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The performance of a Learning Classifier System (LCS) applied to the classifica-
tion of simplified hydrophobic/polar (HP) lattice model proteins was compared to

other machine learning (ML) algorithms. The GAssist LCS classified functional

HP model proteins on the 3D diamond lattice as folding or non-folding at 88.3%
accuracy, outperforming significantly three out of the four other methods. GAssist

correctly classified HP model protein instances on the basis of Contact Number

(CN) and Residue Exposure (RE) on both 2D square and 3D cubic lattices at a
level of between 27.8% and 80.9%. Again, the LCS performed at a level compara-

ble to the other ML technologies in this task outperforming significantly them in

24 out of 180 cases, and being outperformed just six times. The benefits of using
LCS for this problem domain are discussed and examples of the LCS generated

rules are described.

1. Introduction

Prediction of structural properties of proteins such as residue exposure
(RE) and coordination number (CN) based solely on protein sequence has
recently received renewed attention. In other studies, simplified protein

∗corresponding author

1



April 7, 2006 15:15 Proceedings Trim Size: 9in x 6in CIBB2006-ms

models such as the HP model have been used to understand protein folding
and protein structure prediction. These models represent the sequence
of a protein using two residue types: hydrophobic and polar restricting
the residue locations to those of a lattice. This paper compares CN and
RE prediction for simplified HP model proteins using machine learning
technologies, in particular Learning Classifier Systems (LCS). LCS apply
Evolutionary Computation to Machine Learning problems. Four questions
were examined: 1) Is it possible to predict, from sequence alone, which
proteins will and will not fold? 2) Is it possible to predict which residues
have above or below average CN and RE? 3) Is it possible to predict the
detailed CN and RE states? and 4) Are LCS suitable tools for these tasks?

2. Background

2.1. Protein Structure Prediction

The prediction of the 3D structures of proteins is a fundamental and difficult
problem in computational biology. Popular approachs include predicting
specific attributes of proteins, such as secondary structure, solvent acces-
sibility or coordination number. The contact/coordination number (CN)
problem is defined as the prediction, for a given residue, of the number of
residues from the same protein that are in contact with it. Two residues are
said to be in contact when the distance between the two is below a certain
threshold. This problem is closely related to contact map (CM) prediction.

While protein structure prediction remains unsolved, researchers have
resorted to simplified protein models to try to gain understanding of both
the process of folding and the algorithms needed to predict it 1. Approaches
have included fuzzy sets, cellular automata, L-systems and memetic algo-
rithms (for references see 2). One common simplification is to focus only
on the residues (C-alpha or C-beta atoms) rather than all the atoms in the
protein. A further simplification is to reduce the number of residue types
to less than twenty by using residue sequence representations based, for
instance, on physical properties such as hydrophobicity, as in the so called
hydrophobic/polar (HP) models. Another simplification is to reduce the
number of spatial degrees of freedom by restricting the atom or residue lo-
cations to those of a lattice 1,3,4. Lattices of various geometries have been
explored, e.g., two-dimensional triangular and square geometries or three-
dimensional diamond and face centered cubic. Idealized models have been
used, among other things, to study the nature of the energy landscape,
the uniqueness of the native state or associated degenerate sequences, the
origin of the two-state thermodynamic behavior of globular proteins (i.e.
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first folding into secondary structures and later into a three dimensional
shape), the existence of cooperative folding (i.e. an energy gap between the
native conformation and the closest non-native one) and structure-function
relations (for further references see 5, 2)

2.2. HP Models

In the HP model (and its variants) the 20 amino acids are reduced to two
classes: non-polar or hydrophobic (H) and polar (P) or hydrophilic amino
acids. An n amino acid protein is represented by a sequence s ∈ {H,P}+

with |s| = n. The sequence s is to be mapped to a lattice, where each
residue in s occupies a different lattice cell and the mapping is required to
be self-avoiding. The energy potential in the HP model reflects the fact that
hydrophobic amino acids have a propensity to form a hydrophobic core.

In the standard HP model, contacts that are HP and PP are assigned
an energy of 0 and an HH contact is assigned an energy of -1. Whilst in the
functional model protein (FMP), HP and PP receive a value of 1 and HH
a value of -1. For an FMP sequence to be viable it must fold into a unique
native state (unlike Dill’s model 6 where the same sequence could have a
variety of minimum energy states), the native structure is required to have
a binding pocket, i.e. at least one hole in the conformation 5. Moreover,
there must exist an energy gap between the minimum energy conformation
and the next excited state.

