILAS windowing scheme, and 10 rule sets per ensemble.

4 Experimental framework

4.1 Experimental battery I: Primary sequence and coordination
number

The first part of the experiments reported in this chapter will focus on the rela-
tion between the primary sequence attributes of a protein and CN prediction. To
analyze this relation we will compare the CN prediction for simplified HP lattice
model proteins (Lattice-HP) with the prediction of the same feature for real pro-
teins using either all twenty amino acid types (Real-AA) or using only the HP
representation (Real-HP). The characteristics of each dataset are summarized in
table 1 and detailed in the rest of this subsection.

Table 1. Details of the data sets used in these experiments.

Name Lattice-HP Real-HP/Real-AA

Type 3D Cubic Lattice Real Proteins

Number of Sequences 15 1050

Minimum Sequence Length 27 80

Maximum Sequence Length 48 2329

Total Hydrophobic 316 170493

Total Polar 309 84850

Total Residues 625 255343

Moreover, also several degrees of precision for the prediction of CN will be
evaluated. This feature can be defined either as a integer variable of high cardi-
nality or directly as a continuous variable. Therefore, in order to use classification
methods for CN prediction, this feature has to be transformed into a more or
less reduced finite set of labels. Thus, the experiments in this first battery con-
tains datasets with varying degree on precision in two dimensions: the primary
sequence (inputs of the classification problem) and the CN feature (output of the
classification problem). Figure 5 shows these two dimensions of detail of both the
primary sequence and the CN, naming some of the different possible choices of
representation for both of them, marking with a dashed area the ones that have
been used in this chapter. It is important to remark, however, that in some cases
a larger degree of detail does not mean that the problem becomes more difficult,
one such case is treating the CN as a continuous variable or as a discrete one.
In the first case the problem becomes a regression domain, in the second one it
becomes a classification domain. Both problems are equally challenging.



Fig. 5. Degrees of precision in each dimension of the CN prediction problem. The
dashed areas mark the representation options explored in this chapter.
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Real proteins dataset The datasets based on real proteins (Real-AA and
Real-HP) use the CN definition proposed by Kinjo et al. [13] defined as follows.
The distance used to determine contact is defined using the Cβ atom (Cα for
glycine) of the residues. The boundary of the sphere defined by the distance
cutoff dc ∈ <+ is made smooth by using a sigmoid function. Also, a minimum
chain separation of two residues is required. Formally, the CN (Op

i ) of the residue
i of protein chain p is computed as:

Op
i =

∑
j:|j−i|>2

1
1 + exp(w(rij − dc))

(3)

where rij is the distance between the Cβ atoms of the ith and jth residues. The
constant w determines the sharpness of the boundary of the sphere. A value of
three for w was used for all the experiments. CN was computed using a distance
cutoff of 10 Å. In previous work [9] we empirically tested different distance
cutoffs, and 10 Å was the one that obtained highest accuracy.

This CN definition is real-valued. Therefore, it has to be converted into a set
of finite classes so that it can be used as a classification dataset. The continuous
CN domain will be discretized using the Uniform Frequency discretization algo-
rithm [35]. Three numbers of states will tested for the experiments reported in
this chapter, dividing the CN domain into two, three and five states.

The real protein dataset (Real-AA) was selected from PDB-REPRDB [36],
an online server that automatically selects curated protein subsets given a set of
criteria with the following conditions: less than 30% sequence identity, sequence
length greater than 50, no membrane proteins, no nonstandard residues, no chain
breaks, resolution better than 2 Å and having a crystallographic R factor better
than 20%. Chains that had no entry in the HSSP [37] database were discarded.
The final data set contains 1050 protein chains.

Each instance of the dataset has as class the CN of a residue belonging to
some of these 1050 protein chains, and as input information we will use local
information of the target residue and its closest neighbours in the chain: To
generate the instance in the dataset we will use the most usual method, define
a sliding window, centered initially over the first residue of a chain and that



will move one residue at a time. This window is centered over the target and
includes ±N residues, meaning that the CN of the target will be predicted using
as inputs the primary sequence representation of the residues in the window.
Windows were generated for one, two and three residues at each side of the
central residue. The set was divided randomly into ten pairs of training and
test set using 950 proteins for training and 100 for testing in each set. These
sets act in a similar way to a ten-fold cross-validation. The proteins included
in each partition are reported in http://maccl01.genes.nig.ac.jp/~akinjo/
sippre/suppl/list/. This same dataset was used to generate a real protein HP
sequence dataset (Real-HP) by assigning each residue a value of Hydrophobic or
Polar as shown in Table 2, following Broome and Hecht [38].

Table 2. Assignment of residues as Hydrophobic or Polar.

Residue (one letter code) Assignment

ACFGILMPSTVWY Hydrophobic

DEHKRQN Polar

HP Lattice-based datasets For the Lattice-HP study, a set of structures
from Hart’s Tortilla Benchmark Collection (http://www.cs.sandia.gov/tech_
reports/compbio/tortilla-hp-benchmarks.html) was used. This consisted of
15 structures on the simple cubic lattice, in which each residue can have up to
six neighbours in the lattice, therefore the maximum CN value that a residue can
have is also 6. Again, windows were generated for one, two and three residues at
each side of a central residue and the CN class of the central residue assigned as
the class of the instance. The instance set was partitioned into training/test sets
using stratified ten-fold cross-validation. The process was repeated ten times
to generate 10 sets of cross-validation folds. Each reported accuracy will be,
therefore, the average of one hundred values. As in the real dataset, the CN
of this domain will be divided into two, three and five states using an uniform
frequency discretization algorithm.

Comparison of LCS performance The performance of GAssist in the Lattice-
HP, Real-HP and Real-AA datasets will be compared against two well known
machine learning methods. We chose two C4.5 [39] and Naive Bayes [40], using
the WEKA [41] implementation of both of them. Student t-tests are applied to
the results of the experiments to determine, for each dataset if the best method
is significantly better than the other algorithms using a confidence interval of
95%. The Bonferroni correction [42] for multiple pair-wise comparisons has been
used.



