
A Message Oriented Middleware Solution Enabling

Non-Repudiation Evidence Generation for Reliable Web

Services

Simon Parkin
1
, David Ingham

2
 and Graham Morgan

1

1 School of Computing Science, University of Newcastle, NE1 7RU, UK

2 Arjuna Technologies Ltd., Newcastle upon Tyne, NE1 7RU, UK

S.E.Parkin, Graham.Morgan@newcastle.ac.uk dave.ingham@arjuna.com

Abstract: The paper describes an approach to providing reliable message

passing together with mechanisms for enforcing non-repudiation for use by

Web Services. In particular, we are concerned with message passing that occurs

across organizational boundaries and evaluating the suitability of the Java

Messaging Service in this approach.

Keywords: Web Services, Middleware, MOM, Non-repudiation

1. Introduction

Business communities have traditionally participated in inter-organizational

communications via a number of well known techniques such as face-to-face

meetings or paper mail. Two important properties associated with inter-organization

communications that contribute to successful commerce are reliable information

delivery and the trust in the authentication of the originator of the information. Such

reliability stems from the ability of a communications medium to provide a level of

guarantee for information delivery that is agreed upon by all participants and satisfies

the business function as dictated in some contractual agreement. A signature that all

parties agree upon as proof of originator is used to provide trust in the origins of

information. Inter-organizational disputes are resolved through some legal action

directed by appropriate laws. For example, in law the trust mechanism used to

overcome a claim of non-repudiation relating to a communication is the witnessing of

signature(s).

Electronic commerce makes possible the implementation of existing business

practices via enabling digital technologies. Such technologies ease interaction

between organizations and the individual by overcoming traditional problems (e.g.,

paper based, voice) associated to the geographic distribution of participants involved

in a business process. The proliferation of the Internet has contributed to the ability of

an enterprise to provide their services to a much larger audience than ever envisaged

before the existence of widely available public access networks. Furthermore, the

properties of electronic communication (e.g., speed, automation) have brought about

business processes that would not be possible using non-digital technologies.

2 Simon Parkin, David Ingham, Graham Morgan

To enable the deployment of applications that span organizational boundaries there

is a need to enable interactions between organizations in a manner that does not rely

on the specific implementation of an organization’s technologies yet can promote

interoperability in a heterogeneous environment. One possibility for developing such

applications is the Object Management Group’s CORBA [10] and related

specifications. CORBA is a mature specification that provides interoperability for

distributed applications built in a heterogeneous environment and is based on the

object-oriented paradigm of program development. However, a service based

approach using text based messaging as opposed to CORBA’s object-oriented

approach with binary messaging is considered more suited to inter-organizational

application development [11].

Web Services are promoted as providing a suitable paradigm for application

integration across organizational boundaries. Services may be implemented and

deployed using platform specific mechanisms with interoperability achieved via Web

Service standards and communications over standard protocols. The Protocol

specified by Web Services is SOAP [7] (providing RPC) with organizations

describing their services, and so making them available to clients, via WSDL [12].

WSDL and SOAP are specified using XML [13]. XML allows a developer to

represent different elements of data in a text file that may be read and processed by

applications (providing appropriate message descriptions for loosely coupled

systems).

We propose the use of message oriented middleware (MOM) in a solution to

satisfying reliable communications while tackling the problem of non-repudiation for

Web Services using SOAP and WSDL. We exploit the message passing properties

associated with MOM to prevent partial system failure from inhibiting the delivery of

messages and prevent limited transient unavailability of clients and servers from

resulting in non-completion of a SOAP RPC. Combining persistent messaging with

transactional and security mechanisms aids in non-repudiation. Furthermore, our

approach maintains message logs to aid in any inter-organizational disputes relating to

non-repudiation that may occur. We have implemented our system using only

standard technologies, with clients and servers requiring no amendment to use our

system. Our system appears transparent to clients and servers.

