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Abstract. This paper describes, for the case of Enterprise Java Bean 
components and JBoss application server, how replication for availability can 
be supported to tolerate application server/transaction manager failures. 
Replicating the state associated with the progression of a transaction (i.e., 
which phase of two-phase commit is enacted and the transactional resources 
involved) provides an opportunity to continue a transaction using a backup 
transaction manager if the transaction manager of the primary fails. Existing 
application servers do not support this functionality. The paper discusses the 
technical issues involved and shows how a solution can be engineered. 
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1. Introduction 

Three-tier middleware architecture is commonly used for hosting large-scale 
distributed applications. Typically the application is decomposed into three layers: 
front-end, middle tier and back-end. Front-end (‘Web server’) is responsible for 
handling user interactions and acts as a client of the middle tier, while back-end 
provides storage facilities for applications. Middle tier (‘Application Server’) is 
usually the place where all computations are performed, so this layer provides 
middleware services for transactions, security and so forth. The benefit of this 
architecture is that it allows flexible configuration such as partitioning and clustering 
for improved performance and scalability. Furthermore, availability measures, such as 
replication, can be introduced in each tier in an application specific manner. In this 
paper we concentrate on application server (middle tier) replication. Data as well as 
object replication techniques have been studied extensively in the literature, so our 
task is not to invent new replication techniques, but to investigate how existing 
techniques can be migrated to middle tier. 

One important concept related to availability measures is that of exactly once 
transaction or exactly once execution [1,2]. The concept is particularly relevant in 
web-based e-services where the system must guarantee exactly once execution of user 
requests despite system failures. Problems arise as the clients in such systems are 



 

 

usually not transactional, thus they are not part of the recovery guarantee provided by 
the underlying transaction processing systems that support the web-based e-services. 
When failures occur, clients often do not know whether their requests have been 
processed or not. Resubmitting the requests may result in duplication, and on the other 
hand it is also possible the requests have not been processed at all. This problem can 
be handled by replicating the application server to achieve availability. As we discuss 
in the next section, while existing application servers for Enterprise Java Bean (EJB) 
components do use replication, they do not adequately support exactly once 
transaction capability. For this reason, there has been much recent research works on 
replication for supporting exactly once transactions over commonly used application 
servers. However, implementation work reported so far has dealt with transactions that 
update a single database only, so do not require two-phase commit.  

In this paper we go a step further and present design, implementation and 
performance evaluation of a middle tier replication scheme for multi-database 
transactions using a widely deployed application server (JBoss). We describe how a 
backup transaction manager can complete two-phase commit for transactions that 
would otherwise be blocked. The paper discusses the technical issues involved and 
shows how a solution can be engineered. Our case study can be used by other 
designers intending to enhance application servers in a similar manner. 

2. Related Work 

The classic text [3] discusses replicated data management techniques that go hand in 
hand with transactions. Object replication using group communication, originally 
developed in the ISIS system [4], has been studied extensively [e.g., 5]. The interplay 
between replication and exactly once execution within the context of multi-tier 
architectures is examined in [6], whilst [7] describes how replication and transactions 
can be incorporated in three-tier CORBA architecture. The approach of using a 
backup transaction monitor was implemented as early as 1980 in the SDD-1 
distributed database system [8]; another implementation is reported in [9]. A 
replicated transaction coordinator to provide non-blocking commit service has also 
been described in [10]. Our paper deals with the case of replicating transaction 
managers in the context of standards compliant Java application servers (J2EE 
servers).  

There are several studies that deal with replication of application servers as a 
mechanism to improve availability [1,2,11,12]. In [2], the authors precisely describe 
the concept of exactly once transaction (e-transaction) and develop server replication 
mechanisms; their model assumes stateless application servers (no session state is 
maintained by servers) that can access multiple databases. Their algorithm handles the 
transaction commitment blocking problem by making the backup server take on the 
role of transaction coordinator. As their model limits the application servers to be 
stateless, the solution cannot be directly implemented on stateful server architectures 
such as J2EE servers. 

The approach by Wu, Kemme et al in [12] specifically addressed the replication of 
J2EE application servers, where components may possess session state in addition to 
persistent state stored on a single database. The approach assumes that an active 



  

 

transaction is always aborted by the database whenever an application server crashes. 
Therefore, it uses a mechanism similar to testable transaction abstraction developed in 
[1], and on failover, the backup server uses this mechanism to find out the outcomes 
of transactions performed on the crashed primary. Our approach assumes the more 
general case of access to multiple databases; hence two phase commitment (2PC) is 
necessary. Application server failures that occur during the 2PC process do not always 
cause abortion of active transactions, since the backup transaction manager can 
complete the commit process.  