4.2 Experimental battery II: assessment of input information
sources and class partitions for coordination number

The second part of the experiments reported in this chapter focuses exclusively
on real proteins, assessing two different dimensions of the CN problem: (1) what
is the contribution of several types of input information and (2) different criteria
to define the classes of the CN domain. We will explore six different sets of
input information, two class partition criteria and three different numbers of
class partitions, testing in total 36 datasets.

Class definitions and protein dataset We will use again the Kinjo et al.
[13] definition of CN as well as their protein dataset and training/test partitions,
detailed in the previous subsection. As explained previously, the CN definition
is continuous, and has to be discretized to handle the dataset as a classification
domain. Previously, we used the uniform frequency (UF) unsupervised discretiza-
tion to generate the class partitions. For these experiments, besides UF we will
also test the uniform-length (UL) unsupervised discretization [35]. For each of
them, as in the first stage experiments, we will test three numbers of states,
dividing the CN domain into two, three and five states.

Explored input information Six sets of input attributes are evaluated in this
battery of experiments. The first set corresponds to the representation used for
the experiments in the first part of the chapter: the AA type of the residues
in a window around the target one. The following sets add extra information,
such as global protein information or predicted characteristics of the protein.
The set of input attributes are labeled CN1 through CN6. This allows us to
assess rigorously whether additional information is of benefit, and the degree of
usefulness of each kind of extra data.

The global protein information consists of 21 real-valued attributes. The first
attribute is the length of the protein chain (number of residues). The other 20
attributes contain the frequency of each AA type in the protein chain. Two types
of predicted information have been used. The first is the average real-valued CN
of a protein chain [13], called PredAveCN. This feature was predicted using
GAssist itself. PredAveCN was partitioned into 10 classes (10 different states in
the PredAveCN domain), using the two partition criteria (uniform lenght and
uniform frequency) described above. This protein-wise feature was predicted
from the 21 global protein attributes stated above, that is, the protein length
and the frequency of appearance of the 20 AA types in the chain. The second
predicted information is secondary structure of a window of residues around the
target residue, using the PSI-PRED predictor [43]. This predicted information
consists of two parts: a secondary structure type (helix, strand or coil) and a
confidence level ([0..9]) of the prediction.

Table 3 summarizes the input attributes used in the datasets, and table 4
describes which attributes are included in each sets of input information. CN3
and CN5 represent two different ways of aggregating the same source of infor-
mation to CN1, either as global information or as a predicted information. CN2,



CN4 and CN6 add the predicted secondary structure to CN1, CN3 and CN5, re-
spectively. Unlike battery I of experiments, Here we have only used one window
size: four residues at each side of the target has been used, for both AA-type
and PredSS types of input information.

Table 3. Input attribute definitions for the tested datasets

Att. source Description Type Cardinality

Len Number of residues in a protein chain real-valued 1 attribute
FreqRes Frequencies of appearance of the each AA type in

the protein chain
real-valued 20 attributes

AA-type The AA type of a window of ±4 residues around
the target residue

nominal 9 attributes

PredAveCN Predicted average CN of a protein nominal 1 attribute
PredSS Predicted secondary structure of the ±4 residues

around the target residue
nominal+real-valued 18 attributes

Table 4. Definition of the input attributes for all the used datasets

Domain Attributes #real-valued att. #nominal att. total #att.

CN1 AA-type 0 9 9
CN2 AA-type,PredSS 9 18 27
CN3 AA-type,Len,FreqRes 21 9 30
CN4 AA-type,Len,FreqRes,PredSS 30 18 48
CN5 AA-type,PredAveCN 0 10 10
CN6 AA-type,PredAveCN,PredSS 9 19 28

Performance measure The accuracy metric used for these experiments is not
the standard machine learning accuracy metric (#correct examples/#total ex-
amples). As is usual in the protein structure prediction field [13, 43], we will take
into account the fact that each example (a residue) belongs to a protein chain.
Therefore, we will first compute the standard accuracy measure for each protein
chain, and then average these accuracies to obtain the final, protein-wise, accu-
racy metric. Because different chains have different lengths, the used measure
can differ from the standard accuracy. The rationale for this is to mimic the real-
life situation, in which a new protein is sequenced, and researchers are interested
in the predicted properties based on the entire protein sequence, independent of
its length.

Comparison of LCS performance The performance of GAssist on these
36 datasets (6 sets of input attributes, 2 class definition criteria, 3 numbers of
classes) will be compared against three other machine learning systems: C4.5
[39], a rule induction system, Naive Bayes [40], a Bayesian learning algorithm
and LIBSVM [44], a support vector machine using RBF kernels. We have used
the WEKA implementations [41] of both C4.5 and Naive Bayes. Student t-tests



are applied to the results of the experiments to determine, for each dataset if
the best method is significantly better than the other algorithms using a confi-
dence interval of 95%. Again, the Bonferroni correction [42] for multiple pair-wise
comparisons has been used.

5 Results

5.1 Experimental battery I

Lattice-HP datasets Table 5 compares the results of two, three and five state
CN predictions for a range of window sizes for the GAssist LCS, Naive Bayes
and C4.5 using the Lattice-HP dataset. As the number of states is increased the
accuracy decreases from around 80% to around 51% for all algorithms. For each
state as the window size is increased the accuracy increases by around 0.1-0.2%.
With the exception of the C4.5 algorithm which shows a decrease in accuracy
with increasing window size in two and three state predictions. There were no sig-
nificant differences detected in these tests and thus all learning methods showed
similar performance.

Table 5. Lattice-HP Prediction Accuracies.

Number of States Algorithm
Window Size

1 2 3

2
GAssist 79.8 ±4.9 80.2 ±5.0 80.0 ±5.3

C4.5 80.2 ±4.9 79.9 ±5.0 79.7 ±5.1
NaiveBayes 79.8 ±4.9 80.0 ±4.9 80.2 ±5.0

3
GAssist 67.4 ±4.9 67.8 ±4.1 67.3 ±5.0

C4.5 67.5 ±4.8 67.6 ±4.2 66.6 ±5.0
NaiveBayes 67.2 ±4.6 67.3 ±4.4 67.5 ±4.8

5
GAssist 51.4 ±4.6 51.3 ±4.2 52.7 ±5.3

C4.5 51.7 ±4.5 51.0 ±4.1 52.2 ±5.1
NaiveBayes 51.7 ±4.6 52.3 ±4.3 51.9 ±5.6

Real proteins Table 6 compares the results of two, three and five state CN
predictions on real proteins for the GAssist LCS, Naive Bayes and C4.5 using
the Real-AA and Real-HP datasets.