The main contribution of our paper is to provide the community with an

engineered solution that exhibits the benefits of using MOM for non-repudiation and

reliability in the context of Web Services. Our purpose was not simply to implement

Web Service standards associated to non-repudiation and reliability (on which there

are many works).

In the next section we describe our assumptions related to the technologies we use.

Section 3 describes our implementation. Section 4 describes related work with section

5 presenting our conclusions and future work.

2. Background

This section gives a short introduction to SOAP and MOM and explains assumptions

we make regarding server/client interaction.

A MOM Solution for Non-Repudiation Evidence Generation in Web Services 3

2.1 Clients and Servers

We assume clients enact an RPC on a server using SOAP [7] over HTTP across

public access networks (i.e., the Internet). This assumption is based on the fact that

SOAP over HTTP is the common configuration for accessing Web Services over the

Internet [9]. This is due to the expectation that the use of HTTP is widespread and

HTTP is conceptually similar to SOAP as they both describe a request/response style

protocol (easing the coupling of these protocols). However, the approach of using

SOAP over HTTP is not without problems: the best-effort expectations of HTTP to

transmit SOAP messages are not appropriate for some applications which require

more robust delivery requirements. For example, inter-organizational interactions via

SOAP RPC may require non-repudiation properties that provide a basis for

determining the validity of messages (as is the subject of this paper).

The use of SOAP is not restricted to client/server interaction that may necessarily

result in request/reply style messaging. SOAP messages may be used in a document-

literal style that does not depend on a client invoking a particular method on a server

and is therefore message based as opposed to RPC based. Furthermore, a SOAP RPC

may not necessarily require a server to generate a reply for every request. In this

paper we are primarily concerned with SOAP RPC in which every client request

results in a server generated reply, even if this reply is simply an acknowledgement of

delivery by the server. This decision has been taken as it is assumed clients require an

acknowledgement to enable application level decisions to be made on the

successfulness of their request. When an RPC crosses organizational boundaries then

only via server acknowledgment may a client be able to state a case that it had

understood the request to be delivered if a dispute relating to the delivery status of a

message arose between client and server.

We assume servers describe their services via WSDL. WSDL provides a means by

which servers may describe their services in a manner that allows clients to contact

and use such services. Such a description includes the name of the service, the

location of the service (typically a URL), methods available for invocation and the

input/output parameter types defined for each method.

2.2 Message Passing

As previously described, SOAP RPC over HTTP is the mechanism we assume clients

and servers use to interact. However, the best effort reliability of HTTP coupled with

lack of non-repudiation techniques requires a different approach to message passing

across organizational boundaries. Therefore, we employ message oriented

middleware (MOM) as the basis of our approach for inter-organizational message

exchange.

MOM allows two or more applications to exchange messages. The CORBA

Notification Service [6] and JMS [1] are examples of specifications that describe

typical MOM type services. Unlike RPC, there is no requirement for participants in a

MOM message exchange to be contactable at the time of communications. In this

sense, senders and receivers of messages are decoupled with receivers consuming

messages as and when they are able to. This property may be exploited to provide a

4 Simon Parkin, David Ingham, Graham Morgan

means of masking client/server unavailability during the enacting of an RPC. For

example, a server may be unavailable to service an RPC (e.g., due to high processing

loads, administrative downtime). If an RPC is issued by a client during this period a

client may get an exception raised that the server may not be able to process the

request or the client may timeout the server if the server is unreasonably slow. Either

of these scenarios will result in a client managing its own message resends. Consider

this example further. Assume a client timeouts a server and reissues a request.

Unfortunately, the server actually processed the original request but was simply too

slow in returning a response. This results in duplicate request processing, an

undesirable problem in distributed applications, but is a considered a more serious

problem for inter-organizational communications where such processing may carry a

financial penalty for the client. Overcoming this problem requires agreement between

clients and servers on unique identification of requests to allow servers to identify

repeat requests. However, in relation to non-repudiation this scheme is not easy to

implement across organizational boundaries due to the level of trust and the limited

degree of information sharing organizations will tolerate.

