

Transaction Manager Failover: A Case Study Using

JBOSS Application Server

A. I. Kistijantoro, G. Morgan, S. K. Shrivastava

School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
{A.I.Kistijantoro, Graham.Morgan, S.K.Shrivastava}@ncl.ac.uk

Abstract. This paper describes, for the case of Enterprise Java Bean
components and JBoss application server, how replication for availability can
be supported to tolerate application server/transaction manager failures.
Replicating the state associated with the progression of a transaction (i.e.,
which phase of two-phase commit is enacted and the transactional resources
involved) provides an opportunity to continue a transaction using a backup
transaction manager if the transaction manager of the primary fails. Existing
application servers do not support this functionality. The paper discusses the
technical issues involved and shows how a solution can be engineered.

Keywords: Availability, application servers, components, Enterprise Java
Beans, fault tolerance, middleware, replication, transactions

1. Introduction

Three-tier middleware architecture is commonly used for hosting large-scale
distributed applications. Typically the application is decomposed into three layers:
front-end, middle tier and back-end. Front-end (‘Web server’) is responsible for
handling user interactions and acts as a client of the middle tier, while back-end
provides storage facilities for applications. Middle tier (‘Application Server’) is
usually the place where all computations are performed, so this layer provides
middleware services for transactions, security and so forth. The benefit of this
architecture is that it allows flexible configuration such as partitioning and clustering
for improved performance and scalability. Furthermore, availability measures, such as
replication, can be introduced in each tier in an application specific manner. In this
paper we concentrate on application server (middle tier) replication. Data as well as
object replication techniques have been studied extensively in the literature, so our
task is not to invent new replication techniques, but to investigate how existing
techniques can be migrated to middle tier.

One important concept related to availability measures is that of exactly once
transaction or exactly once execution [1,2]. The concept is particularly relevant in
web-based e-services where the system must guarantee exactly once execution of user
requests despite system failures. Problems arise as the clients in such systems are

usually not transactional, thus they are not part of the recovery guarantee provided by
the underlying transaction processing systems that support the web-based e-services.
When failures occur, clients often do not know whether their requests have been
processed or not. Resubmitting the requests may result in duplication, and on the other
hand it is also possible the requests have not been processed at all. This problem can
be handled by replicating the application server to achieve availability. As we discuss
in the next section, while existing application servers for Enterprise Java Bean (EJB)
components do use replication, they do not adequately support exactly once
transaction capability. For this reason, there has been much recent research works on
replication for supporting exactly once transactions over commonly used application
servers. However, implementation work reported so far has dealt with transactions that
update a single database only, so do not require two-phase commit.

In this paper we go a step further and present design, implementation and
performance evaluation of a middle tier replication scheme for multi-database
transactions using a widely deployed application server (JBoss). We describe how a
backup transaction manager can complete two-phase commit for transactions that
would otherwise be blocked. The paper discusses the technical issues involved and
shows how a solution can be engineered. Our case study can be used by other
designers intending to enhance application servers in a similar manner.

2. Related Work

The classic text [3] discusses replicated data management techniques that go hand in
hand with transactions. Object replication using group communication, originally
developed in the ISIS system [4], has been studied extensively [e.g., 5]. The interplay
between replication and exactly once execution within the context of multi-tier
architectures is examined in [6], whilst [7] describes how replication and transactions
can be incorporated in three-tier CORBA architecture. The approach of using a
backup transaction monitor was implemented as early as 1980 in the SDD-1
distributed database system [8]; another implementation is reported in [9]. A
replicated transaction coordinator to provide non-blocking commit service has also
been described in [10]. Our paper deals with the case of replicating transaction
managers in the context of standards compliant Java application servers (J2EE
servers).

There are several studies that deal with replication of application servers as a
mechanism to improve availability [1,2,11,12]. In [2], the authors precisely describe
the concept of exactly once transaction (e-transaction) and develop server replication
mechanisms; their model assumes stateless application servers (no session state is
maintained by servers) that can access multiple databases. Their algorithm handles the
transaction commitment blocking problem by making the backup server take on the
role of transaction coordinator. As their model limits the application servers to be
stateless, the solution cannot be directly implemented on stateful server architectures
such as J2EE servers.