When an HP sequence representation was used, an increase in the number of
states is accompanied by a decrease in accuracy from around 63-64% to around
29-30% for all algorithms. For each state, as the window size is increased the
accuracy increases by around 1%. Again, no significant differences were found
between the methods for the Real-HP datasets.

Using full residue information, an increase in the number of states is ac-
companied by a decrease in accuracy from around 68% to around 34% for all



Table 6. CN Prediction Accuracies for the Real-HP and Real-AA datasets. A • means
that GAssist outperformed the Algorithm to the left (5% t-test significance). A ◦ label
means that the Algorithm on the left outperformed GAssist (5% t-test significance)

State Algorithm
HP Based Residue Based

Window Size Window Size
1 2 3 1 2 3

2
GAssist 63.6±0.6 63.9±0.6 64.4±0.5 67.5±0.4 67.9±0.4 68.2±0.4

C4.5 63.6±0.6 63.9±0.6 64.4±0.5 67.3±0.4 67.5±0.3 67.8±0.3
NaiveBayes 63.6±0.6 63.9±0.6 64.3±0.5 67.6±0.4 68.0±0.4 68.8±0.3◦

3
GAssist 44.9±0.5 45.1±0.5 45.6±0.4 48.8±0.4 49.0±0.4 49.3±0.4

C4.5 44.9±0.5 45.1±0.5 45.8±0.4 48.8±0.3 48.7±0.3 49.1±0.3
NaiveBayes 44.7±0.5 45.2±0.5 45.7±0.4 49.0±0.4 49.6±0.5◦ 50.7±0.3◦

5
GAssist 29.0±0.3 29.6±0.5 30.1±0.5 32.2±0.3 32.5±0.3 32.7±0.4

C4.5 29.0±0.3 29.7±0.4 30.4±0.5 31.9±0.4 31.4±0.4• 31.0±0.5•
NaiveBayes 29.0±0.3 29.7±0.4 30.1±0.5 33.0±0.2◦ 33.9±0.3◦ 34.7±0.4◦

algorithms. For each state, as the window size is increased, the accuracy in-
creases by around 0.5%, with the exception of the C4.5 algorithm which shows
a decrease in accuracy with increasing window size in five state predictions. The
LCS outperformed C4.5 two times and was outperformed by Naive Bayes six
times.

Most interestingly, moving from HP sequence representation to full residue
type sequence information only results in a 3.8% accuracy increase for two states
(64.4% vs 68.2%), 3.3% for three states (45.6% vs 49.3%) and 2.6% for the five
states class definition (30.1% vs 32.7%).

Brief estimation of Information Loss In order to understand the effect of
using a lower-dimensionality profile of a protein chain such as the HP model,
we have computed some simple statistics on the datasets. Two measures are
computed:

redundancy = 1− #unique instances
#total instances

(4)

inconsistency =

( #unique instances
#unique antecedents

)
− 1

#states− 1
(5)

The redundancy metric in equation 4 illustrates the effect of reducing the
alphabet and the window size: creating many copies of the same instances. The
inconsistency metric in equation 5 shows how this reduction creates inconsistent
instances: instances with equal input attributes (antecedent) but different class.
For the sake of clarity this measure has been normalized for the different number
of target states. Table 7 shows these ratios. For two-states and window size of
one, the Real-HP dataset shows the most extreme case: any possible antecedent
appears in the data set associated to both classes. Fortunately, the proportions



of the two classes for each antecedent are different, and the system can still
learn. We see how the Real-HP dataset is highly redundant and how the Real-
AA dataset of window size two and three presents very low redundancy and
inconsistency rate. This shows both why the window size has to be large enough
and also why we have to use a rich enough primary sequence representation.

Table 7. Redundancy and inconsistency rate of the tested real-proteins datasets

HP representation AA representation
States Window Size Redundancy Inconsistency Redundancy Inconsistency

1 99.99% 100.000% 93.69% 90.02%
2 2 99.94% 92.50% 6.14% 3.85%

3 99.75% 81.71% 0.21% 0.05%
1 99.98% 96.88% 90.90% 87.01%

3 2 99.92% 86.25% 4.50% 2.84%
3 99.66% 76.00% 0.17% 0.04%
1 99.97% 93.75% 85.84% 81.52%

5 2 99.86% 86.25% 2.97% 1.84%
3 99.46% 74.36% 0.14% 0.03%

5.2 Experimental battery II

This second part of the experiments of the chapter is also divided itself in two
parts. The first explains the results of the experiments defined in section 4. In
the second part we perform an interpretability analysis of the results obtained
by GAssist on these datasets. Some discussion follows.

Results of the learning experiments We tested the selected learning systems
on the 36 datasets, as summarized in table 8. Each value is the protein-wise accu-
racy metric defined in previous section and averaged over the ten test sets. The
t-tests applied to these results are summarized in table 9, where each cell counts
how many times the method in the row significantly outperforms the method in
the column with a confidence level of 95% and the bonferroni correction.

From the tested sets of input attributes, we can say that all the different kind
of attributes sources contribute to increasing the predictive accuracy of the tested
systems, as all CN2-CN6 datasets obtain higher performance than CN1. We can
quantify the contribution of the predicted secondary structure information as
an accuracy increase of 2-3% on most datasets and learning systems, comparing
the performance of CN1-CN2, CN3-CN4 and CN5-CN6.

The two ways of adding global protein information to the instances, by either
explicitly adding global protein descriptors or by addind the predicted protein
average coordination number manage to obtain similar performance levels, by
looking at the differences between CN3-CN5 and CN4-CN6. The contribution of
this kind of input information to the accuracy increase is 1.5-2%.

GAssist had an average run-time ranging from 9.5 to 14 hours in the CN3
dataset, while it had a run-time ranging from 0.3 to 1.1 hours in the CN5 dataset.