JBoss clustering [13] uses session replication to enable failover of a component 
processing on one node to another. The approach targets load balancing among 
replicas and it allows each replica handles different client sessions. The state of a 
session is propagated to backup after the computation finish. When a server crashes, 
all sessions that it hosts can be migrated and continued on another server, regardless 
the outcome of formerly active transactions on the crashed server, which may lead to 
inconsistencies. 

Exactly once transaction execution can also be implemented by making the client 
transactional, and on web-based e-services, this can be done by making the browser as 
a resource which can be controlled by the resource manager from the server side, as 
shown in [14,15]. One can also employ transactional queue [16]. In this way, user 
requests are kept in a queue that are protected by transactions, and clients submit 
requests and retrieve results from the queue as separate transactions. As the result, 
three transactions are required for processing each client requests and developers must 
construct their application so that no state is kept in the application servers between 
successive requests from clients. The approach presented in [17] guarantees exactly 
once execution on internet-based e-services by employing message logging. The 
authors describe which messages require logging, and how to do the recovery on the 
application servers. The approach addresses stateful application servers with single 
database processing without replicating the application servers. The table below 
summarizes the differences between the various approaches; concentrating on exactly 
once transactions as such approaches consider similar requirements  to our work. 

Aspects Transactional 
queue 

Trans. client Message 
logging [17]  

e-transaction Wu and 
Kemme 

Our approach 

App. server 
replication 

No No No Yes Yes Yes 

Transactional 
client  

Not required Required Not required Not required Not required Not required 

Stateful server Supported Supported Supported Not supported Supported Supported 

Platform TP monitors Web Web Custom J2EE J2EE 

Multi database Supported Supported Not supported Supported Not supported Supported 

Table: exactly once transaction solutions 
For the sake of completeness, we point out here that replication approaches for the 

third tier (back-end, database tier) that work with application servers have also been 
investigated by many researchers (see [18,19]).   



 

 

3. Background 

We assume the reader is familiar with EJB component model and how transactions are 
used through containers in J2EE servers (background details are available in the more 
detailed version of this paper [20]). We only provide a brief description of how 
services are integrated into JBoss via interceptors, management beans (MBeans) and 
Java Management Extensions JMX and then describe how this approach is used to 
implement transactions in JBoss middleware. 
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Figure 1 – Augmenting application server with transactions. 

In JBoss invocations pass through a series of interceptors within a container. These 
interceptors enable the integration of additional services into a container to support 
EJB execution (e.g., security, transactions), with the final interceptor in the incoming 
chain of interceptors handling method invocation on the actual EJB itself. Services 
may be added to JBoss via MBeans. An MBean exposes a management interface, 
attributes and operations while adhering to the JMX specification and may be made 
available for use via the standard object location services in JBoss (JNDI). JMX 
provides an API for management and monitoring of resources, including remote 
access, so a remote application can manage and monitor applications.  

JBoss implements transactions with the aid of tx interceptors and the transaction 
manager (figure 1). The tx interceptor inspects an incoming invocation with the aid of 
the transaction manager and determines the appropriate settings for the transaction 
context before the receiving bean processes the invocation. A transaction context is 
used to identify a transaction and determines the transaction an invocation belongs to 
(in particular, the thread of execution associated to an invocation), allowing 
transactional mechanisms to be enacted in line with invocation processing on 
transactional objects (e.g., mark for rollback, throw exception, commit). 

4. Model 

Our approach to component replication is based on a passive replication scheme, in 
that a primary services all client requests with a backup assuming the responsibility of 
servicing client requests when a primary fails. Crash failures of servers are assumed. 
In a configuration of server machines where the failure of a server can be detected 
with accuracy, a minimum of f+1 replicas are needed to tolerate up to f server failures; 
such a scheme can be engineered for a well managed cluster of machines connected by 
a high bandwidth LAN. Configurations where accurate failure detection is not possible 



  

 

(e.g., the servers are widely distributed with arbitrary inter-communication delays), a 
minimum of 2f+1 replicas are needed. Performance evaluation that we present in 
section 6 are for a LAN configuration.   

Recovery measures undertaken vary depending upon where the primary fails within 
a client session: (1) during non-transactional invocation phase, (2) during transactional 
phase. As entity beans access and change persistent state, the time taken to execute 
application logic via entity beans is longer than enacting the same logic using session 
beans. The reason for this is two fold: (1) the high cost of retrieving state on entity 
bean activation and writing state on entity bean deactivation; (2) the transactional 
management associated to persistent state updates. The structuring of an application to 
minimize the use of entity beans (and transactions) to speed up execution times is 
commonplace. This approach to development leads to scenarios in which a client 
enacts a “session” (a series of related invocations) on an application server, with the 
majority of invocations handled by session beans. Transactional manipulation of 
persistent state via entity beans is usually left to the last steps of processing in a 
client’s session. The sequence diagram in figure 2 describes the style of interaction 
our model assumes. We are only showing application level logic invocations (as 
encoded in EJBs) in our diagram, therefore, we do not show the transaction manager 
and associated databases. The invocations that occur within a transaction are shown in 
the shaded area. As mentioned earlier, we assume a client is not part of the 
transaction. 