The approach by Wu, Kemme et al in [12] specifically addressed the replication of
J2EE application servers, where components may possess session state in addition to
persistent state stored on a single database. The approach assumes that an active

transaction is always aborted by the database whenever an application server crashes.
Therefore, it uses a mechanism similar to testable transaction abstraction developed in
[1], and on failover, the backup server uses this mechanism to find out the outcomes
of transactions performed on the crashed primary. Our approach assumes the more
general case of access to multiple databases; hence two phase commitment (2PC) is
necessary. Application server failures that occur during the 2PC process do not always
cause abortion of active transactions, since the backup transaction manager can
complete the commit process.

JBoss clustering [13] uses session replication to enable failover of a component
processing on one node to another. The approach targets load balancing among
replicas and it allows each replica handles different client sessions. The state of a
session is propagated to backup after the computation finish. When a server crashes,
all sessions that it hosts can be migrated and continued on another server, regardless
the outcome of formerly active transactions on the crashed server, which may lead to
inconsistencies.

Exactly once transaction execution can also be implemented by making the client
transactional, and on web-based e-services, this can be done by making the browser as
a resource which can be controlled by the resource manager from the server side, as
shown in [14,15]. One can also employ transactional queue [16]. In this way, user
requests are kept in a queue that are protected by transactions, and clients submit
requests and retrieve results from the queue as separate transactions. As the result,
three transactions are required for processing each client requests and developers must
construct their application so that no state is kept in the application servers between
successive requests from clients. The approach presented in [17] guarantees exactly
once execution on internet-based e-services by employing message logging. The
authors describe which messages require logging, and how to do the recovery on the
application servers. The approach addresses stateful application servers with single
database processing without replicating the application servers. The table below
summarizes the differences between the various approaches; concentrating on exactly
once transactions as such approaches consider similar requirements to our work.

Aspects Transactional
queue

Trans. client Message
logging [17]

e-transaction Wu and
Kemme

Our approach

App. server
replication

No No No Yes Yes Yes

Transactional
client

Not required Required Not required Not required Not required Not required

Stateful server Supported Supported Supported Not supported Supported Supported

Platform TP monitors Web Web Custom J2EE J2EE

Multi database Supported Supported Not supported Supported Not supported Supported

Table: exactly once transaction solutions
For the sake of completeness, we point out here that replication approaches for the

third tier (back-end, database tier) that work with application servers have also been
investigated by many researchers (see [18,19]).

3. Background

We assume the reader is familiar with EJB component model and how transactions are
used through containers in J2EE servers (background details are available in the more
detailed version of this paper [20]). We only provide a brief description of how
services are integrated into JBoss via interceptors, management beans (MBeans) and
Java Management Extensions JMX and then describe how this approach is used to
implement transactions in JBoss middleware.

Tx intercep tor

intercep tor

intercep tor

container

Sess ion

Entity Y

Entity X

Application Server

Transaction

Manager

Client

invocation

Figure 1 – Augmenting application server with transactions.

In JBoss invocations pass through a series of interceptors within a container. These
interceptors enable the integration of additional services into a container to support
EJB execution (e.g., security, transactions), with the final interceptor in the incoming
chain of interceptors handling method invocation on the actual EJB itself. Services
may be added to JBoss via MBeans. An MBean exposes a management interface,
attributes and operations while adhering to the JMX specification and may be made
available for use via the standard object location services in JBoss (JNDI). JMX
provides an API for management and monitoring of resources, including remote
access, so a remote application can manage and monitor applications.

JBoss implements transactions with the aid of tx interceptors and the transaction
manager (figure 1). The tx interceptor inspects an incoming invocation with the aid of
the transaction manager and determines the appropriate settings for the transaction
context before the receiving bean processes the invocation. A transaction context is
used to identify a transaction and determines the transaction an invocation belongs to
(in particular, the thread of execution associated to an invocation), allowing
transactional mechanisms to be enacted in line with invocation processing on
transactional objects (e.g., mark for rollback, throw exception, commit).