Table 8. Accuracy of the tested systems on the CN1..CN6 datasets. A • marks meth-
ods that were significantly outperformed by GAssist, while a ◦ marks methods that
significantly outperformed GAssist in that dataset. Student T-tests with 95% confi-
dence level were applied

Dataset System
Uniform frequency class def. Uniform length class def.
2 states 3 states 5 states 2 states 3 states 5 states

CN1

GAssist 69.0±0.5 50.7±0.5 34.2±0.3 75.9±0.8 63.8±0.9 46.5±0.9
Naive Bayes 68.7±0.5 50.7±0.6 34.5±0.5 76.3±0.7 64.0±0.8 47.0±0.8

C4.5 68.1±0.4• 49.4±0.4• 30.9±0.6• 75.0±0.7 63.3±0.9 46.1±0.9
LIBSVM 68.9±0.4 51.4±0.6 35.5±0.6◦ 77.4±0.8◦ 65.0±0.8◦ 46.9±0.8

CN2

GAssist 71.0±0.5 53.6±0.4 35.9±0.4 79.0±0.7 65.8±0.9 47.0±0.9
Naive Bayes 66.3±0.7• 49.8±0.6• 33.4±0.5• 72.1±0.7• 61.3±1.0• 39.9±0.7•

C4.5 70.6±0.6 52.8±0.4• 33.6±0.4• 77.9±0.6• 66.7±0.9 46.5±1.0
LIBSVM 72.7±0.6◦ 57.0±0.6◦ 39.0±0.5◦ 79.9±0.6◦ 69.1±1.0◦ 48.7±0.9◦

CN3

GAssist 70.9±0.5 52.6±0.7 35.7±0.6 77.2±1.1 65.1±0.9 47.0±0.8
Naive Bayes 67.7±0.7• 50.4±0.9• 34.1±0.8• 76.2±0.9 62.5±1.1• 43.5±1.4•

C4.5 69.9±0.5• 50.1±0.7• 31.1±0.6• 77.0±0.9 65.1±0.7 44.0±0.7•
LIBSVM 72.0±0.4◦ 55.3±0.8◦ 38.0±0.5◦ 79.3±1.0◦ 68.1±0.8◦ 47.2±0.7

CN4

GAssist 72.7±0.4 55.3±0.6 37.5±0.4 80.1±0.8 66.9±0.9 47.7±0.9
Naive Bayes 69.8±0.8• 52.7±0.9• 36.1±0.9• 76.9±1.0• 64.2±0.9• 43.7±1.2•

C4.5 72.2±0.4 53.4±0.5• 34.0±0.5• 79.1±0.7 67.6±0.7 45.2±0.7•
LIBSVM 75.9±0.4◦ 59.9±0.7◦ 41.9±0.4◦ 81.7±0.7◦ 71.5±0.8◦ 50.8±0.9◦

CN5

GAssist 71.2±0.5 52.9±0.9 35.9±0.8 77.2±0.9 65.3±0.8 47.1±0.8
Naive Bayes 71.5±0.5 54.0±0.8◦ 37.3±0.7◦ 78.4±0.8 67.2±0.8◦ 48.7±0.7◦

C4.5 70.3±0.6 51.7±0.8• 33.1±0.8• 77.1±1.0 65.8±0.7 47.0±0.8
LIBSVM 72.0±0.6◦ 55.0±0.8◦ 37.8±0.7◦ 79.1±0.9◦ 67.9±0.7◦ 47.7±0.9

CN6

GAssist 72.9±0.4 55.9±0.7 37.8±0.7 80.3±0.7 67.3±0.8 47.8±0.8
Naive Bayes 68.5±0.5• 52.0±0.7• 35.1±0.6• 75.2±0.9• 63.9±0.8• 42.8±0.5•

C4.5 72.4±0.5 54.5±0.6• 35.5±0.6• 79.5±0.7 68.4±0.7◦ 48.1±0.8
LIBSVM 75.8±0.4◦ 59.8±0.6◦ 41.7±0.6◦ 81.5±0.8◦ 71.3±0.7◦ 50.8±0.8◦

Table 9. Number of times a method significantly outperforms another in the battery II
of experiments, according to t-tests with 95% confidence level and Bonferroni correction
for multiple comparisons
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GAssist - 23 17 0 40
Naive Bayes 4 - 11 0 15

C4.5 1 16 - 0 17
LIBSVM 31 26 34 - 91

Times outperformed 36 65 62 0

The reason of this is two-fold. First of all, GAssist has to explore a larger search
space. Also, the mix or real-valued and nominal attributes requires the use of a
less efficient knowledge representation. Considering this issue and the fact that
the solutions generated by the CN5 datasets use less attributes than the ones



generated by CN3 (therefore, more readable) it is reasonable to recommend the
use of the latter kind input attribute for future experiments.

The UL class definition leads to better accuracy than the UF definition for
all datasets. This reflects the capacity of the UL definition to adapt itself to
the physical reality of the proteins as its criterion is based on the dimensions of
the CN domain. The UF definition, a priori, may look more appropriate from
a machine learning point of view, as it creates well balanced class distributions.
However, it might happen that the class frontiers separate examples that are
practically equal. Nevertheless, it could be worth to study the amount of infor-
mation contributed by both measures. It may be possible that the UF definition,
although leading to lower accuracy, provides more added value to a final 3D pro-
tein structure predictor.

Looking at the specific results of each learning method, we can observe that
both GAssist and C4.5 obtain their highest accuracy in the CN6 dataset, Naive
Bayes in the CN5 dataset and LIBSVM in CN4. LIBSVM achieves the best
accuracy in 33 of the 36 datasets, as reflected by the t-tests, where LIBSVM
outperforms the other methods in 91 of 108 times, and it is never significantly
outperformed. The t-tests place GAssist in the second position of the ranking for
both the number of times it outperforms C4.5 and Naive Bayes and the number
of times it is outperformed by the other methods. Finally, both C4.5 and Naive
Bayes perform comparably, at the bottom of the ranking.