In this paper, rather than applying optimisation methods 7,8 to minimise
the energy of the structures we concentrate on classification of models. We
employ a class of machine learning techniques called Learning Classifier
Systems, and in particular we use the GAssist system 9 which is based on
a binary representations of rules (see section 3 for more details). 10

3. Methodology

Three datasets were employed (Table 1). A 3D HP diamond lattice data set
used for the Fold/Non-fold experiments (3DFNF), a 3D HP cubic lattice
dataset used for the CN and RE experiments (3DCNRE) and a 2D square
lattice dataset used for the CN and RE experiments (2DCNRE). Datasets
are available on-line at http://www.cs.nott.ac.uk/~nxk/hppdb.html.

The experimental design was as follows: 1) For all residues, calculate CN
and RE. CN is typically defined as the number of non-contiguous residues
within a given radius (r=1.0 lattice unit) of each residue. RE was defined as
the distance of each residue from the center of mass of the protein. 2) Create
instance sets by moving a window of fixed length over the sequence-attribute
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Table 1. Details of the data sets used in these experiments.

Dataset Identifier 3DFNF 3DCNRE 2DCNRE
Lattice Dimensions 3D 3D 2D
Lattice Type Diamond Cubic Square
Coordination Number 4 6 4
Model Type FMP HP FMP
Number of Sequences 4196352 15 4428
Number of Structures 893 15 4428
Maximum Sequence Length 23 48 20
Minimum Sequence Length 23 27 20
Total Residues 96516096 640 92988
Total Hydrophobic 48258049 316 42638
Total Polar 48258047 309 45922

Source Taken from11 Taken from 12 Taken from13

vectors, assigning a class to each instance: the value of that attribute for
central residue in the window. 3) Split the instance sets into Training and
Test sets. 4) Apply machine learning tools to predict the classes in Test
Sets. 5) Extract classification accuracies for each algorithm. 6) For the
non-deterministic algorithms (GAssist) iterate 10 times with different ran-
dom number seeds. 7) Calculate the mean prediction accuracy. 8) Perform
student t-tests on the mean prediction accuracies to determine which algo-
rithms significantly outperformed the others (using a confidence interval of
95 and Bonferroni correction 14 for multiple pair-wise comparisons).

Windows were generated for one, two and three residues at each side of
a central residue. For each attribute and for each window size, three class
assignment levels (Two State, Three State and Five State) were explored.
For two state assignment residues were assigned the class 1 (high) or 2 (low)
according to whether their attribute value was below or above the average
for that attribute value in that particular the protein. For three states the
class assignments were 1 (low), 2 (intermediate) or 3 (high) for the lower,
middle or upper third of the range respectively. In five state assignments
the classes were 1, 2, 3, 4 or 5 for the first, second through fifth portion of
the range respectively.

Composed of a rule learning algorithm and a rule inference engine, LCSs
have the ability to balance multiple, potentially conflicting, constraints (e.g.
formation of local structures vs global structures) and can produce high
quality predictions. Moreover, LCS can produce human understandable
explanations of the rules they have used to make their classifications, un-
like, for example, neural network based systems. GAssist 9 is a Pittsburgh
learning classifier system descended from GABIL 10. The system applies a
near-standard Genetic Algorithm (GA) that evolves individuals that rep-
resent complete problem solutions. Each individual consists of a variable
length rule set. We used the rule-based knowledge representation of the
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GABIL 10 system (see section 5 for an example of a generated rule set).
The experimental parameters used for the GAssist experiments were the
default values 9 except that for the larger datasets (2DCNRE), where 25
strata were used rather than the two strata used by default. One thou-
sand iterations of the LCS were used. GAssist was compared against Naive
Bayes, C4.5, IBk (k=3) and JRip, all of them taken from the WEKA ma-
chine learning package.

4. Experimental Results

4.1. Results of Fold Non-Fold Classification Experiments

Table 2 summarises the results of the Fold/Non-fold classification experi-
ments on the 3D Diamond Lattice Structure dataset. For each algorithm
the overall average and deviation of test accuracy is shown. GAssist was
the best method on this dataset, outperforming significantly three of the
four other tested methods.