MOM may employ additional mechanisms to provide reliability guarantees for

message exchange. Atomic transactions coupled with persistent messaging provide

fault-tolerance in that the failure of the MOM system or any of the participants in

message exchange will not necessarily result in the loss of messages. Atomic

transactions are used to ensure the underlying persistent store remains consistent and

as long as such a store remains correct and reachable then messages will not be lost.

Atomic transactions have an all or nothing property in that an attempted amendment

to data is either successfully carried out or not carried out at all. Persistence of

messages coupled with atomic transactions is desirable in non-repudiation techniques

as failure should not render the system incapable of satisfying the requirements of

non-repudiation.

3. Implementation

A Java implementation of our system is achieved via Reliable Routing Nodes (RRNs)

and the Java Messaging Service (JMS) [1]. The messaging transport used by JMS is

HTTP. An RRN receives client requests and server replies and is responsible for

attempting to deliver requests/replies to the appropriate servers/clients. Client requests

are uniquely identified within the system to enable the tracking of requests and their

associated replies. The JMS provides reliable persistent message storage and

forwarding for use by an RRN. Client and server interaction is assumed to be modeled

in the Web Services domain with messages described via SOAP and services

described via WSDL. An RRN is responsible for maintaining a non-repudiation log

for recording requests and their associated responses. This log is persistent in nature

and is held in a MySQL database.

Our system may be structured as a single RRN or a network of RRNs. In the single

RRN approach all clients and servers are serviced by a centralized RRN that is

responsible for handling all messages and associated non-repudiation logs. This

approach is suited to systems that may exist within a single organizational domain

where administration of the RRN system is not shared. When message transmission

A MOM Solution for Non-Repudiation Evidence Generation in Web Services 5

spans organizational boundaries an approach that uses a network of RRNs is

advocated (figure 1). In this approach an RRN may be placed within each

organization with inter-organizational communications mirrored by inter-RRN

communications. Additional security measures are taken to attempt to ensure

messages are genuine and may be trusted. Administration of RRNs is assumed to be

shared amongst organizations (responsible for RRNs within their own domains).

C3

SOAP messages

RRN (B)

S2

RRN (A)

C1

C2

S1

S2 JMS messages

Organisation A Organisation B

Figure 1 – Network of RRNs facilitating inter-organizational interaction.

A non-repudiation log is amended whenever a message is received or sent by an

RRN. This log forms the non-repudiation evidence that may be used in inter-

organization disputes regarding requests and replies. The use of reliable persistent

messaging between organizations together with security measures provides the basis

for enabling our approach to non-repudiation. We now describe each component in

more detail. For ease of explanation, we shall only consider a single RRN approach in

our descriptions unless otherwise stated.

3.1 Providing System Transparency for Clients

The client handler is co-located with a client and intercepts client requests before they

reach the underlying transport. This requires no changes to the client implementation

and the interception of messages is transparent to client operations via the use of

handlers as defined in the Axis toolkit [3]. Therefore, we assume the use of the Axis

toolkit in client side application development and deployment.

The Axis toolkit eases the development of Web Service based applications by

providing a framework for constructing distributed applications that use SOAP for

their message exchange (Axis toolkit is commonly described as a SOAP engine). The

Axis toolkit includes support for describing Web Services (Web Services Definition

Language (WSDL)) and allows a Web Service Deployment Descriptor (WSDD) to be

defined that describes the deployment scenario of one or more Web Services. For

example, a WSDD may describe the backend components that are used to implement

a Web Service. A WSDD may also describe a chain of handlers which SOAP

6 Simon Parkin, David Ingham, Graham Morgan

messages pass through during run-time. The ability of a handler to alter messages is

exploited by our system to provide RRN transparency to clients.