Session Bean Client Entity Bean X Entity Bean Y 

Begin Tr ansaction 

End Transaction  

 
Figure 2 – Interactions between beans and client. 

We assume a single stateful session bean is used to present a single interface for a 
client during a session. The creation and destruction of a stateful session bean by a 
client delimits the start and end of a session (i.e., lifetime of stateful session bean). We 
assume the existence of a single transaction during the handling of the last client 
invocation and such a transaction is initiated by the stateful session bean and involves 
one or more entity beans. The transaction is container managed and is scoped by this 
last method invocation.  

Failure of the primary during a session will result in a backup assuming 
responsibility for continuing the session. This may require the replaying of the last 
invocation sent by a client if state changes and return parameters associated to the last 
invocation were not recorded at backups. If state changes and parameters were 
recorded then the backup will reply with the appropriate parameters. During the 
transactional phase the transaction may be completed at the backup if the commit 
stage had been reached by the primary and computation has finished between the 
entity beans. The backup will be required to replay the transaction if failure occurs 
during transactional computation. 



 

 

5. JBoss Implementation 

Figure 3 shows the interceptors and associated services that implement our replication 
scheme in the JBoss application server. The interceptors perform the following tasks: 
retry interceptor – identifies if a client request is a duplicate and handles duplicates 
appropriately; txinspector interceptor – determines how to handle invocations that are 
associated to transactions; txinterceptor – interacts with transaction manager to enable 
transactional invocations (unaltered existing interceptor shown for completeness); 
replica interceptor – ensures state changes associated with a completed invocation are 
propagated to backups. 
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Figure 3 – Augmenting application server with replication service. 

The txinterceptor together with the transaction manager accommodates transactions 
within the application server. The replication service supports inter-replica 
consistency and consensus services via the use of JGroups [21]. The replication 
service, retry interceptor, txinspector interceptor and the replica interceptor, 
implements our replication scheme.  

Replication logic at the server side makes use of four persistent logs that are 
maintained by the replication service: (i) current primary and backup configuration 
(group log), (ii) most recent state of session bean together with the last parameters 
sent back as a reply to a client invocation (bean log), (iii) invocation timestamp 
associated to most recent session bean state (timestamp log), (iv) state related to the 
progress of a transaction (transaction log). The replication service uses a single group 
via the JGroups service to ensure these logs are consistent across replicas.  

We skip over the details of how a client side proxy has been enhanced with retry 
ability to backups as well as how session state checkpointing to backups is performed 
using group communication, as these techniques are well known (details can be found 
in [20]); instead we concentrate below on transaction failover management. 

5.1. Transaction failover management 

We assume container managed transaction demarcation. Via this approach to 
managing transactions the application developer specifies the transaction demarcation 
for each method via the transaction attribute in a bean deployment descriptor. Using 
this attribute a container decides how a transaction is to be handled. For example, if a 
new transaction has to be created for an invocation, or to process the invocation as 
part of an existing transaction (i.e., the transaction was started earlier in the execution 
chain). Based on this mechanism, a single invocation of a method can be: a single 
transaction unit (a transaction starts at the beginning of the invocation and ends at the 



  

 

end of the invocation), a part of a transaction unit originated from other invocation, or 
non transactional (e.g. the container can suspend a transaction prior to executing a 
method, and resume the transaction afterwards). We assume that the processing of an 
invocation may involve one or more beans (both session beans and entity beans) and 
may accesses one or more databases, requiring two phase commitment. 
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Figure 4 - A typical interaction for a transaction processing in EJB 

Figure 4 illustrates the execution of a typical transaction (for brevity, we have not 
shown resource adaptors). We shall use this example as a comparison to highlight the 
enhancements we have provided to handle transaction failover (this example is 
represents the shaded area shown in figure 4). SFSB stands for a stateful session bean 
and EB stands for an entity bean. All methods on the beans have a Required tag as 
their transaction attribute, indicating to the container that they must be executed within 
a transaction. The invocation from the client initially does not contain a transaction 
context. At (1), a client invokes a method on a stateful session bean SFSB1. The 
container (e.g. the tx interceptor on JBoss app server) determines that the invocation 
requires a transaction and calls the transaction manager to create a transaction T1 for 
this invocation (2). The container proceeds to attach a transaction context for T1 to 
the invocation. The container does not have to create a new transaction for nested 
invocations (3) and (5). The invocation on EB1 requires access to a database DB1 (4) 
and at this point, the container registers DB1 to the transaction manager as a resource 
associated with T1. The same process happens at (6) where the container registers 
DB2 to be associated with T1. After the computation on SFSB1, EB1 and EB2 
finishes, before returning the result to the client, the container completes the 
transaction by instructing the transaction manager to commit T1. The transaction 
manager then performs two phase commit with all resources associated with T1 (8) 
(not shown in detail here).  