4. Model

Our approach to component replication is based on a passive replication scheme, in
that a primary services all client requests with a backup assuming the responsibility of
servicing client requests when a primary fails. Crash failures of servers are assumed.
In a configuration of server machines where the failure of a server can be detected
with accuracy, a minimum of f+1 replicas are needed to tolerate up to f server failures;
such a scheme can be engineered for a well managed cluster of machines connected by
a high bandwidth LAN. Configurations where accurate failure detection is not possible

(e.g., the servers are widely distributed with arbitrary inter-communication delays), a
minimum of 2f+1 replicas are needed. Performance evaluation that we present in
section 6 are for a LAN configuration.

Recovery measures undertaken vary depending upon where the primary fails within
a client session: (1) during non-transactional invocation phase, (2) during transactional
phase. As entity beans access and change persistent state, the time taken to execute
application logic via entity beans is longer than enacting the same logic using session
beans. The reason for this is two fold: (1) the high cost of retrieving state on entity
bean activation and writing state on entity bean deactivation; (2) the transactional
management associated to persistent state updates. The structuring of an application to
minimize the use of entity beans (and transactions) to speed up execution times is
commonplace. This approach to development leads to scenarios in which a client
enacts a “session” (a series of related invocations) on an application server, with the
majority of invocations handled by session beans. Transactional manipulation of
persistent state via entity beans is usually left to the last steps of processing in a
client’s session. The sequence diagram in figure 2 describes the style of interaction
our model assumes. We are only showing application level logic invocations (as
encoded in EJBs) in our diagram, therefore, we do not show the transaction manager
and associated databases. The invocations that occur within a transaction are shown in
the shaded area. As mentioned earlier, we assume a client is not part of the
transaction.

Session Bean Client Entity Bean X Entity Bean Y

Begin Tr ansaction

End Transaction

Figure 2 – Interactions between beans and client.

We assume a single stateful session bean is used to present a single interface for a
client during a session. The creation and destruction of a stateful session bean by a
client delimits the start and end of a session (i.e., lifetime of stateful session bean). We
assume the existence of a single transaction during the handling of the last client
invocation and such a transaction is initiated by the stateful session bean and involves
one or more entity beans. The transaction is container managed and is scoped by this
last method invocation.

Failure of the primary during a session will result in a backup assuming
responsibility for continuing the session. This may require the replaying of the last
invocation sent by a client if state changes and return parameters associated to the last
invocation were not recorded at backups. If state changes and parameters were
recorded then the backup will reply with the appropriate parameters. During the
transactional phase the transaction may be completed at the backup if the commit
stage had been reached by the primary and computation has finished between the
entity beans. The backup will be required to replay the transaction if failure occurs
during transactional computation.

5. JBoss Implementation

Figure 3 shows the interceptors and associated services that implement our replication
scheme in the JBoss application server. The interceptors perform the following tasks:
retry interceptor – identifies if a client request is a duplicate and handles duplicates
appropriately; txinspector interceptor – determines how to handle invocations that are
associated to transactions; txinterceptor – interacts with transaction manager to enable
transactional invocations (unaltered existing interceptor shown for completeness);
replica interceptor – ensures state changes associated with a completed invocation are
propagated to backups.

container

Sess ion

Entity Y

Entity X

Application Server

Transaction

Manager

Client

invocation

Retry intercep tor

txinspector interceptor

tx intercep tor

 Replica intercep tor

Rep lication

Service

Figure 3 – Augmenting application server with replication service.

The txinterceptor together with the transaction manager accommodates transactions
within the application server. The replication service supports inter-replica
consistency and consensus services via the use of JGroups [21]. The replication
service, retry interceptor, txinspector interceptor and the replica interceptor,
implements our replication scheme.