The client handler intercepts client requests and performs a series of alterations on

the message before allowing the message to continue in transit. A new SOAP entry

header is created that records the original target endpoint of the request (the Web

Service provided by a server). The original target endpoint of the request is replaced

by the endpoint that identifies an RRN. This substitution enables the redirection of the

request towards the RRN responsible for handling this client’s requests. The type of

response expected by a client is checked via the identification of return parameters in

a message. From such parameters it is possible to determine if a client knows in

advance the expected response. This information is inserted into a new header entry

and is later used to determine the appropriate tracking of the message.

3.2 Managing Requests and Replies

The routing provider (RProvider) is a Web Service that accepts the re-directed

requests issued by the client handler. Requests are formatted to an appropriate

message structure for handling by the JMS. Client requests are placed in the request

queue ready to be consumed and processed by the routing server (RServer). In

addition to accepting requests directly from the client handler the RProvider is

responsible for returning replies to clients. Replies are gained from the response

queue (JMS). Therefore, the routing listener (RListener) must derive the

appropriately formatted SOAP message from the messages consumed from the

response queue before returning a reply to a client. Figure 2 shows the flow of

messages throughout the components of an RRN.

RProvider RServer

Request Queue

Response Queue

JMS

Request

Reply

Request

Reply

RListener

RNN

Figure 2 – Components of an RRN.

The RServer consumes messages from the request queue and examines the content of

each message to determine the appropriate handling of a message. There are two

possible actions the RServer may take based on message contents: (i) attempt to issue

A MOM Solution for Non-Repudiation Evidence Generation in Web Services 7

request to Web Service endpoint as described in a header entry of the message or; (ii)

attempt to forward message to another request queue located in another RRN. In (i)

the appropriate SOAP message is created from the contents of the JMS message and

issued to a Web Service. Replies generated from a request are then formatted to an

appropriate message structure for handling by JMS and placed in the response queue.

In (ii) the target endpoint described in a message is looked up in a locally held routing

table that identifies the RRN the message should be forwarded to. The routing table is

XML based and is held locally on the same machine as an RRN. The successful

identification of a target RRN results in the RServer (of the originating RRN)

attempting to place the message in the target RRN’s request queue. The originator

node ID (unique across RRNs) is attached to the JMS message as a message property

to enable the identification of the originator RRN by the target RRN (required to

ensure a reply may be returned to the originator RRN). Ensuring replies are returned

to originating RRNs is the responsibility of the target RRN’s RListener. The

RListener consumes messages from the response queue that have originator node ID

fields set and places such messages on the appropriate originator RRN’s response

queue (as dictated by the node ID field of the message).

3.3 Undeliverable Messages

Messages that the RServer is unable to deliver to a Web Service (target endpoint) or

another RRN’s request queue are placed on a retry queue (JMS). In the case of an

RServer attempting to deliver a message to a Web Service endpoint, messages are

identified as undeliverable if exceptions are raised indicating the Web Service is

unreachable (either network problems or unavailability of service) or the request

timed out. The aborting of the transaction (see 3.4 for more details) within which an

RServer was attempting to move a message between request queues indicates an

undeliverable message. Periodically messages are moved from the retry queue to the

request queue to allow the RServer to attempt message delivery again. The number of

retries associated with messages and the frequency with which messages are

transferred from the retry queue to the request queue may be set by an administrator

of the system. Messages are permanently moved to the failed message queue after the

RServer’s repeated attempts to deliver the message ended in failure (number of

attempts indicated by administrator). When messages are placed on the failed queue

information related to why the message failed is appended to the message (e.g.,

transport exception). The use of retry queues and failed queues by the RServer is

mirrored by the response listener in the process of propagating replies back to an

originating RRN.

8 Simon Parkin, David Ingham, Graham Morgan

RServer

Request Queue

Response Queue

JMS

Request

Retry Queue

Failed Queue

Undeliverable

after retry limit

associated with

message reached.