Our transaction failover mechanisms are performed at point (7) and (8). A multicast 
of the state update of all involved session beans together with the result parameter, the 
transaction id and information on all resources involved is made (7a) and (7b) to all 
backup replicas. If the primary fails after this point, a backup will try to finish the 
commit process. At point (8), a multicast of the decision taken by the transaction 
manager is made to all backup replica transaction managers via the replication service 
(8a) and (8b). If the primary fails after this point, a backup will try to finish the 
commit process according to the decision that has been taken by the failed primary.  



 

 

A number of technical challenges needed to be overcome to provide an engineered 
solution. However, for brevity we do not go into such details here; the interested 
reader is referred to [20]. 

6. Experimental Evaluation 

We carried out our experiments on the following configurations: (1) Single 
application server with no replication; (2) Two application server replicas with 
transaction failover. Both configurations use two databases, as we want to conduct 
experiments for distributed transaction setting. 

The application server used was JBoss 3.2.5. The database used was Oracle 9i 
release 2 (9.2.0.1.0) [20]. All clients, application servers and database servers were 
deployed using machines of a similar configuration (Pentium IV 2.8 GHz PC with 
2048MB of RAM running Fedora Core 4). The LAN used for the experiments was a 
100 Mbit Ethernet. ECperf [22] was used as the demonstration application in our 
experiments. ECperf is a benchmark application provided by Sun to enable vendors to 
measure the performance of their J2EE products. For our experiments, we configured 
the ECperf application to use two databases instead of just a single database (as is the 
default configuration).  

Two experiments are performed. First, we measure the overhead of our replication 
scheme introduces into application performance. The ECperf driver was configured to 
run each experiment with 10 different injection rates (1 though 10 inclusive). At each 
of these increments a record of the overall throughput (transactions per minute) for 
both order entry and manufacturing applications is taken. The injection rate relates to 
the order entry and manufacturer requests generated per second. Due to the 
complexity of the system the relationship between injection rate and resulted 
transactions is not straightforward. The second experiment measures how our 
replicated algorithm performs in the presence of failures. In this experiment we ran the 
ECperf benchmark for 20 minutes, and the throughput of the system every 30 seconds 
is recorded. After the first 12 minutes, we kill the primary server to force the system to 
failover to the backup server. 

Figure 5 presents two graphs that describe the throughput and response time of the 
ECperf applications; figure 5(i) identifies the throughput for the entry order system, 
figure 5(ii) identifies the response time for the entry order system. On first inspection 
we see that our replication scheme lowers the overall throughput of the system. This is 
to be expected as additional processing resources are required to maintain state 
consistency across components on a backup server. 
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(i) throughput for entry order app. (ii) response time for entry order app. 



  

 

Figure 5 – Performance figures. 

Figure 6 presents a graph that describes the throughput of our system and the 
standard implementation over the time of the benchmark. After 720 seconds running 
(12 minutes), we crash the primary server. When no replication is present the failure 
of the application server results in throughput decreasing to zero, as there is no backup 
to continue the computation. When replication is present performance drops when 
failure of the primary is initiated. However, the backup assumes the role of the 
primary allowing for throughput to rise again. An interesting observation is that 
throughput on the new primary is higher than it was on the old primary. This may be 
explained by the fact that only one server exists and no replication is taking place. The 
initial peak in throughput may also be explained by the completion of transactions that 
started on the old primary but finish on the new primary. This adds an additional load 
above and beyond the regular load generated by injection rates. 
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Figure 6 – Performance figures under a failure. 

The experiments show that our replication scheme does not incur high overhead 
compared to a non replicated system, and is able to perform quick failover when the 
primary crashes. 

7. Concluding Remarks 

We have presented a practical solution to the problem of incorporating availability 
through replication in application servers, specifically for the general case of multi-
database transactions. Although our design and implementation have been for a 
specific component model (EJBs) and application server (JBoss), the ideas can be 
applied to other application servers. Thus our case study can be used by other 
designers intending to enhance application servers in a similar manner. 
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