Table 10. Complexity measures of the GAssist solutions on the CN1..CN6 datasets.
#rules = average number of rules per rule set. Exp. Att.= average number of expressed
attributes per rule

Dataset Metric
Uniform frequency class def. Uniform length class def.
2 states 3 states 5 states 2 states 3 states 5 states

CN1
#rules 6.5±1.1 6.4±0.8 7.5±0.7 2.0±0.0 7.1±0.6 5.4±0.6

Exp. Att. 6.6±3.2 6.4±3.1 6.9±3.0 4.2±4.2 7.2±3.0 6.3±3.3

CN2
#rules 6.7±1.0 6.5±0.7 7.1±0.3 5.0±0.1 5.8±0.7 5.8±0.7

Exp. Att. 9.9±4.7 9.3±4.6 9.8±4.5 11.5±6.0 8.0±4.3 9.5±4.9

CN3
#rules 5.4±0.6 5.4±0.5 6.2±0.4 4.1±1.5 6.3±0.7 5.6±0.6

Exp. Att. 7.5±4.0 7.2±3.9 7.7±3.8 8.2±4.8 6.4±3.7 7.6±3.9

CN4
#rules 5.9±1.0 6.5±0.7 6.9±0.4 5.0±0.2 5.7±0.7 5.6±0.6

Exp. Att. 9.8±5.0 9.7±4.8 10.0±4.7 11.8±6.4 7.4±4.7 9.7±5.1

CN5
#rules 6.3±0.9 6.6±1.0 6.5±0.7 2.0±0.3 6.6±0.6 5.6±0.7

Exp. Att. 7.3±3.5 7.2±3.4 7.3±3.4 4.5±4.5 6.8±3.3 7.0±3.6

CN6
#rules 6.4±1.0 7.1±0.7 7.0±0.4 5.0±0.2 6.4±0.7 5.8±0.7

Exp. Att. 10.0±4.9 10.3±4.7 9.9±4.6 13.1±7.5 9.0±5.4 10.3±5.8

Interpretability and explanatory power of GAssist results Table 10
summarizes two simple metrics of the solutions: the average number of rules per



rule set and the average number of expressed attributes in the generated rules,
that is, attributes that GAssist considered to be relevant for that rule. We see
that GAssist creates compact solutions, ranging from just 2 rules in the CN1
- 2 classes - UL dataset to 7.5 rules in the CN1 - 5 classes - UF dataset. At
most, an average of 11.8 attributes were expressed in the CN4 - 2 classes - UL
dataset (out of 42 attributes). In comparison, C4.5 (using pruning) sometimes
generated solutions with as many as 8000 leaves, and LIBSVM used around
160000 instances from the training set as support vectors. No simple complexity
measure can be extracted from Naive Bayes.

The case of the CN1 dataset using the uniform length classes definition and
two classes is especially interesting. In this dataset GAssist always generated
solutions with just two rules, obtaining an average accuracy of 75.9%. One such
rule set is shown below, where AA±n denotes the AA type at the position ±n
in respect to the target residue, the AA type is represented using the one letter
code and the symbol X is used to indicate the end of chain, for the case when
the window overlaps with the beginning or the end of the protein chain:

1. If AA−4 /∈ {X} and AA−3 /∈ {D,E,Q} and AA−1 /∈ {D,E,Q} and AA ∈
{A,C, F, I, L,M, V,W} and AA1 /∈ {D,E, P} and AA2 /∈ {X} and AA3 /∈
{D,E,K,P,X} and AA4 /∈ {E,K,P,Q,R,W, X} then class is 1

2. Default class is 0

We see two types of predicates: those stating if the AA type of a certain
position of the window belongs or does not belong to a certain subset of the amino
acids. When the number of AA types that the predicate for a certain residue can
take includes more than than ten letters, that is, half of the alphabet, GAssist
generates the complementary predicate to produce a more compact solution.
Therefore, all the predicates defined as ∈ are more specific than the ones defined
as /∈. The more specific attributes are usually also the most relevant ones, and
in this rule set we only have one such predicate: the one associated to the target
residue. It is reasonable to expect that the more relevant attributes are those
associated directly to the residue for which we are predicting its CN.

Table 11 contains the average number of AA types included in the predicate
associated to each window position, for all the rule sets produced for this dataset,
which is it is quite a good metric for the generality degree of the predicates
associated to each window position. This table also reports the percentage of
times that each window position was expressed in the generated rule. A non
expressed attribute is irrelevant for the prediction. We observe that the window
positions to the right of the target residue are more relevant than the ones to
the left, and that the window positions ±2 are the most irrelevant ones. Further
analysis should be performed to determine if there is a physical explanation for
this issue (such as a correlation with the cycle of an alpha helix) or if it is just
the effect of a GA positional bias [45].

Moreover, we can extract a simple physico-chemical explanation of such pred-
icates: the set of AA types contained in the predicate associated to the target
residue (A,C,F,I,L,M,V,W) are all hydrophobic [46]. Hydrophobic residues are



Table 11. Expression and generality rate for the rule sets generated by GAssist for
the CN1 dataset and uniform-length class definition

Window position Expression rate Generality rate

-4 95% 94.5%±4.6

-3 99% 88.1%±4.3

-2 57% 98.2%±2.5

-1 100% 84.7%±5.7

0 100% 39.4%±2.3

1 100% 83.5%±3.2

2 80% 96.2%±3.1

3 100% 78.8%±5.8

4 100% 78.5%±4.7

usually found in the inner part of a protein in native state. Therefore it is log-
ical that they present higher CN than the other residues, as this rule predicts
high CN. This also matches with all the observations we did in battery I of
experiments of this chapter.

On the other hand, from the rest of predicates of the rule set, the more
frequently appearing AA types in the negated predicates are D and E, which are
negatively charged. These types of AA usually appear only on the surface of the
proteins, so it is sensible that they are not included in the predicates of a rule
intended for predicting a feature (high CN) that is almost exclusive of residues
placed in the core of a protein.

These two observations illustrate how easy is to interpret the solutions gener-
ated by GAssist, in oppositions to decision trees of 8000 leaves, such as the ones
that C4.5 can produce on these datasets, or the almost inexistent explanatory
power of LIBSVM or Naive Bayes. GAssist can provide added value to the PSP
experts, as not only has pretty good data mining capacity, but also it can do
knowledge discovery via the explanatory power of the solutions it produces.