Undeliverable

but delivery will

be attempted

again.

Figure 3 – Handling undeliverable messages.

Clients may timeout a request and may not be prepared for a reply when one is

available. Furthermore, a client may reissue a request causing duplicate requests to be

present in the system. In an attempt to prevent such a scenario the local RRN

associates a timeout for each request received. If this timeout expires before a reply is

received (consumed by RProvider from response queue) a reply is constructed that is

in the form of a custom SOAP fault that contains the unique identifier of the related

request. This reply is returned to the client. By using this unique identifier in

subsequent retries of a request it is possible for clients to retrieve a reply from a

request that was previously timed out. This approach does not accommodate client

timeouts that expire before an RRN can raise a SOAP fault. However, with clients

and an RRN within the same organizational domains we assume it should be possible

to tailor the timeout in such a way that clients do not timeout their requests before a

SOAP fault may be raised.

3.4 Reliability and Security

Reliable messaging is possible as the JMS specification identifies the ability to ensure

guaranteed message delivery even if partial system failure occurs. As described in 3.2,

persistent store and delayed message forwarding allow the delivery of messages to

endpoints that may suffer transient unavailability (i.e., not able to consume messages

as and when messages become deliverable). Furthermore, the persistent nature of the

queues ensures that failure of the JMS messaging middleware itself will not lead to

the loss of messages (assuming persistent store remains correct and reachable). Our

implementation uses the Arjuna Message Service (ArjunaMS) [2], an implementation

of the JMS 1.1 specification [1].

Atomic transactions are used whenever message queues are accessed by an RRN.

This guarantees that messages are not lost due to RRN failure. If transactions are not

available, messages may be lost if an RRN fails after it has consumed a message from

one queue before it has placed the same message in another queue.

A MOM Solution for Non-Repudiation Evidence Generation in Web Services 9

Client

RRNA RRNB

Request Queue

Response Queue

Request Queue

Response Queue

Response

listener
Response

listener

Target

T1 T2
T3

T4 T5

Figure 4 – Transactions satisfying client request.

We use the diagram in figure 4 to describe the different transactions involved in

satisfying a client request. To improve the clarity of the diagram we have not shown

all the components of our system nor have we shown the queues associated with

undeliverable messages. When the client issues a request the client handler forwards

the client request, say M1, to the local RRN (RRNA). RRNA starts a transaction T1

that is successfully completed when M1 has been placed in the request queue by the

RProvider. The process of moving M1 to the initial target destination (RRNB) is

achieved by the RServer and is contained within T2. The RServer takes M1 from the

request queue of RRNB and issues a request to the target Web Service and waits for a

reply. Once a reply, say M2, is received it is placed in the response queue. However, if

M1 is undeliverable then M1 is placed in the retry queue. This process is performed

within T3. The response listener takes M2 from the response queue and places M2 in

the response queue of RRNA within T4. The RListener starts T5 and takes M2 from

the response queue and returns the reply to the client.

In our system we assume that clients and Web Services are non-transactional

objects. Therefore, we may assume that the failure of a client or Web Service may

result in system inconsistencies. For example, if during T3 a message is successfully

delivered to the target Web Service but timeout occurs before a reply is received then

M1 will be placed on the retry queue. However, the target Web Service may be

processing M1 (as it was successfully delivered but the target Web Service was slow

returning a reply). RRNB may reissue M1 to the target Web Service resulting in an

undesirable repeated processing of M1. If the target Web Service participated as a

transactional object within T3 then a timeout (as described previously) may result in

an aborted transaction (T3) causing the rollback of the target Web Service state

(removing any state changes the delivery of M1 may have caused) allowing M1 to be

reissued later. This approach may be supported by implementations of WS-Atomic

Transaction [4] and WS-Coordination [5] specifications.