Replication logic at the server side makes use of four persistent logs that are
maintained by the replication service: (i) current primary and backup configuration
(group log), (ii) most recent state of session bean together with the last parameters
sent back as a reply to a client invocation (bean log), (iii) invocation timestamp
associated to most recent session bean state (timestamp log), (iv) state related to the
progress of a transaction (transaction log). The replication service uses a single group
via the JGroups service to ensure these logs are consistent across replicas.

We skip over the details of how a client side proxy has been enhanced with retry
ability to backups as well as how session state checkpointing to backups is performed
using group communication, as these techniques are well known (details can be found
in [20]); instead we concentrate below on transaction failover management.

5.1. Transaction failover management

We assume container managed transaction demarcation. Via this approach to
managing transactions the application developer specifies the transaction demarcation
for each method via the transaction attribute in a bean deployment descriptor. Using
this attribute a container decides how a transaction is to be handled. For example, if a
new transaction has to be created for an invocation, or to process the invocation as
part of an existing transaction (i.e., the transaction was started earlier in the execution
chain). Based on this mechanism, a single invocation of a method can be: a single
transaction unit (a transaction starts at the beginning of the invocation and ends at the

end of the invocation), a part of a transaction unit originated from other invocation, or
non transactional (e.g. the container can suspend a transaction prior to executing a
method, and resume the transaction afterwards). We assume that the processing of an
invocation may involve one or more beans (both session beans and entity beans) and
may accesses one or more databases, requiring two phase commitment.

SFSB1

EB1

EB2

DB1

DB2

Transaction

Manager

1

2

3

4

5

6

7

8

Client

SFSB1

EB1

EB2

Transaction
Manager

Replication

Service

Replication
Service

7b

8a 8b

7a

Container

Primary application server

Backup application server

Container

Figure 4 - A typical interaction for a transaction processing in EJB

Figure 4 illustrates the execution of a typical transaction (for brevity, we have not
shown resource adaptors). We shall use this example as a comparison to highlight the
enhancements we have provided to handle transaction failover (this example is
represents the shaded area shown in figure 4). SFSB stands for a stateful session bean
and EB stands for an entity bean. All methods on the beans have a Required tag as
their transaction attribute, indicating to the container that they must be executed within
a transaction. The invocation from the client initially does not contain a transaction
context. At (1), a client invokes a method on a stateful session bean SFSB1. The
container (e.g. the tx interceptor on JBoss app server) determines that the invocation
requires a transaction and calls the transaction manager to create a transaction T1 for
this invocation (2). The container proceeds to attach a transaction context for T1 to
the invocation. The container does not have to create a new transaction for nested
invocations (3) and (5). The invocation on EB1 requires access to a database DB1 (4)
and at this point, the container registers DB1 to the transaction manager as a resource
associated with T1. The same process happens at (6) where the container registers
DB2 to be associated with T1. After the computation on SFSB1, EB1 and EB2
finishes, before returning the result to the client, the container completes the
transaction by instructing the transaction manager to commit T1. The transaction
manager then performs two phase commit with all resources associated with T1 (8)
(not shown in detail here).

Our transaction failover mechanisms are performed at point (7) and (8). A multicast
of the state update of all involved session beans together with the result parameter, the
transaction id and information on all resources involved is made (7a) and (7b) to all
backup replicas. If the primary fails after this point, a backup will try to finish the
commit process. At point (8), a multicast of the decision taken by the transaction
manager is made to all backup replica transaction managers via the replication service
(8a) and (8b). If the primary fails after this point, a backup will try to finish the
commit process according to the decision that has been taken by the failed primary.

A number of technical challenges needed to be overcome to provide an engineered
solution. However, for brevity we do not go into such details here; the interested
reader is referred to [20].

6. Experimental Evaluation

We carried out our experiments on the following configurations: (1) Single
application server with no replication; (2) Two application server replicas with
transaction failover. Both configurations use two databases, as we want to conduct
experiments for distributed transaction setting.