Table 12 extends this analysis to all the rule-sets generated for this dataset,
reporting two metrics: (1) the frequency of appearance of each AA type for each
window position, and (2) the average appearance frequency of each AA type for
all positions. From this average we obtain a ranking of specificity of each AA
type: Glutamine (E) and Proline (P) are the two AA types appearing less often.
On the other hand Alanine (A), Cysteine (C), Phenylalanine (F), Isoleucine (I),
Leucine (L), Methionine (M) and Valine (V) appear in more than 95% of all
positions, therefore being the less specific AA types for predicting a high value
for the CN. Also, all of these latter residues are hydrophobic.

Table 13 analyzes these rules from a slightly different point of view: ranking
the AA types for their frequency of appearance in each window position. Previ-
ously we observed that the predicate for the central residue of all rules takes a
different form compared to the rest of predicates. This issue is reflected perfectly
by this ranking. For the central residue, after the 8th AA type in the ranking all
frequencies are very close to 0, for the other ones, we do not find a frequency less



Table 12. Frequency of appearance in percentage of each AA type by window position
in the generated rules for the CN1 dataset and uniform-length class definitions

Pos. A C D E F G H I K L M N P Q R S T V W Y

-4 100 96 100 44 99 100 98 100 93 100 100 100 100 84 94 100 100 100 83 99
-3 100 94 14 12 100 100 100 100 100 100 100 89 94 66 100 100 100 100 94 99
-2 100 94 100 98 100 100 99 100 100 100 99 97 88 98 99 98 99 100 94 100
-1 100 94 41 43 98 100 100 100 18 100 100 100 8 96 99 100 100 100 96 100
0 100 100 0 0 100 0 0 100 0 100 100 0 0 0 0 0 0 100 82 5
1 100 97 4 4 100 99 98 100 96 100 100 81 0 94 100 99 100 100 99 100
2 100 98 98 100 100 100 98 100 97 100 97 100 38 100 100 100 100 100 98 100
3 100 98 55 11 100 100 100 100 1 100 100 96 2 47 66 100 99 100 100 100
4 100 99 94 1 100 100 98 100 1 100 100 96 66 1 28 100 100 100 85 100

Ave. 100.0 96.7 56.2 34.8 99.7 88.8 87.9 100.0 56.2 100.0 99.6 84.3 44.0 65.1 76.2 88.6 88.7 100.0 92.3 44.6

than 95% until position 15th of the ranking. For the non-central positions, the
interesting columns are the ones at the bottom of the ranking. We can observe
that Proline (P) and Glutamine (E) are the less frequent AA types for seven of
the nine window positions.

Therefore, we can extract sound explanations from the generated rules, and
we have found more paths of analysis: analyzing the specificity degree of the
used attributes and window positions, and relating the predicates generated by
GAssist with physical/chemical properties.

6 Discussion

In this section we will discuss the results presented in the previous section. As the
rest of the chapter, this discussion is divided in two main parts, corresponding to
the two reported batteries of experiments. Moreover, we will also briefly describe
some other research work we have done which is related to this chapter.

6.1 Battery of experiments I

The LCS and other machine learning algorithms preformed at similar levels for
these CN prediction tasks. Generally, increasing the number of states leads to
a reduction in prediction accuracy. Reduction of input information from full
residue type to HP sequence reduces the accuracy of prediction. The algorithms
were, however, all capable of predictions using HP sequence that were within
4% of the accuracies obtained using full residue type sequences, considering that
the size of the representation is ten times smaller (20-letter alphabet vs. 2-letter
alphabet).

For all of the algorithms studied, in the case of the most informative five
state predictions, moving from HP lattice to real protein HP sequences leads to
a reduction of CN prediction accuracy from levels of around 50% to levels of
around 30%. The significant reduction in the spatial degrees of freedom in the
Lattice-HP models leads to an improvement in prediction accuracy of around
20%.



Table 13. Ranking of appearance of the AA type by window position in the generated
rules for the CN 1 dataset and uniform-length class definitions
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In contrast, moving from the real protein HP sequences to real protein full
residue type sequences (for the same five state CN predictions) only a 3-5% im-
provement in prediction accuracy results from inclusion of this additional residue
type information. This observation matches the general agreement in the com-



putation biology community that hydrophobicity is one of the main properties
that guides the folding process of proteins and, thus, it is a key determinant of
good CN prediction, and also that algorithmic studies of HP models are relevant.

The rules that result from a reduced two letter alphabet are simpler and
easier to understand than those from the full residue type studies. For example,
for the HP representation a rule set giving 62.9% accuracy is shown below (an
X symbol is used to represent positions where the sliding window overlaps with
the end of the chain).

1. If AA−1 /∈ {x} and AA ∈ {h} and AA1 ∈ {p} then class is 1

2. If AA−1 ∈ {h} and AA ∈ {h} and AA1 /∈ {x} then class is 1

3. If AA−1 ∈ {p} and AA ∈ {h} and AA1 ∈ {h} then class is 1

4. Default class is 0

In these rules, a class assignment of high is represented by 1 and low by 0.
For the full residue type representation a rule set giving 67.7% accuracy is:

1. If AA−1 /∈ {D, E, K, N, P, Q, R, S, X} and AA /∈ {D, E, K, N, P, Q, R, S, T} and
AA1 /∈ {D, E, K, Q, X} then class is 1

2. If AA−1 /∈ {X} and AA ∈ {A, C, F, I, L, M, V, W, Y } and AA1 /∈ {D, E, H, Q, S, X}
then class is 1

3. If AA−1 /∈ {P, X, Y } and AA ∈ {A, C, F, I, L, M, V, W, Y } and
AA1 /∈ {K, M, T, W, X, Y } then class is 1

4. If AA−1 /∈ {H, I, K, M, X} and AA ∈ {C, F, I, L, M, V, W, Y } and AA1 /∈ {M, X}
then class is 1

5. Default class is 0

6.2 Battery of experiments II

The discussion for this battery of experiments is centered on the comparison of
learning methods in these datasets. GAssist performs better than Naive Bayes
and C4.5 but worse than LIBSVM. The direct comparison of GAssist and C4.5
is clearly favorable to GAssist, and this is important as these two systems use
a very similar knowledge representation (axis-parallel). GAssist is better than
C4.5 at exploring the search space of the solutions that this kind of knowledge
representation can offer. On the other hand, LIBSVM managed to outperform
GAssist in most datasets, especially in those with real-valued input attributes,
which may indicate that the non-linear knowledge representation used by LIB-
SVM is superior for this kind of data.