As communications may span organizational boundaries we provide security

features to ensure that messages sent between RRNs are genuine. A signed digest of

the message that is to be sent between RRNs is created and included in the message as

a JMS message property. The public key associated to the private key that is used to

sign the digest is distributed to all other RRNs. This enables an RRN to verify the

identity of the sender of a message: if signing a digest of the message contents with

the public key identifies the same set of keys as signing the message with the private

key, then the sender is genuine. This precaution provides security in the sense that the

identity of a message sender as that of a known RRN. There is a measure of non-

10 Simon Parkin, David Ingham, Graham Morgan

repudiation incorporated into such a communication as when an RRN signs a message

and it is verified, the administrator of the signing RRN cannot later deny having ever

sent the message.

4. Related Work

The work presented in this paper is an engineered solution to non-repudiation and

reliability that may be adapted to fit associated Web Service standards. In this section

we concentrate on how our system relates to such standards.

A specification exists that enables Web Services to participate in atomic

transactions (WS-Atomic Transaction) [4]. As previously mentioned in 3.4,

employing atomic transactions for client/server interactions with an RRN would make

our system more robust. Furthermore, it may be possible to enhance our system with

WS-Atomic Transactions to enable inter-RRN communications. However, allowing

clients and servers to interact directly using WS-Atomic Transactions would have the

drawback of presenting a tightly coupled environment where transient unavailability

of transaction participants would result in the aborting of transactions (a scenario our

system attempts to overcome). Furthermore, transactions are a heavyweight process

(requiring all participants to carry out two phase commit protocol) and it is unlikely

that every RPC would need to be carried out as an atomic transaction. The use of

transactions would also inhibit the ability of a client to be released from RPC

interaction to continue processing and return at a later time to receive a reply (see

3.3). To implement such a scenario will require more long lived transactions that

employ compensation techniques [9], but this approach in itself does not satisfy non-

repudiation requirements.

The nature of the implementation of a WS-Transaction service has to be considered

in relation to our non-repudiation approach. The coordinator is responsible for

determining the outcome of a transaction and is provided by the WS-Coordination

service [5]. This makes the coordinator role crucial to the outcome of transactions

with the need to ensure all transaction participants trust the coordinator. However, the

coordinator must take part in our message logging scheme for non-repudiation to

provide similar functionality to our system.

Confluent Software developed its own CORE Web Services Monitoring and

Management Platform [8] (which now forms part of Oracle's Identity and SOA

Management solutions framework [18]). The purpose of the platform is to allow an

organization to implement Service-Oriented Architectures while offering full control

over how a service is deployed and executed. Policies that govern how such a service

operates may also be described and include Quality of Service, security and message

logging. The focus of the CORE platform is on security and logging, although it does

provide support for RPC. Our approach is different as we apply a MOM oriented

solution.

Work carried out by Maheshwari et al [17] and Tai et al [16] specifically describes

a system which enhances Web Service reliability. These works are interesting as

MOM is highlighted as a suitable mechanism for implementing underlying reliability

for Web Services. Similar observations to our own are made in these papers: loosely

A MOM Solution for Non-Repudiation Evidence Generation in Web Services 11

coupled MOM architecture is an ideal candidate for underlying messaging

infrastructure implementation for Web Services. However, these works do not address

the non-repudiation element which we ourselves see as an integral part in any inter-

organizational function. However, the reliability element is extensively researched in

these papers, with QoS parameters described and testing provided.

5. Conclusions and Future Work

We have developed a system that provides reliable messaging across organizational

boundaries while implementing suitable mechanisms for non-repudiation for clients

and servers that use SOAP RPC to interact and WSDL to describe services. We have

tackled the problem by using a novel approach of employing MOM technologies to

achieve inter-organizational communications. By using MOM, the loosely coupled

association between sender and receiver has been exploited to prevent limited

transient client/server unavailability from hindering successful completion of an RPC.

Furthermore, the persistent messaging and transactional services available to MOM

technologies ensure that partial failure of our system does not necessarily result in

loss of messages.