The application server used was JBoss 3.2.5. The database used was Oracle 9i
release 2 (9.2.0.1.0) [20]. All clients, application servers and database servers were
deployed using machines of a similar configuration (Pentium IV 2.8 GHz PC with
2048MB of RAM running Fedora Core 4). The LAN used for the experiments was a
100 Mbit Ethernet. ECperf [22] was used as the demonstration application in our
experiments. ECperf is a benchmark application provided by Sun to enable vendors to
measure the performance of their J2EE products. For our experiments, we configured
the ECperf application to use two databases instead of just a single database (as is the
default configuration).

Two experiments are performed. First, we measure the overhead of our replication
scheme introduces into application performance. The ECperf driver was configured to
run each experiment with 10 different injection rates (1 though 10 inclusive). At each
of these increments a record of the overall throughput (transactions per minute) for
both order entry and manufacturing applications is taken. The injection rate relates to
the order entry and manufacturer requests generated per second. Due to the
complexity of the system the relationship between injection rate and resulted
transactions is not straightforward. The second experiment measures how our
replicated algorithm performs in the presence of failures. In this experiment we ran the
ECperf benchmark for 20 minutes, and the throughput of the system every 30 seconds
is recorded. After the first 12 minutes, we kill the primary server to force the system to
failover to the backup server.

Figure 5 presents two graphs that describe the throughput and response time of the
ECperf applications; figure 5(i) identifies the throughput for the entry order system,
figure 5(ii) identifies the response time for the entry order system. On first inspection
we see that our replication scheme lowers the overall throughput of the system. This is
to be expected as additional processing resources are required to maintain state
consistency across components on a backup server.

Order transaction throughput

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Injection rate

th
ro
u
g
h
p
u
t
(t
x
/m

in
)

st andard

replicat ed server

Order transaction response time

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

Injection rate

R
e
s
p
o
n
s
e
 t
im

e

(s
e
c
)

standard

replicated server

(i) throughput for entry order app. (ii) response time for entry order app.

Figure 5 – Performance figures.

Figure 6 presents a graph that describes the throughput of our system and the
standard implementation over the time of the benchmark. After 720 seconds running
(12 minutes), we crash the primary server. When no replication is present the failure
of the application server results in throughput decreasing to zero, as there is no backup
to continue the computation. When replication is present performance drops when
failure of the primary is initiated. However, the backup assumes the role of the
primary allowing for throughput to rise again. An interesting observation is that
throughput on the new primary is higher than it was on the old primary. This may be
explained by the fact that only one server exists and no replication is taking place. The
initial peak in throughput may also be explained by the completion of transactions that
started on the old primary but finish on the new primary. This adds an additional load
above and beyond the regular load generated by injection rates.

Failover throughput

0

50

100

150

200

250

0

6
0

1
2
0

1
8
0

2
4
0

3
0
0

3
6
0

4
2
0

4
8
0

5
4
0

6
0
0

6
6
0

7
2
0

7
8
0

8
4
0

9
0
0

9
6
0

1
0
2
0

1
0
8
0

1
1
4
0

Time (sec)

T
h
ro
u
g
h
p
u
t
(n
u
m
b
e
r
o
f
tx

p
e
r
3
0
 s
e
c
)

standard

replicated server

Figure 6 – Performance figures under a failure.

The experiments show that our replication scheme does not incur high overhead
compared to a non replicated system, and is able to perform quick failover when the
primary crashes.

7. Concluding Remarks

We have presented a practical solution to the problem of incorporating availability
through replication in application servers, specifically for the general case of multi-
database transactions. Although our design and implementation have been for a
specific component model (EJBs) and application server (JBoss), the ideas can be
applied to other application servers. Thus our case study can be used by other
designers intending to enhance application servers in a similar manner.

Acknowledgements

This work is funded by UK Engineering and Physical Sciences Research Council -Grant No.
GR/S63199/01, “Trusted Coordination in Dynamic Virtual Organisations”, and Platform Grant
No. EP/D037743/1, “Networked Computing in Inter-organisation Settings”; Kistijantoro's
work is funded by QUE Project Batch III, Institute Teknologi Bandung, Indonesia.