Nevertheless, there are several strong points that back the use of GAssist.
The first of them, analyzed in the results section, is the explanatory power of
the solutions that GAssist generates. From a pure machine learning point of
view these solutions are extremely compact, both in number of rules and also in
number of expressed attributes. Moreover, as we have shown, it is quite easy to
extract practical real-world explanations from the generated rules. On the other
hand, it is quite difficult to extract an explanation from LIBSVM solutions.
The only complexity measure that LIBSVM provides about its solutions is the



number of instances selected as support vectors, and this number can be huge,
around 70-90% of the training set.

Another issue of concern is the run-time. Although GAssist is not a fast
learning system, it is considerably faster than LIBSVM. GAssist run time on
these datasets ranged between 0.3 to 24 hours, while LIBSVM run time ranged
from 21 hours to 4.5 days. Even more critical is the time spent at the test stage.
While LIBSVM in some cases took hours to predict all examples in the test set
(mainly because of the high number of support vectors as stated above), GAssist
used approximately about a minute to use its ensemble of rule-sets to produce
the test predictions.

This issue is very important, because the final goal of the line of research
where this work is included is to create an on-line web-based 3D protein struc-
ture prediction server, which integrates the coordination number predictors and
also other related PSP datasets such as secondary structure prediction, solvent
accessibility and disulfide bonding. Such a server would be queried simultane-
ously by multiple users that would normally want to predict tens, if not hundreds,
of protein structural features with as few time delays as possible. Our experience
with the www.proksi.net web server for protein structure comparison indicates
that in an exploitation environment such as this the run-time is critical, and in
this aspect GAssist can be faster than LIBSVM by two orders of magnitude.

6.3 Brief description of other related work

The work presented in this chapter is just a part of an outgoing line of research
funded by the UK Engineering and Physical Sciences Research Council. We have
continued our efforts in this research line and in this subsection we would like to
briefly summarize some of the most closely related of them to the experiments
described in this chapter.

The first of them [47] studies an automated method to produce alphabet
reduction of the primary sequence. As we have seen in this chapter, there is a
certain performance gap (less than 4%) between the accuracy obtained using
the HP representation and the accuracy obtained using the AA representation.
Can this gap be significantly reduced using a slightly higher alphabet size than
two? We used an automated information theory-based evolutionary computation
method to find the proper alphabet reduction policy, and tailor it specifically
for the PSP feature being predicted. The method uses the Extended Compact
Genetic Algorithm (ECGA) [48] using the Mutual Information metric [49] as
fitness function. Afterwards, the produced alphabet reduction was verified by
learning the dataset with reduced alphabet using BioHEL [50], a recent Learn-
ing Classifier System using the Iterative Rule Learning paradigm [51] combined
with several of the features of GAssist such as the MDL fitness function, the ex-
plicit default rule mechanism and the ILAS windowing scheme. Our experiments
determined that we can produce reduced alphabets applied to the Coordination
Number prediction dataset with only three letters that can obtain an accuracy
which is only 0.6% lower than the accuracy obtained by the AA representation.



Therefore, it represents substantial progres when compared to the standard re-
duced alphabets used in the literature such as the HP alphabet.

Another related work [52] studies alternative definitions of the coordination
number metric based on alternative ways of defining the neighbourhood (the
residues in contact with) of a certain residue. These neighbourhood definitions
are based on graph theory, specifically on Proximity Graphs [53], such as the
Delaunay Tessellation and the Minimum Spanning Tree, among others. Four
neighbourhood definitions that produced four alternative coordination number
metrics were tested, using all the protocol of class partitions criteria and the
six sets of input data described in the second battery of experiments of this
chapter. The evaluation process identified which measures are easier to predict
than others. The explanatory power of the produced rules was also analyzed.

7 Conclusions and further work

In this chapter we have described our recent experiments with Learning Classi-
fier Systems applied to a Bioinformatics problem called Coordination Number
prediction. This problem belongs to the family of problems derived from Protein
Structure Prediction. The associated datasets are a challenge to LCS for many
reasons: (a) very large datasets with at least hundreds of thousands of instances,
(b) noisy data and (c) challenging feature selection due to the incomplete expert
understanding of these domains.

We applied a Pittsburgh approach LCS called GAssist to several variants of
this problem and compared its performance to some standard machine learn-
ing methods. In general GAssist showed good performance, only being outper-
formed by Support Vector Machines in some of the datasets. Nevertheless, GAs-
sist showed a competitive advantage against SVM in some aspects, especially:
run-time in an exploitation environment and explanatory power. It is very dif-
ficult to understand the rationale behind SVM predictions. On the other hand,
GAssist produces very small and compact rule sets for all datasets. These rule
sets were easy to interpret by the domain experts and the explanations behind
the predictions were acknowledged to be sound.

We have assessed two classes of input information about this domain, how to
represent the primary sequence of the protein and what information can we add
to improve the CN prediction, as well as assessing several definitions of classes for
the coordination number prediction domain. The performance difference between
the HP and the AA representations is significant but not huge. In future work
we would like to investigate if we can find other kinds of reduced alphabets
where this performance difference becomes minimal. We have already started
to obtain successful results in this area, as briefly summarized in the discussion
section. We would also like to evaluate other kinds of input information for CN
prediction not tested yet, such as position specific scoring matrices or relative
solvent accessibility, as well as assessing what is the real quantity of information
that each of the tested class definitions is able to provide, as the final goal
of predicting CN is to integrate this predictions into a 3D protein structure



prediction system. The explanatory analysis of the generated rule-sets would
also be very useful, and not just to understand the GAssist predictions, but also
in order to identify information that can be fed back to GAssist to improve its
learning process and to better understand aspects of protein folding. Finally, we
would like to investigate how can we improve the learning process of GAssist,
in order to improve its performance and scalability. We have also started to
obtain better results in this scope with the development of BioHEL [50], which
has better scalability capacity than GAssist, and manages to obtain similar
performance to LIBSVM in many datasets. Other interesting alternatives could
be hyper-ellipsoidal conditions [54], neural network conditions [55] or some kind
of SVM-LCS hybrid.
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6. Llorà, X., Garrell, J.M.: Knowledge-independent data mining with fine-grained
parallel evolutionary algorithms. In: Proceedings of the Third Genetic and Evolu-
tionary Computation Conference, Morgan Kaufmann (2001) 461–468