Our system is built in a modular fashion. We are in the process of tailoring our

services so that they adhere more closely to Web Service standards that dictate how

non-repudiation and reliability may be utilized.

References

[1] Sun Microsystems, “Java Message Service. Version 1.1, April 12, 2002”,

http://java.sun.com/products/jms/docs.html as viewed January 2004

[2] D. Ingham, Arjuna Technologies Limited, “ArjunaMS Documentation”,

http://www.arjuna.com/products/arjunams/index.html as viewed January 2004

[3] Apache Web Services Project, “The Axis Toolkit, version 1.1”, http://ws.apache.org/axis/ as

viewed January 2004

[4] Arjuna Technologies, Ltd., BEA Systems, Hitachi, Ltd., International

Business Machines Corporation, IONA Technologies, Microsoft Corporation, Inc., “Web

Services Atomic Transaction (WS-Atomic Transaction)”,

http://www-128.ibm.com/developerworks/library/specification/ws-tx/, as viewed December

2006

[5] Arjuna Technologies, Ltd., BEA Systems, Hitachi, Ltd., International

Business Machines Corporation, IONA Technologies, Microsoft Corporation, “Web Services

Coordination (WS-Coordination) Specification”, http://www-

128.ibm.com/developerworks/library/specification/ws-tx/, as viewed December 2006

[6] OMG, “Notification Service Specification”, OMG TC Document telecom/99/07/01, 2000.

[7] The World Wide Web Consortium (W3C), “Simple Object Access Protocol (SOAP)

(version 1.1)”, W3C Note 08, May 2000

[8] Confluent Software Inc., “Confluent Software Inc Solutions”,

http://www.confluentsoftware.com/solutions, as viewed September 2003.

[9] K. Gottschalt et al., “Introduction to Web Services Architecture”, IBM Systems Journal,

Vol 42, No 2, 2002

12 Simon Parkin, David Ingham, Graham Morgan

[10] Object Management Group, “The Common Object Request Broker: Architecture and

Specification, 2.3 edition”, OMG Technical Committee Document formal/98-12-01, June

1999

[11] A. Gokhale et al., “Reinventing the Wheel? CORBA vs. Web Services”, WWW2002, The

Eleventh International World Wide Web Conference, Honolulu, Hawaii, USA, 7 – 11 May

2002

[12] The World Wide Web Consortium (W3C), “Web Services Description Language (WSDL)

(version 1.1)”, W3C Note 15, March 2001

[13] The World Wide Web Consortium (W3C), “Extensible Markup Language (XML) 1.0

(second edition), W3C Recommendation 6 October 2000

[14] Akamai Technologies, Computer Associates International, Inc., Fujitsu

Limited, Hewlett-Packard Development Company, International Business Machines

Corporation, SAP AG, Sonic Software Corporation, The University of Chicago and

Tibco Software Inc., “Web Service Notification (WS Notification) and associated

specifications”, http://www-128.ibm.com/developerworks/library/specification/ws-

notification, as viewed December 2006.

[15] BEA Systems, IBM, Microsoft Corporation, Inc, and TIBCO Software Inc., “Web

Services Reliable Messaging Protocol (WS-ReliableMessaging)”, http://www-

128.ibm.com/developerworks/library/specification/ws-rm/, as viewed December 2006

[16] S. Tai, A. Mikalsen, I. Rouvellou, “Using Message Oriented Middleware for Repiable

Web Services”, Web Services, E-Business, and the Semantic Web, Springer Berlin /

Heidelberg LNCS, Volume 3095/2004, pp 89-104, July 2004

[17] P. Maheshwari, H. Tang, R. Liang, “Enhancing Web Services with Message-Oriented

Middleware”, Proc. IEEE International Conference on Web Services (ICWS’04), 2004

[18] Oracle Corporation, “Oracle Fusion Middleware”,

http://www.oracle.com/products/middleware/index.html, as viewed December 2006