References

1. S. Frolund and R. Guerraoui, “A pragmatic implementation of e-transactions”, 19th IEEE
Symposium on Reliable Distributed Systems, SRDS 2000.
2. S. Frolund and R. Guerraoui, “e-transactions: End-to-end reliability for three-tier
architectures”, IEEE Transactions on Software Engineering 28(4): 378-395, 2002.
3. P.A. Bernstein et al, "Concurrency Control and Recovery in Database Systems", Addison-
Wesley, 1987.
4. K. Birman , "The process group approach to reliable computing", CACM , 36, 12, pp. 37-53,
December 1993.
5. P. Felber, R. Guerraoui, and A. Schiper, “The implementation of a CORBA object group
service”, Theory and Practice of Object Systems, 4(2), 1998, pp. 93-105.
6. B. Kemme, R. Jimenez-Peris et al, “Exactly once Interaction in a Multi-tier Architecture”,
VLDB Conf. Trondheim, Norway. Aug. 2005.
7. W. Zhao, et al., ”Unification of Transactions and Replication in Three-tier Architectures
Based on CORBA”, IEEE transactions on Dependable and Secure Computing, Vol. 2, No. 1,
20- 33, 2005.
8. M. Hammer and D. Shipman, "Reliability mechanisms for SDD-1: A system for distributed
databases" ACM Transactions on Database Systems 5(4): 431--466, 1980.
9. P.K. Reddy and M. Kitsuregawa, “Reducing the blocking in two-phase commit protocol
employing backup sites”, Cooperative Information Systems (CoopIS'98), August 1998.
10. Jiménez-Peris, R., M. Patiño-Martínez, et al, “A Low-Latency Non-blocking Commit
Service”, 15th International Conference on Distributed Computing (DISC), October 2001.
11. Ozalp Babaoglu et al, “A Framework for Prototyping J2EE Replication Algorithms”, Int.
Symposium on Distributed Objects and Applications (DOA), Agia Napa, October 2004.
12. H. Wu, B. Kemme, V. Maverick, “Eager Replication for Stateful J2EE Servers”, Int.
Symposium on Distributed Objects and Applications (DOA), Cyprus, October 2004.
13. S. Labourey and B. Burke, “ JBoss Clustering 2nd Edition”, 2002, www.jboss.org
14. M.C. Little and S K Shrivastava, “Integrating the Object Transaction Service with the
Web”, Enterprise Distributed Object Computing Workshop (EDOC’98), pp. 194 – 205,
November 1998.
15. M.C. Little and S K Shrivastava, “Java Transactions for the Internet”, Distributed Systems
Engineering, 5 (4), December 1998, pp. 156-167.
16. P.A. Bernstein, M. Hsu, et al., “Implementing recoverable requests using queues”, ACM
SIGMOD international conference on Management of data, 1990, Atlantic City, New Jersey.
17. R. Barga, D. Lomet, et al. ,"Recovery guarantees for Internet applications", ACM Trans. on
Internet Tech. 4(3): 289-328, 2004.
18. A. I. Kistijantoro, et. al, “Component Replication in Distributed Systems: a Case study
using Enterprise Java Beans”, 22nd IEEE Symposium on Reliable Distributed Systems, SRDS
2003
19. M. Patiño-Martínez, et. al, “Consistent Database Replication at the Middleware Level”,
ACM Transactions on Computer Systems (TOCS). Volume 23, No. 4, 2005, pp 1-49.
20. A. I. Kistijantoro, et. al., “Transaction Manager Failover: A Case Study Using JBOSS
Application Server”, Technical Report, School of Computing, Newcastle University, 2006.
21. B. Ban, “JavaGroups User’s Guide” http://www.javagroups.com
22. S. Subramanyam, “JSR 4: ECperf Benchmark Specification Java Community Process”
http://www.jcp.org/en/jsr/detail?id=4