7. Bacardit, J.: Pittsburgh Genetics-Based Machine Learning in the Data Mining era:
Representations, generalization, and run-time. PhD thesis, Ramon Llull University,
Barcelona, Catalonia, Spain (2004)

8. Stout, M., Bacardit, J., Hirst, J.D., Krasnogor, N., Blazewicz, J.: From HP lat-
tice models to real proteins: Coordination number prediction using learning clas-
sifier systems. In: Applications of Evolutionary Computing, EvoWorkshops 2006,
Springer LNCS 3907 (2006) 208–220



9. Bacardit, J., Stout, M., Krasnogor, N., Hirst, J.D., Blazewicz, J.: Coordination
number prediction using learning classifier systems: performance and interpretabil-
ity. In: GECCO ’06: Proceedings of the 8th annual conference on Genetic and
evolutionary computation, ACM Press (2006) 247–254

10. Stout, M., Bacardit, J., Hirst, J.D., Krasnogor, N.: Prediction of residue exposure
and contact number for simplified hp lattice model proteins using learning classifier
systems. In a. Ruan, D., D’hondt, P., Fantoni, P.F., Cock, M.D., Nachtegael,
M., Kerre, E.E., eds.: Proceedings of the 7th International FLINS Conference on
Applied Artificial Intelligence, Genova, Italy, World Scientific (2006) 601–608

11. Hinds, D.A., Levitt, M.: A lattice model for protein-structure prediction at low
resolution. Proc. National Academy Sciences U.S.A. 89 (1992) 2536–2540

12. Yue, K., Fiebig, K.M., Thomas, P.D., Sun, C.H., Shakhnovich, E.I., Dill, K.A.: A
test of lattice protein folding algorithms. Proc. Natl. Acad. Sci. USA 92 (1995)
325–329

13. Kinjo, A.R., Horimoto, K., Nishikawa, K.: Predicting absolute contact numbers of
native protein structure from amino acid sequence. Proteins 58 (2005) 158–165

14. Baldi, P., Pollastri, G.: The principled design of large-scale recursive neural network
architectures dag-rnns and the protein structure prediction problem. Journal of
Machine Learning Research 4 (2003) 575 – 602

15. Shao, Y., Bystroff, C.: Predicting interresidue contacts using templates and path-
ways. Proteins 53 (2003) 497–502

16. MacCallum, R.: Striped sheets and protein contact prediction. Bioinformatics 20
(2004) I224–I231

17. Zhao, Y., Karypis, G.: Prediction of contact maps using support vector machines.
In: Proceedings of the IEEE Symposium on BioInformatics and BioEngineering.
(2003) 26–36

18. Altschul, S.F., Madden, T.L., Scher, A.A., Zhang, J., Zhang, Z., Miller, W., Lip-
man, D.J.: Gapped blast and psi-blast: a new generation of protein database search
programs. Nucleic Acids Res 25 (1997) 3389–3402

19. Abe, H., Go, N.: Noninteracting local-structure model of folding and unfolding
transition in globular proteins. ii. application to two-dimensional lattice proteins.
Biopolymers 20 (1981) 1013–1031

20. Hart, W.E., Istrail, S.: Crystallographical universal approximability: A complexity
theory of protein folding algorithms on crystal lattices. Technical Report SAND95-
1294, Sandia National Labs, Albuquerque, NM (1995)

21. Hart, W., Istrail, S.: Robust proofs of NP-hardness for protein folding: General
lattices and energy potentials. Journal of Computational Biology (1997) 1–20

22. Escuela, G., Ochoa, G., Krasnogor, N.: Evolving l-systems to capture protein
structure native conformations. In: Proceedings of the 8th European Conference
on Genetic Programming (EuroGP 2005), Lecture Notes in Computer Sciences
3447, pp 73-84, Springer-Verlag, Berlin (2005)

23. Krasnogor, N., Pelta, D.: Fuzzy memes in multimeme algorithms: a fuzzy-
evolutionary hybrid. In Verdegay, J., ed.: Fuzzy Sets based Heuristics for Op-
timization, Springer (2002)

24. Krasnogor, N., Hart, W., Smith, J., Pelta, D.: Protein structure prediction with
evolutionary algorithms. In Banzhaf, W., Daida, J., Eiben, A., Garzon, M.,
Honavar, V., Jakaiela, M., Smith, R., eds.: GECCO-99: Proceedings of the Ge-
netic and Evolutionary Computation Conference, Morgan Kaufmann (1999)

25. Krasnogor, N., Blackburne, B., Burke, E., Hirst, J.: Multimeme algorithms for
protein structure prediction. In: Proceedings of the Parallel Problem Solving from
Nature VII. Lecture Notes in Computer Science. Volume 2439. (2002) 769–778



26. Krasnogor, N., de la Cananl, E., Pelta, D., Marcos, D., Risi, W.: Encoding and
crossover mismatch in a molecular design problem. In Bentley, P., ed.: AID98:
Proceedings of the Workshop on Artificial Intelligence in Design 1998. (1998)

27. Krasnogor, N., Pelta, D., Marcos, D., Risi, W.: Protein structure prediction as a
complex adaptive system. In: Proceedings of Frontiers in Evolutionary Algorithms
1998. (1998)

28. DeJong, K.A., Spears, W.M., Gordon, D.F.: Using genetic algorithms for concept
learning. Machine Learning 13 (1993) 161–188

29. Bacardit, J.: Analysis of the initialization stage of a pittsburgh approach learning
classifier system. In: GECCO 2005: Proceedings of the Genetic and Evolutionary
Computation Conference. Volume 2., ACM Press (2005) 1843–1850

30. Rissanen, J.: Modeling by shortest data description. Automatica vol. 14 (1978)
465–471

31. Bacardit, J., Goldberg, D., Butz, M., Llorà, X., Garrell, J.M.: Speeding-up pitts-
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