Table 2. Averaged Classification Accuracies (%) for 3D HP Fold/Non-Fold Experiments.

A • means that GAssist significantly outperformed the Algorithm to the left

Algorithm Total

Naive Bayes 74.8±3.1 •
GAssist 88.3±1.7

IBk 81.8±2.7 •
JRip 86.9±3.1 •
C4.5 87.9±2.5

4.2. Results of CN and RE Classification Experiments

Table 3 summarises the results of the classification experiments for CN and
RE for the 3DHPCNRE the 2DHPCNRE datasets. For each algorithm
the overall average and deviation of test accuracy is shown. GAssist per-
formed at a similar or better level than the other tested machine learning
methods. It significantly outperformed other methods 24 times and it was
outperformed in just six of the tested datasets.

5. Discussion

The performance of the GAssist LCS was equal or better than the other
tested methods, especially on the fold/non fold dataset. It was outper-
formed significantly very few times. From a general point of view we can
say that CN is easier to classify than RE, and that the 2D lattice data are
also more difficult to classify than the 3D data. On the 3D lattice, CN can
be classified around 80%, 67% and 52% for two, three and five states, and
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Table 3. Averaged Classification Accuracies (%) for 2D and 3D HP CN and RE Experiments.

A • means that GAssist significantly outperformed the Algorithm to the left, a ◦ means that

the Algorithm on the left outperformed GAssist

Exper. States Alg.\Win. Size
3D Data 2D Data

3 5 7 3 5 7

CN

2

Naive Bayes 79.7±5.8 79.9±5.2 80.2±4.5 61.2±0.3 63.9±0.4 62.6±0.4•
GAssist 79.9±6.0 80.2±5.4 79.6±4.7 61.2±0.3 64.1±0.4 64.9±0.3

IBk 80.1±6.0 79.0±5.4 78.0±5.1 61.2±0.3 64.1±0.4 65.1±0.4
JRip 80.1±6.0 80.1±5.8 79.9±5.0 61.2±0.3 63.8±0.4 64.7±0.4
C4.5 80.2±6.0 79.9±5.7 79.8±4.6 61.2±0.3 64.0±0.4 65.1±0.4

3

Naive Bayes 67.1±5.6 67.2±4.6 67.3±4.9 70.9±0.2 70.9±0.2 68.5±0.2•
GAssist 67.1±6.0• 67.7±4.6 67.3±5.0 70.8±0.4 71.0±0.4 71.0±0.4

IBk 66.1±6.3 66.7±5.3 64.9±5.7 70.9±0.2 71.1±0.3 71.0±0.2
JRip 60.7±5.2 64.8±5.2 64.5±4.9 70.9±0.2 70.5±0.3• 70.5±0.3•
C4.5 67.5±5.6 67.7±4.7 65.8±5.1 70.9±0.2 71.1±0.3 71.0±0.2

5

Naive Bayes 51.6±4.4 52.2±4.4 51.8±5.8 58.1±0.2 56.8±0.2• 56.4±0.3•
GAssist 51.4±4.5 51.3±4.4 52.9±5.3 58.1±0.2 58.7±0.3 58.8±0.3

IBk 51.3±4.6 49.6±4.6 48.8±5.8 58.1±0.2 58.7±0.3 58.9±0.3
JRip 45.5±3.7• 46.9±4.3• 49.0±6.0 58.1±0.2 57.6±0.3• 57.6±0.3•
C4.5 51.7±4.5 50.7±4.2 52.3±5.1 58.1±0.2 58.6±0.3 58.8±0.2

RE

2

Naive Bayes 77.8±5.5 78.6±4.4 79.7±4.4 56.9±0.5 60.0±0.4• 58.7±0.5•
GAssist 77.9±5.5 78.1±4.8 78.2±4.2 56.9±0.4 60.4±0.5 61.4±0.5

IBk 78.2±5.3 76.7±5.1 76.2±4.3 56.9±0.4 60.5±0.5 61.9±0.6◦
JRip 78.1±5.3 77.8±4.8 78.3±4.6 56.9±0.4 60.2±0.5 61.1±0.5
C4.5 77.8±5.4 77.6±4.2 77.9±4.1 56.9±0.4 60.5±0.4 61.7±0.6

3

Naive Bayes 63.0±5.7 63.3±5.2 62.5±5.5 43.3±0.3 45.4±0.3• 44.2±0.3•
GAssist 62.0±5.5 61.7±5.5 62.1±4.7 43.3±0.3 46.5±0.3 47.2±0.6

IBk 61.1±4.9 61.0±5.0 61.8±5.2 43.3±0.3 46.5±0.3 47.8±0.5◦
JRip 59.7±3.0 59.0±3.3• 61.4±3.9 43.3±0.3 45.6±0.3• 46.5±0.4•
C4.5 61.6±5.2 61.7±5.3 64.1±4.1 43.3±0.3 46.5±0.3 47.8±0.4◦

5

Naive Bayes 37.3±6.6 38.6±6.1 37.6±6.1 27.8±0.2 27.8±0.3• 28.1±0.4•
GAssist 37.6±5.9 36.2±5.9 39.2±5.3 27.8±0.3 30.8±0.5 32.0±0.6

IBk 37.0±5.7 36.7±5.9 38.5±6.1 27.8±0.3 31.1±0.5 33.1±0.4◦
JRip 34.5±2.9 33.6±3.8• 36.2±5.6 25.3±0.0• 28.4±0.3• 28.0±0.3•
C4.5 38.2±6.8 36.8±6.3 38.9±4.9 27.8±0.3 31.2±0.5◦ 33.0±0.4◦

RE can be classified around 78%, 62% and 38%. For the 2D lattice data,
CN can be classified around 65%, 71% and 59%, and RE can be classified
around 62%, 47% and 33% for two, three and five states. The fold/non fold
domain can be classified with an 88% accuracy.

Beside its performance, GAssist has another advantage, which is the
generation of compact and interpretable solutions. GAssist generated on
average rule sets consisting of 52.8, 9.6 and 3.5 rules for the 3DFNF, 2DC-
NRE and 3DCNRE datasets, respectively. As an example, we show a rule
set from an individual generating 87.3% accuracy for two state prediction
with a window size of seven (three residues either side of the residue be-
ing predicted) for the CN domain using 3D lattice. An X symbol is used
to represent positions at the end of the chains, that is beyond the central
residue being studied, H means high CN, L means low CN. The rule set
only had three rules, and at most three of the seven input attributes were
expressed. The rules are interpreted in order, therefore all examples not
matched by the first or second rules are assigned class L.
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(1) If Positioni−1 /∈ {p}, Positioni ∈ {h}, Positioni+1 /∈ {h} then class is H

(2) If Positioni−2 /∈ {X}, Positioni ∈ {h} then class is H

(3) Default class is L

Moving from highly abstract (2 class) to more informative predictions
(5 class) more input data (larger windows) are required in order to fa-
cilitate learning. The 3D structures on the cubic lattice have less than 50
residues, as a result the training data has an unnaturally high proportion of
exposed/low-CN residues (including hydrophobic residues which are more
usually found buried). Analysis (not shown) of the distribution of residues
by class showed that for the 2D square lattice structures this bias in the
input data distributions is less pronounced. We have extended these studies
to real proteins (papers submitted) and HP representations of real proteins
2. In the future we will investigate computation and prediction of other
structural properties such secondary structures and disulfide bridges.

6. Conclusions

These studies have shown that: a) it was possible to discriminate at around
80% accuracy, from sequence alone, which proteins will and will not fold
b) It was also possible to predict which residues have above or below av-
erage CN and RE c) it is possible to predict the detailed CN and RE
states of residues and d) The GAssist LCS performs at a level compara-
ble to other ML algorithms on these problems. Of the WEKA algorithms
studied, those based on orthogonal representations perform slightly better
than those which are not. Minimalist lattice structure models focus on
the essential details of protein structure prediction. Moving from highly
abstract predictions (above/below mean for a given attribute) to more de-
tailed structural predictions (eg. five state CN), accuracy can be increased
by incorporating more local residue pattern information in the inputs (in-
creased window size). However, in real proteins, only some contacts (sec-
ondary structure contacts) arise from local residue sequence patterns that
may be recognizable in short fragments/windows. Other contacts arise
from long-range global features of proteins and these may not be evident
in short local sequence patterns. Future studies will extend these investi-
gations with classifications based on other structural attributes and studies
of real protein datasets.
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